1. Influence of Stroke on Performance Characteristics of Synthetic Jet Fan
- Author
-
K. Nishibe, Y. Nomura, K. Noda, H. Ohue, and K. Sato
- Subjects
Synthetic jets ,Jet pump ,Fan performance curve ,Pressure recovery ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
Synthetic jets, whose size and weight can be reduced easily, have become an attractive alternative to continuous jets. Many experimental and numerical studies have been conducted on synthetic jets to investigate their fundamental flow characteristics, including jet structure, for applied research such as boundary layer control and enhanced fluid mixing. However, few studies have focused on fluid transportation devices using synthetic jets as a driving source. Therefore, several issues concerning fluid transport characteristics still need to be resolved. In addition, although optimum operation of devices using synthetic jets is essential for their practical use, few studies have focused on this issue. The present study experimentally demonstrates the influence of the dimensionless stoke L on the performance characteristics of a synthetic jet fan under Reynolds number Re = 1800 and the same fan geometry; here, the stroke l is nondimensionalized by the primary slot width b. Furthermore, numerical simulations are conducted to complement the experiment. Velocity and pressure measurements are performed using a hot-wire anemometer, differential pressure manometer, and pressure transducer. The influence of the dimensionless stroke L on the performance/efficiency curves, static pressure distribution on the duct surface, and unsteady flow characteristics are investigated. Moreover, the flow field inside the duct is observed through numerical simulation. The results show that the performance characteristics and pressure recovery process depend on the dimensionless stroke L, and an optimum range of dimensionless stroke L exists for operation.
- Published
- 2018