1. Hydrothermal synthesis of CuO@MnO2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications
- Author
-
Vijay Kakani, Sivalingam Ramesh, H. M. Yadav, Chinna Bathula, Praveen Kumar Basivi, Ramasubba Reddy Palem, Heung Soo Kim, Visweswara Rao Pasupuletti, Handol Lee, and Hakil Kim
- Subjects
Medicine ,Science - Abstract
Abstract Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been used to fabricate nanostructured materials for various energy devices, such as supercapacitors, sensors, batteries, and electrocatalysts. Nitrogen-doped carbon-based electrodes have been widely used to improve supercapacitor applications via various chemical approaches. Based on previous studies, CuO@MnO2 and CuO@MnO2/N-MWCNT composites were synthesized using a sonication-supported hydrothermal reaction process to evaluate their supercapacitor properties. The structural and morphological properties of the synthesized composite materials were characterized via Raman spectroscopy, XRD, SEM, and SEM–EDX, and the morphological properties of the composite materials were confirmed by the nanostructured composite at the nanometer scale. The CuO@MnO2 and CuO@MnO2/N-MWCNT composite electrodes were fabricated in a three-electrode configuration, and electrochemical analysis was performed via CV, GCD, and EIS. The composite electrodes exhibited the specific capacitance of ~ 184 F g−1 at 0.5 A g−1 in the presence of a 5 M KOH electrolyte for the three-electrode supercapacitor application. Furthermore, it exhibited significantly improved specific capacitances and excellent cycling stability up to 5000 GCD cycles, with a 98.5% capacity retention.
- Published
- 2022
- Full Text
- View/download PDF