33 results on '"H. Senshu"'
Search Results
2. Thermally Altered Subsurface Material of Asteroid 162173 Ryugu
- Author
-
K Kitazato, R E Milliken, T Iwata, M Abe, M Ohtake, S Matsuura, Y Takagi, T Nakamura, T Hiroi, M Matsuoka, L Riu, Y Nakauchi, K Tsumura, T Arai, H Senshu, N Hirata, M A Barucci, R Brunetto, C Pilorget, F Poulet, J-P Bibring, D L Domingue, F Vilas, D Takir, E Palomba, A Galiano, D Perna, T Osawa, M Komatsu, A Nakato, N Takato, T Matsunaga, M Arakawa, T Saiki, K Wada, T Kadono, H Imamura, H Yano, K Shirai, M Hayakawa, C Okamoto, H Sawada, K Ogawa, Y Iijima, S Sugita, R Honda, T Morota, S Kameda, E Tatsumi, Y Cho, K Yoshioka, Y Yokota, N Sakatani, M Yamada, T Kouyama, H Suzuki, C Honda, N Namiki, T Mizuno, K Matsumoto, H Noda, Y Ishihara, R Yamada, K Yamamoto, F Yoshida, S Abe, A Higuchi, Y Yamamoto, T Okada, Y Shimaki, R.Noguchi, A Miura, S Tachibana, H Yabuta, M Ishiguro, H Ikeda, H Takeuchi, T Shimada, O Mori, S Hosoda, R Tsukizaki, S Soldini, M Ozaki, F Terui, N Ogawa, Y Mimasu, G Ono, K Yoshikawa, C Hirose, A Fujii, T Takahashi, S Kikuchi, Y Takei, T Yamaguchi, S. Nakazawa, S Tanaka, M Yoshikawa, S Watanabe, and Y Tsuda
- Subjects
Lunar and Planetary Science and Exploration - Abstract
Studies of meteorite analysis and theoretical modeling have indicated the possibility that some carbonaceous near-Earth asteroids are thermally altered due to radiative heating during close approaches to the Sun in addition to parent body processes (Nakamura, 2005; Marchi et al., 2009; Chaumard et al., 2012). In April 2019, the Hayabusa2 mission successfully completed an artificial impact experiment on the carbonaceous near-Earth asteroid 162173 Ryugu (Arakawa et al., 2020), which provided an opportunity to investigate the effects of radiative heating through the exposed subsurface material. Here we report observations of the Ryugu’s subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Spectra of the subsurface material exhibit a slightly stronger and peak-shifted hydroxyl absorption feature compared to that observed for the surface, indicating that space weathering and/or radiative heating caused a subtle change in the spectrum of Ryugu surface. However, the shape of the absorption feature still suggests that the subsurface material experienced heating above 300 ˚C similar to the surface. In contrast, our thermal modeling shows that radiative heating does not increase the subsurface temperature at 1 m depth above 200 ˚C even if the semimajor axis is reduced down to 0.344 au. This supports that the Ryugu material would have been preferentially altered due to radiogenic and/or impact heating on the parent body rather than radiative heating.
- Published
- 2021
- Full Text
- View/download PDF
3. Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples
- Author
-
T. Nakamura, M. Matsumoto, K. Amano, Y. Enokido, M. E. Zolensky, T. Mikouchi, H. Genda, S. Tanaka, M. Y. Zolotov, K. Kurosawa, S. Wakita, R. Hyodo, H. Nagano, D. Nakashima, Y. Takahashi, Y. Fujioka, M. Kikuiri, E. Kagawa, M. Matsuoka, A. J. Brearley, A. Tsuchiyama, M. Uesugi, J. Matsuno, Y. Kimura, M. Sato, R. E. Milliken, E. Tatsumi, S. Sugita, T. Hiroi, K. Kitazato, D. Brownlee, D. J. Joswiak, M. Takahashi, K. Ninomiya, T. Takahashi, T. Osawa, K. Terada, F. E. Brenker, B. J. Tkalcec, L. Vincze, R. Brunetto, A. Aléon-Toppani, Q. H. S. Chan, M. Roskosz, J.-C. Viennet, P. Beck, E. E. Alp, T. Michikami, Y. Nagaashi, T. Tsuji, Y. Ino, J. Martinez, J. Han, A. Dolocan, R. J. Bodnar, M. Tanaka, H. Yoshida, K. Sugiyama, A. J. King, K. Fukushi, H. Suga, S. Yamashita, T. Kawai, K. Inoue, A. Nakato, T. Noguchi, F. Vilas, A. R. Hendrix, C. Jaramillo-Correa, D. L. Domingue, G. Dominguez, Z. Gainsforth, C. Engrand, J. Duprat, S. S. Russell, E. Bonato, C. Ma, T. Kawamoto, T. Wada, S. Watanabe, R. Endo, S. Enju, L. Riu, S. Rubino, P. Tack, S. Takeshita, Y. Takeichi, A. Takeuchi, A. Takigawa, D. Takir, T. Tanigaki, A. Taniguchi, K. Tsukamoto, T. Yagi, S. Yamada, K. Yamamoto, Y. Yamashita, M. Yasutake, K. Uesugi, I. Umegaki, I. Chiu, T. Ishizaki, S. Okumura, E. Palomba, C. Pilorget, S. M. Potin, A. Alasli, S. Anada, Y. Araki, N. Sakatani, C. Schultz, O. Sekizawa, S. D. Sitzman, K. Sugiura, M. Sun, E. Dartois, E. De Pauw, Z. Dionnet, Z. Djouadi, G. Falkenberg, R. Fujita, T. Fukuma, I. R. Gearba, K. Hagiya, M. Y. Hu, T. Kato, T. Kawamura, M. Kimura, M. K. Kubo, F. Langenhorst, C. Lantz, B. Lavina, M. Lindner, J. Zhao, B. Vekemans, D. Baklouti, B. Bazi, F. Borondics, S. Nagasawa, G. Nishiyama, K. Nitta, J. Mathurin, T. Matsumoto, I. Mitsukawa, H. Miura, A. Miyake, Y. Miyake, H. Yurimoto, R. Okazaki, H. Yabuta, H. Naraoka, K. Sakamoto, S. Tachibana, H. C. Connolly, D. S. Lauretta, M. Yoshitake, M. Yoshikawa, K. Yoshikawa, K. Yoshihara, Y. Yokota, K. Yogata, H. Yano, Y. Yamamoto, D. Yamamoto, M. Yamada, T. Yamada, T. Yada, K. Wada, T. Usui, R. Tsukizaki, F. Terui, H. Takeuchi, Y. Takei, A. Iwamae, H. Soejima, K. Shirai, Y. Shimaki, H. Senshu, H. Sawada, T. Saiki, M. Ozaki, G. Ono, T. Okada, N. Ogawa, K. Ogawa, R. Noguchi, H. Noda, M. Nishimura, N. Namiki, S. Nakazawa, T. Morota, A. Miyazaki, A. Miura, Y. Mimasu, K. Matsumoto, K. Kumagai, T. Kouyama, S. Kikuchi, K. Kawahara, S. Kameda, T. Iwata, Y. Ishihara, M. Ishiguro, H. Ikeda, S. Hosoda, R. Honda, C. Honda, Y. Hitomi, N. Hirata, T. Hayashi, M. Hayakawa, K. Hatakeda, S. Furuya, R. Fukai, A. Fujii, Y. Cho, M. Arakawa, M. Abe, Y. Tsuda, Tohoku University [Sendai], NASA Johnson Space Center (JSC), NASA, The University of Tokyo (UTokyo), Tokyo Institute of Technology [Tokyo] (TITECH), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Planetary Exploration Research Center [Chiba] (PERC), Chiba Institute of Technology (CIT), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Nagoya University, Department of Earth and Planetary Science [Tokyo], Graduate School of Science [Tokyo], The University of Tokyo (UTokyo)-The University of Tokyo (UTokyo), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Guangzhou Institute of Geochemistry, Ritsumeikan University, Japan Synchrotron Radiation Research Institute [Hyogo] (JASRI), Institute of Low Temperature Science [Sapporo], Hokkaido University [Sapporo, Japan], Department of Earth, Environmental and Planetary Sciences [Providence], Brown University, The University of Aizu, University of Washington [Seattle], Osaka University, Kavli Institute for the Physics and Mathematics of the Universe [Tokyo] (Kavli IPMU), The University of Tokyo Institutes for Advanced Study (UTIAS), Japan Atomic Energy Agency, Goethe-University Frankfurt am Main, Department of Inorganic and Physical Chemistry, Ghent University, Universiteit Gent = Ghent University (UGENT), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Department of Earth Sciences, Royal Holloway, University of London, Egham, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Advanced Photon Source [ANL] (APS), Argonne National Laboratory [Lemont] (ANL)-University of Chicago-US Department of Energy, Kindai University, Kyushu University, Department of Earth and Atmospheric Sciences [Houston], University of Houston, Texas Materials Institute (TMI), University of Texas at Austin [Austin], Department of Geoscience, Virginia Tech, Blacksburg, VA, United States, National Institute for Materials Science (NIMS), Department of Earth Sciences [NHM London] (DES-NHM), The Natural History Museum [London] (NHM), Kanazawa University (KU), Graduate University for Advanced Studies [Hayama] (SOKENDAI), Division of Earth and Planetary Sciences [Kyoto], Kyoto University, Planetary Science Institute [Tucson] (PSI), Pennsylvania State University (Penn State), Penn State System, California State University [San Marcos] (CSUSM), Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), University of Shizuoka, Ehime University [Matsuyama, Japon], European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), KEK (High energy accelerator research organization), Hitachi, Ltd, Institute for integrated Radiation and Nuclear Science (KURNS), National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Department of Physics, Rikkyo University, Tokyo, Japan Fine Ceramics Center (JFCC), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), The Aerospace Corporation, Earth-Life Science Institute [Tokyo] (ELSI), University of Chinese Academy of Sciences [Beijing] (UCAS), Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Photone Sciences, Deutsches Elektronen-Synchrotron (DESY), Graduate School of Life Science, University of Hyogo, International Christian University, Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Center for Advanced Radiation Sources [University of Chicago] (CARS), University of Chicago, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Graduate School of Information Science [Nagoya], Department of Natural History Sciences, Department of Earth and Planetary Sciences [Fukuoka], Graduate School of Advanced Science and Engineering [Higashi-Hiroshima], Hiroshima University, Rowan University, Lunar and Planetary Laboratory [University of Arizona] (LPL), University of Arizona, Kanagawa Institute of Technology, Marine Works Japan Ltd., Faculty of Science, Niigata University, National Astronomical Observatory of Japan (NAOJ), Department of Physics and Astronomy [Seoul], Seoul National University [Seoul] (SNU), Kochi University, Department of Planetology, Graduate School of Science, Graduate School of Science [Kobe], Kobe University-Kobe University, Kobe University, Supported by KAKENHI from the Japanese Society for Promotion of Science (JSPS), grants JP20H00188 and 19H05183 to T.N., JP19K14776 to M.M., 21K18645 to T.M. and K.S., JP20H00205 to A.Ts., M.M., A.M. and J.M., 17H06458 to K.F., Y.T., S.Y. and M.K., JP17H06459 to T.N., T.U., S.W., M.M., N.N., T.M., T.O., Y.S., N.S., and R.N., JP15H05695 to A.Ts. and K.U., 20H05846 to S.T., JP17H06457 to H.G., JP17H06458 to Y. T. and K. F., JP19H00726 to K.K., H. G., and T.M., JP21J13337 to K.A., and JP18H05456,JP20H00189 to K.S., 18H05463 to T.T., S.N., and S.W., 18H05460 to K.N. and T.O., 18H05464 to Y.M., 18H05457 to K.N., T.T., S.W., and Y.M., and JP18H05479 to M.U. Also supported by the JSPS Core-to-Core program ' International Network of Planetary Sciences', and from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (grants JPMXS0450200421 and JPMXS0450200521) to SS. A.K. acknowledges funding support from UK Research and Innovation (UKRI) grant MR/T020261/1. A.B. acknowledges funding support from NASA Emerging Worlds grant - 80NSSC18K0731. P.B. acknowledges funding from the European Research Council (ERC) under grant agreement no. 771691 (Solarys) and the CNES., and European Project: 771691,SOLARYS
- Subjects
Multidisciplinary ,[SDU]Sciences of the Universe [physics] ,Ryugu Hayabusa2 Carbonaceous asteroid Sample return - Abstract
Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide–bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of
- Published
- 2022
- Full Text
- View/download PDF
4. Innovation of Thermal Evolution Model of Mantle
- Author
-
H. Senshu, Shigenori Maruyama, and Shuji Rino
- Subjects
Global and Planetary Change ,Geophysics ,Geography, Planning and Development ,Thermal ,Geology ,Mantle (geology) ,Earth-Surface Processes - Published
- 2010
- Full Text
- View/download PDF
5. Role of tonalite-trodhjemite-granite (TTG) crust subduction on the mechanism of supercontinent breakup
- Author
-
M. Santosh, Shigenori Maruyama, Shuji Rino, and H. Senshu
- Subjects
Subduction ,Lithosphere ,Oceanic crust ,Continental crust ,Geochemistry ,Adakite ,Geology ,Crust ,Geophysics ,Eclogitization ,Mantle (geology) - Abstract
The tonalite-trondhjemite-granite (TTG) crust has been considered to be buoyant and hence impossible to be subducted into the deep mantle. However, recent studies on the juvenile arc in the western Pacific region indicate that immature island arcs subduct into the deep mantle in most cases, except in the case of parallel arc collision. Moreover, sediment trapped subduction and tectonic erosion are also common. This has important implications in evaluating the role of TTG crust in the deep mantle and probably on the bottom of the mantle. Because the TTG crust is enriched in K, U and Th, ca. 20 times more than that of CI chondrite, the accumulated TTG on the Core Mantle Boundary (CMB) would have played a critical role to initiate plumes or superplumes radiating from the thermal boundary layer, particularly after 2.0 Ga, related to the origin of superplume-supercontinent cycle. This is because selective subduction of oceanic lithosphere including sediment-trapped subduction, tectonic erosion and arc- and microcontinent-subduction proceeded under the supercontinent before the final amalgamation ca. 200-300 million years after the formation of the nuclei. We speculate the mechanism of superplume evolution through the subduction of TTG-crust and propose that this process might have played a dominant role in supercontinent breakup.
- Published
- 2009
- Full Text
- View/download PDF
6. Granite subduction: Arc subduction, tectonic erosion and sediment subduction
- Author
-
Shinji Yamamoto, Shuji Rino, Soichi Omori, H. Senshu, and Shigenori Maruyama
- Subjects
geography ,geography.geographical_feature_category ,Continental collision ,Subduction ,Volcanic arc ,Earth science ,Continental crust ,Geochemistry ,Geology ,Collision zone ,Craton ,Adakite ,Convergent boundary - Abstract
Continental growth has been episodic, reflecting the episodic nature of mantle dynamics as well as surface dynamics of the Earth, the net result of which is exhibited by the present mantle with two huge reservoirs of TTG rocks, one on the surface continents and the other on the D″ layer on the Core-Mantle Boundary (CMB). During the early half of the Earth history, the felsic continental crust on the surface which formed in an intra-oceanic environment has mostly been subducted into the deep mantle, except in the rare case of parallel arc collision. The growth history of continental crust shows that with its simultaneous formation, a considerable amount must have also been subducted. Such ongoing subduction processes can be seen in the western Pacific region, through tectonic erosion, arc subduction, and sediment-trapped subduction.
- Published
- 2009
- Full Text
- View/download PDF
7. Development of the Laser Altimeter (LIDAR) for Hayabusa2
- Author
-
T. Mizuno, T. Kase, T. Shiina, M. Mita, N. Namiki, H. Senshu, R. Yamada, H. Noda, H. Kunimori, N. Hirata, F. Terui, and Y. Mimasu
- Published
- 2016
- Full Text
- View/download PDF
8. Dust Detection Mode of the Hayabusa2 LIDAR
- Author
-
H. Senshu, S. Oshigami, M. Kobayashi, R. Yamada, N. Namiki, H. Noda, Y. Ishihara, and T. Mizuno
- Subjects
010504 meteorology & atmospheric sciences ,0103 physical sciences ,010303 astronomy & astrophysics ,01 natural sciences ,0105 earth and related environmental sciences - Published
- 2016
- Full Text
- View/download PDF
9. Thermal evolution and magnetism of terrestrial planets
- Author
-
H. Senshu, Chihiro Tachinami, and Shigeru Ida
- Subjects
Physics ,Space and Planetary Science ,Habitability ,Magnetism ,Thermal ,Terrestrial planet ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Planetary mass ,Astrobiology - Abstract
We evaluate a numerical model on the thermal evolution of terrestrial planets to estimate life-time of planetary intrinsic magnetic field for various mass planets. In this model, we take into account the pressure-dependency of density profile of the planet by using Birch-Murnaghun equation of state, and simulate thermal evolution of the planet by means of mixing length theory. According to our numerical results, the planetary mass must be between 0.1 and 1.4 Earth mass to sustain the intrinsic magnetic field for 4.5Gyr. If existence of intrinsic magnetic field were a key factor to make the planet habitable, the mass range above indicates that super-Earths would not be habitable.
- Published
- 2007
- Full Text
- View/download PDF
10. Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth
- Author
-
S. Tachibana, H. Sawada, R. Okazaki, Y. Takano, K. Sakamoto, Y. N. Miura, C. Okamoto, H. Yano, S. Yamanouchi, P. Michel, Y. Zhang, S. Schwartz, F. Thuillet, H. Yurimoto, T. Nakamura, T. Noguchi, H. Yabuta, H. Naraoka, A. Tsuchiyama, N. Imae, K. Kurosawa, A. M. Nakamura, K. Ogawa, S. Sugita, T. Morota, R. Honda, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, M. Hayakawa, M. Matsuoka, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, T. Yoshimitsu, T. Kubota, H. Demura, T. Yada, M. Nishimura, K. Yogata, A. Nakato, M. Yoshitake, A. I. Suzuki, S. Furuya, K. Hatakeda, A. Miyazaki, K. Kumagai, T. Okada, M. Abe, T. Usui, T. R. Ireland, M. Fujimoto, T. Yamada, M. Arakawa, H. C. Connolly, A. Fujii, S. Hasegawa, N. Hirata, C. Hirose, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, S. Kikuchi, K. Kitazato, D. S. Lauretta, G. Libourel, B. Marty, K. Matsumoto, T. Michikami, Y. Mimasu, A. Miura, O. Mori, K. Nakamura-Messenger, N. Namiki, A. N. Nguyen, L. R. Nittler, H. Noda, R. Noguchi, N. Ogawa, G. Ono, M. Ozaki, H. Senshu, T. Shimada, Y. Shimaki, K. Shirai, S. Soldini, T. Takahashi, Y. Takei, H. Takeuchi, R. Tsukizaki, K. Wada, Y. Yamamoto, K. Yoshikawa, K. Yumoto, M. E. Zolensky, S. Nakazawa, F. Terui, S. Tanaka, T. Saiki, M. Yoshikawa, S. Watanabe, and Y. Tsuda
- Subjects
Multidisciplinary - Abstract
The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu’s boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of >5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid.
- Full Text
- View/download PDF
11. Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples.
- Author
-
Nakamura T, Matsumoto M, Amano K, Enokido Y, Zolensky ME, Mikouchi T, Genda H, Tanaka S, Zolotov MY, Kurosawa K, Wakita S, Hyodo R, Nagano H, Nakashima D, Takahashi Y, Fujioka Y, Kikuiri M, Kagawa E, Matsuoka M, Brearley AJ, Tsuchiyama A, Uesugi M, Matsuno J, Kimura Y, Sato M, Milliken RE, Tatsumi E, Sugita S, Hiroi T, Kitazato K, Brownlee D, Joswiak DJ, Takahashi M, Ninomiya K, Takahashi T, Osawa T, Terada K, Brenker FE, Tkalcec BJ, Vincze L, Brunetto R, Aléon-Toppani A, Chan QHS, Roskosz M, Viennet JC, Beck P, Alp EE, Michikami T, Nagaashi Y, Tsuji T, Ino Y, Martinez J, Han J, Dolocan A, Bodnar RJ, Tanaka M, Yoshida H, Sugiyama K, King AJ, Fukushi K, Suga H, Yamashita S, Kawai T, Inoue K, Nakato A, Noguchi T, Vilas F, Hendrix AR, Jaramillo-Correa C, Domingue DL, Dominguez G, Gainsforth Z, Engrand C, Duprat J, Russell SS, Bonato E, Ma C, Kawamoto T, Wada T, Watanabe S, Endo R, Enju S, Riu L, Rubino S, Tack P, Takeshita S, Takeichi Y, Takeuchi A, Takigawa A, Takir D, Tanigaki T, Taniguchi A, Tsukamoto K, Yagi T, Yamada S, Yamamoto K, Yamashita Y, Yasutake M, Uesugi K, Umegaki I, Chiu I, Ishizaki T, Okumura S, Palomba E, Pilorget C, Potin SM, Alasli A, Anada S, Araki Y, Sakatani N, Schultz C, Sekizawa O, Sitzman SD, Sugiura K, Sun M, Dartois E, De Pauw E, Dionnet Z, Djouadi Z, Falkenberg G, Fujita R, Fukuma T, Gearba IR, Hagiya K, Hu MY, Kato T, Kawamura T, Kimura M, Kubo MK, Langenhorst F, Lantz C, Lavina B, Lindner M, Zhao J, Vekemans B, Baklouti D, Bazi B, Borondics F, Nagasawa S, Nishiyama G, Nitta K, Mathurin J, Matsumoto T, Mitsukawa I, Miura H, Miyake A, Miyake Y, Yurimoto H, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Connolly HC Jr, Lauretta DS, Yoshitake M, Yoshikawa M, Yoshikawa K, Yoshihara K, Yokota Y, Yogata K, Yano H, Yamamoto Y, Yamamoto D, Yamada M, Yamada T, Yada T, Wada K, Usui T, Tsukizaki R, Terui F, Takeuchi H, Takei Y, Iwamae A, Soejima H, Shirai K, Shimaki Y, Senshu H, Sawada H, Saiki T, Ozaki M, Ono G, Okada T, Ogawa N, Ogawa K, Noguchi R, Noda H, Nishimura M, Namiki N, Nakazawa S, Morota T, Miyazaki A, Miura A, Mimasu Y, Matsumoto K, Kumagai K, Kouyama T, Kikuchi S, Kawahara K, Kameda S, Iwata T, Ishihara Y, Ishiguro M, Ikeda H, Hosoda S, Honda R, Honda C, Hitomi Y, Hirata N, Hirata N, Hayashi T, Hayakawa M, Hatakeda K, Furuya S, Fukai R, Fujii A, Cho Y, Arakawa M, Abe M, Watanabe S, and Tsuda Y
- Abstract
Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.
- Published
- 2023
- Full Text
- View/download PDF
12. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu.
- Author
-
Naraoka H, Takano Y, Dworkin JP, Oba Y, Hamase K, Furusho A, Ogawa NO, Hashiguchi M, Fukushima K, Aoki D, Schmitt-Kopplin P, Aponte JC, Parker ET, Glavin DP, McLain HL, Elsila JE, Graham HV, Eiler JM, Orthous-Daunay FR, Wolters C, Isa J, Vuitton V, Thissen R, Sakai S, Yoshimura T, Koga T, Ohkouchi N, Chikaraishi Y, Sugahara H, Mita H, Furukawa Y, Hertkorn N, Ruf A, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Tachibana S, Connolly HC Jr, Lauretta DS, Abe M, Yada T, Nishimura M, Yogata K, Nakato A, Yoshitake M, Suzuki A, Miyazaki A, Furuya S, Hatakeda K, Soejima H, Hitomi Y, Kumagai K, Usui T, Hayashi T, Yamamoto D, Fukai R, Kitazato K, Sugita S, Namiki N, Arakawa M, Ikeda H, Ishiguro M, Hirata N, Wada K, Ishihara Y, Noguchi R, Morota T, Sakatani N, Matsumoto K, Senshu H, Honda R, Tatsumi E, Yokota Y, Honda C, Michikami T, Matsuoka M, Miura A, Noda H, Yamada T, Yoshihara K, Kawahara K, Ozaki M, Iijima YI, Yano H, Hayakawa M, Iwata T, Tsukizaki R, Sawada H, Hosoda S, Ogawa K, Okamoto C, Hirata N, Shirai K, Shimaki Y, Yamada M, Okada T, Yamamoto Y, Takeuchi H, Fujii A, Takei Y, Yoshikawa K, Mimasu Y, Ono G, Ogawa N, Kikuchi S, Nakazawa S, Terui F, Tanaka S, Saiki T, Yoshikawa M, Watanabe SI, and Tsuda Y
- Abstract
The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu's parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.
- Published
- 2023
- Full Text
- View/download PDF
13. Noble gases and nitrogen in samples of asteroid Ryugu record its volatile sources and recent surface evolution.
- Author
-
Okazaki R, Marty B, Busemann H, Hashizume K, Gilmour JD, Meshik A, Yada T, Kitajima F, Broadley MW, Byrne D, Füri E, Riebe MEI, Krietsch D, Maden C, Ishida A, Clay P, Crowther SA, Fawcett L, Lawton T, Pravdivtseva O, Miura YN, Park J, Bajo KI, Takano Y, Yamada K, Kawagucci S, Matsui Y, Yamamoto M, Righter K, Sakai S, Iwata N, Shirai N, Sekimoto S, Inagaki M, Ebihara M, Yokochi R, Nishiizumi K, Nagao K, Lee JI, Kano A, Caffee MW, Uemura R, Nakamura T, Naraoka H, Noguchi T, Yabuta H, Yurimoto H, Tachibana S, Sawada H, Sakamoto K, Abe M, Arakawa M, Fujii A, Hayakawa M, Hirata N, Hirata N, Honda R, Honda C, Hosoda S, Iijima YI, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kawahara K, Kikuchi S, Kitazato K, Matsumoto K, Matsuoka M, Michikami T, Mimasu Y, Miura A, Morota T, Nakazawa S, Namiki N, Noda H, Noguchi R, Ogawa N, Ogawa K, Okada T, Okamoto C, Ono G, Ozaki M, Saiki T, Sakatani N, Senshu H, Shimaki Y, Shirai K, Sugita S, Takei Y, Takeuchi H, Tanaka S, Tatsumi E, Terui F, Tsukizaki R, Wada K, Yamada M, Yamada T, Yamamoto Y, Yano H, Yokota Y, Yoshihara K, Yoshikawa M, Yoshikawa K, Furuya S, Hatakeda K, Hayashi T, Hitomi Y, Kumagai K, Miyazaki A, Nakato A, Nishimura M, Soejima H, Iwamae A, Yamamoto D, Yogata K, Yoshitake M, Fukai R, Usui T, Connolly HC Jr, Lauretta D, Watanabe SI, and Tsuda Y
- Abstract
The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.
- Published
- 2023
- Full Text
- View/download PDF
14. Macromolecular organic matter in samples of the asteroid (162173) Ryugu.
- Author
-
Yabuta H, Cody GD, Engrand C, Kebukawa Y, De Gregorio B, Bonal L, Remusat L, Stroud R, Quirico E, Nittler L, Hashiguchi M, Komatsu M, Okumura T, Mathurin J, Dartois E, Duprat J, Takahashi Y, Takeichi Y, Kilcoyne D, Yamashita S, Dazzi A, Deniset-Besseau A, Sandford S, Martins Z, Tamenori Y, Ohigashi T, Suga H, Wakabayashi D, Verdier-Paoletti M, Mostefaoui S, Montagnac G, Barosch J, Kamide K, Shigenaka M, Bejach L, Matsumoto M, Enokido Y, Noguchi T, Yurimoto H, Nakamura T, Okazaki R, Naraoka H, Sakamoto K, Connolly HC Jr, Lauretta DS, Abe M, Okada T, Yada T, Nishimura M, Yogata K, Nakato A, Yoshitake M, Iwamae A, Furuya S, Hatakeda K, Miyazaki A, Soejima H, Hitomi Y, Kumagai K, Usui T, Hayashi T, Yamamoto D, Fukai R, Sugita S, Kitazato K, Hirata N, Honda R, Morota T, Tatsumi E, Sakatani N, Namiki N, Matsumoto K, Noguchi R, Wada K, Senshu H, Ogawa K, Yokota Y, Ishihara Y, Shimaki Y, Yamada M, Honda C, Michikami T, Matsuoka M, Hirata N, Arakawa M, Okamoto C, Ishiguro M, Jaumann R, Bibring JP, Grott M, Schröder S, Otto K, Pilorget C, Schmitz N, Biele J, Ho TM, Moussi-Soffys A, Miura A, Noda H, Yamada T, Yoshihara K, Kawahara K, Ikeda H, Yamamoto Y, Shirai K, Kikuchi S, Ogawa N, Takeuchi H, Ono G, Mimasu Y, Yoshikawa K, Takei Y, Fujii A, Iijima YI, Nakazawa S, Hosoda S, Iwata T, Hayakawa M, Sawada H, Yano H, Tsukizaki R, Ozaki M, Terui F, Tanaka S, Fujimoto M, Yoshikawa M, Saiki T, Tachibana S, Watanabe SI, and Tsuda Y
- Abstract
Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.
- Published
- 2023
- Full Text
- View/download PDF
15. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites.
- Author
-
Yokoyama T, Nagashima K, Nakai I, Young ED, Abe Y, Aléon J, Alexander CMO, Amari S, Amelin Y, Bajo KI, Bizzarro M, Bouvier A, Carlson RW, Chaussidon M, Choi BG, Dauphas N, Davis AM, Di Rocco T, Fujiya W, Fukai R, Gautam I, Haba MK, Hibiya Y, Hidaka H, Homma H, Hoppe P, Huss GR, Ichida K, Iizuka T, Ireland TR, Ishikawa A, Ito M, Itoh S, Kawasaki N, Kita NT, Kitajima K, Kleine T, Komatani S, Krot AN, Liu MC, Masuda Y, McKeegan KD, Morita M, Motomura K, Moynier F, Nguyen A, Nittler L, Onose M, Pack A, Park C, Piani L, Qin L, Russell SS, Sakamoto N, Schönbächler M, Tafla L, Tang H, Terada K, Terada Y, Usui T, Wada S, Wadhwa M, Walker RJ, Yamashita K, Yin QZ, Yoneda S, Yui H, Zhang AC, Connolly HC Jr, Lauretta DS, Nakamura T, Naraoka H, Noguchi T, Okazaki R, Sakamoto K, Yabuta H, Abe M, Arakawa M, Fujii A, Hayakawa M, Hirata N, Hirata N, Honda R, Honda C, Hosoda S, Iijima YI, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kawahara K, Kikuchi S, Kitazato K, Matsumoto K, Matsuoka M, Michikami T, Mimasu Y, Miura A, Morota T, Nakazawa S, Namiki N, Noda H, Noguchi R, Ogawa N, Ogawa K, Okada T, Okamoto C, Ono G, Ozaki M, Saiki T, Sakatani N, Sawada H, Senshu H, Shimaki Y, Shirai K, Sugita S, Takei Y, Takeuchi H, Tanaka S, Tatsumi E, Terui F, Tsuda Y, Tsukizaki R, Wada K, Watanabe SI, Yamada M, Yamada T, Yamamoto Y, Yano H, Yokota Y, Yoshihara K, Yoshikawa M, Yoshikawa K, Furuya S, Hatakeda K, Hayashi T, Hitomi Y, Kumagai K, Miyazaki A, Nakato A, Nishimura M, Soejima H, Suzuki A, Yada T, Yamamoto D, Yogata K, Yoshitake M, Tachibana S, and Yurimoto H
- Abstract
Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about [Formula: see text] million (statistical) or [Formula: see text] million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun's photosphere than other natural samples do.
- Published
- 2023
- Full Text
- View/download PDF
16. A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu.
- Author
-
Noguchi T, Matsumoto T, Miyake A, Igami Y, Haruta M, Saito H, Hata S, Seto Y, Miyahara M, Tomioka N, Ishii HA, Bradley JP, Ohtaki KK, Dobrică E, Leroux H, Le Guillou C, Jacob D, de la Peña F, Laforet S, Marinova M, Langenhorst F, Harries D, Beck P, Phan THV, Rebois R, Abreu NM, Gray J, Zega T, Zanetta PM, Thompson MS, Stroud R, Burgess K, Cymes BA, Bridges JC, Hicks L, Lee MR, Daly L, Bland PA, Zolensky ME, Frank DR, Martinez J, Tsuchiyama A, Yasutake M, Matsuno J, Okumura S, Mitsukawa I, Uesugi K, Uesugi M, Takeuchi A, Sun M, Enju S, Takigawa A, Michikami T, Nakamura T, Matsumoto M, Nakauchi Y, Abe M, Arakawa M, Fujii A, Hayakawa M, Hirata N, Hirata N, Honda R, Honda C, Hosoda S, Iijima YI, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kawahara K, Kikuchi S, Kitazato K, Matsumoto K, Matsuoka M, Mimasu Y, Miura A, Morota T, Nakazawa S, Namiki N, Noda H, Noguchi R, Ogawa N, Ogawa K, Okada T, Okamoto C, Ono G, Ozaki M, Saiki T, Sakatani N, Sawada H, Senshu H, Shimaki Y, Shirai K, Sugita S, Takei Y, Takeuchi H, Tanaka S, Tatsumi E, Terui F, Tsukizaki R, Wada K, Yamada M, Yamada T, Yamamoto Y, Yano H, Yokota Y, Yoshihara K, Yoshikawa M, Yoshikawa K, Fukai R, Furuya S, Hatakeda K, Hayashi T, Hitomi Y, Kumagai K, Miyazaki A, Nakato A, Nishimura M, Soejima H, Suzuki AI, Usui T, Yada T, Yamamoto D, Yogata K, Yoshitake M, Connolly HC Jr, Lauretta DS, Yurimoto H, Nagashima K, Kawasaki N, Sakamoto N, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Watanabe SI, and Tsuda Y
- Abstract
Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe
3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (-OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss., Competing Interests: Competing interestsThe authors declare no competing interests., (© The Author(s) 2022.)- Published
- 2023
- Full Text
- View/download PDF
17. First asteroid gas sample delivered by the Hayabusa2 mission: A treasure box from Ryugu.
- Author
-
Okazaki R, Miura YN, Takano Y, Sawada H, Sakamoto K, Yada T, Yamada K, Kawagucci S, Matsui Y, Hashizume K, Ishida A, Broadley MW, Marty B, Byrne D, Füri E, Meshik A, Pravdivtseva O, Busemann H, Riebe MEI, Gilmour J, Park J, Bajo KI, Righter K, Sakai S, Sekimoto S, Kitajima F, Crowther SA, Iwata N, Shirai N, Ebihara M, Yokochi R, Nishiizumi K, Nagao K, Lee JI, Clay P, Kano A, Caffee MW, Uemura R, Inagaki M, Krietsch D, Maden C, Yamamoto M, Fawcett L, Lawton T, Nakamura T, Naraoka H, Noguchi T, Yabuta H, Yurimoto H, Tsuda Y, Watanabe SI, Abe M, Arakawa M, Fujii A, Hayakawa M, Hirata N, Hirata N, Honda R, Honda C, Hosoda S, Iijima YI, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kawahara K, Kikuchi S, Kitazato K, Matsumoto K, Matsuoka M, Michikami T, Mimasu Y, Miura A, Morota T, Nakazawa S, Namiki N, Noda H, Noguchi R, Ogawa N, Ogawa K, Okada T, Okamoto C, Ono G, Ozaki M, Saiki T, Sakatani N, Senshu H, Shimaki Y, Shirai K, Sugita S, Takei Y, Takeuchi H, Tanaka S, Tatsumi E, Terui F, Tsukizaki R, Wada K, Yamada M, Yamada T, Yamamoto Y, Yano H, Yokota Y, Yoshihara K, Yoshikawa M, Yoshikawa K, Furuya S, Hatakeda K, Hayashi T, Hitomi Y, Kumagai K, Miyazaki A, Nakato A, Nishimura M, Soejima H, Iwamae A, Yamamoto D, Yogata K, Yoshitake M, Fukai R, Usui T, Ireland T, Connolly HC Jr, Lauretta DS, and Tachibana S
- Abstract
The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial
3 He/4 He and20 Ne/22 Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.- Published
- 2022
- Full Text
- View/download PDF
18. Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth.
- Author
-
Tachibana S, Sawada H, Okazaki R, Takano Y, Sakamoto K, Miura YN, Okamoto C, Yano H, Yamanouchi S, Michel P, Zhang Y, Schwartz S, Thuillet F, Yurimoto H, Nakamura T, Noguchi T, Yabuta H, Naraoka H, Tsuchiyama A, Imae N, Kurosawa K, Nakamura AM, Ogawa K, Sugita S, Morota T, Honda R, Kameda S, Tatsumi E, Cho Y, Yoshioka K, Yokota Y, Hayakawa M, Matsuoka M, Sakatani N, Yamada M, Kouyama T, Suzuki H, Honda C, Yoshimitsu T, Kubota T, Demura H, Yada T, Nishimura M, Yogata K, Nakato A, Yoshitake M, Suzuki AI, Furuya S, Hatakeda K, Miyazaki A, Kumagai K, Okada T, Abe M, Usui T, Ireland TR, Fujimoto M, Yamada T, Arakawa M, Connolly HC Jr, Fujii A, Hasegawa S, Hirata N, Hirata N, Hirose C, Hosoda S, Iijima Y, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kikuchi S, Kitazato K, Lauretta DS, Libourel G, Marty B, Matsumoto K, Michikami T, Mimasu Y, Miura A, Mori O, Nakamura-Messenger K, Namiki N, Nguyen AN, Nittler LR, Noda H, Noguchi R, Ogawa N, Ono G, Ozaki M, Senshu H, Shimada T, Shimaki Y, Shirai K, Soldini S, Takahashi T, Takei Y, Takeuchi H, Tsukizaki R, Wada K, Yamamoto Y, Yoshikawa K, Yumoto K, Zolensky ME, Nakazawa S, Terui F, Tanaka S, Saiki T, Yoshikawa M, Watanabe S, and Tsuda Y
- Abstract
The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu's boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of >5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid.
- Published
- 2022
- Full Text
- View/download PDF
19. Mid-infrared emissivity of partially dehydrated asteroid (162173) Ryugu shows strong signs of aqueous alteration.
- Author
-
Hamm M, Grott M, Senshu H, Knollenberg J, de Wiljes J, Hamilton VE, Scholten F, Matz KD, Bates H, Maturilli A, Shimaki Y, Sakatani N, Neumann W, Okada T, Preusker F, Elgner S, Helbert J, Kührt E, Ho TM, Tanaka S, Jaumann R, and Sugita S
- Abstract
The near-Earth asteroid (162173) Ryugu, the target of Hayabusa2 space mission, was observed via both orbiter and the lander instruments. The infrared radiometer on the MASCOT lander (MARA) is the only instrument providing spectrally resolved mid-infrared (MIR) data, which is crucial for establishing a link between the asteroid material and meteorites found on Earth. Earlier studies revealed that the single boulder investigated by the lander belongs to the most common type found on Ryugu. Here we show the spectral variation of Ryugu's emissivity using the complete set of in-situ MIR data and compare it to those of various carbonaceous chondritic meteorites, revealing similarities to the most aqueously altered ones, as well as to asteroid (101955) Bennu. The results show that Ryugu experienced strong aqueous alteration prior to any dehydration., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
20. On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective.
- Author
-
Nakamura E, Kobayashi K, Tanaka R, Kunihiro T, Kitagawa H, Potiszil C, Ota T, Sakaguchi C, Yamanaka M, Ratnayake DM, Tripathi H, Kumar R, Avramescu ML, Tsuchida H, Yachi Y, Miura H, Abe M, Fukai R, Furuya S, Hatakeda K, Hayashi T, Hitomi Y, Kumagai K, Miyazaki A, Nakato A, Nishimura M, Okada T, Soejima H, Sugita S, Suzuki A, Usui T, Yada T, Yamamoto D, Yogata K, Yoshitake M, Arakawa M, Fujii A, Hayakawa M, Hirata N, Hirata N, Honda R, Honda C, Hosoda S, Iijima YI, Ikeda H, Ishiguro M, Ishihara Y, Iwata T, Kawahara K, Kikuchi S, Kitazato K, Matsumoto K, Matsuoka M, Michikami T, Mimasu Y, Miura A, Morota T, Nakazawa S, Namiki N, Noda H, Noguchi R, Ogawa N, Ogawa K, Okamoto C, Ono G, Ozaki M, Saiki T, Sakatani N, Sawada H, Senshu H, Shimaki Y, Shirai K, Takei Y, Takeuchi H, Tanaka S, Tatsumi E, Terui F, Tsukizaki R, Wada K, Yamada M, Yamada T, Yamamoto Y, Yano H, Yokota Y, Yoshihara K, Yoshikawa M, Yoshikawa K, Fujimoto M, Watanabe SI, and Tsuda Y
- Subjects
- Water, Meteoroids, Solar System
- Abstract
Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ
18 O, Δ17 O, and ε54 Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.- Published
- 2022
- Full Text
- View/download PDF
21. Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution.
- Author
-
Morota T, Sugita S, Cho Y, Kanamaru M, Tatsumi E, Sakatani N, Honda R, Hirata N, Kikuchi H, Yamada M, Yokota Y, Kameda S, Matsuoka M, Sawada H, Honda C, Kouyama T, Ogawa K, Suzuki H, Yoshioka K, Hayakawa M, Hirata N, Hirabayashi M, Miyamoto H, Michikami T, Hiroi T, Hemmi R, Barnouin OS, Ernst CM, Kitazato K, Nakamura T, Riu L, Senshu H, Kobayashi H, Sasaki S, Komatsu G, Tanabe N, Fujii Y, Irie T, Suemitsu M, Takaki N, Sugimoto C, Yumoto K, Ishida M, Kato H, Moroi K, Domingue D, Michel P, Pilorget C, Iwata T, Abe M, Ohtake M, Nakauchi Y, Tsumura K, Yabuta H, Ishihara Y, Noguchi R, Matsumoto K, Miura A, Namiki N, Tachibana S, Arakawa M, Ikeda H, Wada K, Mizuno T, Hirose C, Hosoda S, Mori O, Shimada T, Soldini S, Tsukizaki R, Yano H, Ozaki M, Takeuchi H, Yamamoto Y, Okada T, Shimaki Y, Shirai K, Iijima Y, Noda H, Kikuchi S, Yamaguchi T, Ogawa N, Ono G, Mimasu Y, Yoshikawa K, Takahashi T, Takei Y, Fujii A, Nakazawa S, Terui F, Tanaka S, Yoshikawa M, Saiki T, Watanabe S, and Tsuda Y
- Abstract
The near-Earth asteroid (162173) Ryugu is thought to be a primitive carbonaceous object that contains hydrated minerals and organic molecules. We report sample collection from Ryugu's surface by the Hayabusa2 spacecraft on 21 February 2019. Touchdown images and global observations of surface colors are used to investigate the stratigraphy of the surface around the sample location and across Ryugu. Latitudinal color variations suggest the reddening of exposed surface material by solar heating and/or space weathering. Immediately after touchdown, Hayabusa2's thrusters disturbed dark, fine grains that originate from the redder materials. The stratigraphic relationship between identified craters and the redder material indicates that surface reddening occurred over a short period of time. We suggest that Ryugu previously experienced an orbital excursion near the Sun., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF
22. Highly porous nature of a primitive asteroid revealed by thermal imaging.
- Author
-
Okada T, Fukuhara T, Tanaka S, Taguchi M, Arai T, Senshu H, Sakatani N, Shimaki Y, Demura H, Ogawa Y, Suko K, Sekiguchi T, Kouyama T, Takita J, Matsunaga T, Imamura T, Wada T, Hasegawa S, Helbert J, Müller TG, Hagermann A, Biele J, Grott M, Hamm M, Delbo M, Hirata N, Hirata N, Yamamoto Y, Sugita S, Namiki N, Kitazato K, Arakawa M, Tachibana S, Ikeda H, Ishiguro M, Wada K, Honda C, Honda R, Ishihara Y, Matsumoto K, Matsuoka M, Michikami T, Miura A, Morota T, Noda H, Noguchi R, Ogawa K, Shirai K, Tatsumi E, Yabuta H, Yokota Y, Yamada M, Abe M, Hayakawa M, Iwata T, Ozaki M, Yano H, Hosoda S, Mori O, Sawada H, Shimada T, Takeuchi H, Tsukizaki R, Fujii A, Hirose C, Kikuchi S, Mimasu Y, Ogawa N, Ono G, Takahashi T, Takei Y, Yamaguchi T, Yoshikawa K, Terui F, Saiki T, Nakazawa S, Yoshikawa M, Watanabe S, and Tsuda Y
- Abstract
Carbonaceous (C-type) asteroids
1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25 , indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8 . We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6 . These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10 .- Published
- 2020
- Full Text
- View/download PDF
23. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy.
- Author
-
Kitazato K, Milliken RE, Iwata T, Abe M, Ohtake M, Matsuura S, Arai T, Nakauchi Y, Nakamura T, Matsuoka M, Senshu H, Hirata N, Hiroi T, Pilorget C, Brunetto R, Poulet F, Riu L, Bibring JP, Takir D, Domingue DL, Vilas F, Barucci MA, Perna D, Palomba E, Galiano A, Tsumura K, Osawa T, Komatsu M, Nakato A, Arai T, Takato N, Matsunaga T, Takagi Y, Matsumoto K, Kouyama T, Yokota Y, Tatsumi E, Sakatani N, Yamamoto Y, Okada T, Sugita S, Honda R, Morota T, Kameda S, Sawada H, Honda C, Yamada M, Suzuki H, Yoshioka K, Hayakawa M, Ogawa K, Cho Y, Shirai K, Shimaki Y, Hirata N, Yamaguchi A, Ogawa N, Terui F, Yamaguchi T, Takei Y, Saiki T, Nakazawa S, Tanaka S, Yoshikawa M, Watanabe S, and Tsuda Y
- Abstract
The near-Earth asteroid 162173 Ryugu, the target of the Hayabusa2 sample-return mission, is thought to be a primitive carbonaceous object. We report reflectance spectra of Ryugu's surface acquired with the Near-Infrared Spectrometer (NIRS3) on Hayabusa2, to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micrometers was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, which is consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
24. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile.
- Author
-
Watanabe S, Hirabayashi M, Hirata N, Hirata N, Noguchi R, Shimaki Y, Ikeda H, Tatsumi E, Yoshikawa M, Kikuchi S, Yabuta H, Nakamura T, Tachibana S, Ishihara Y, Morota T, Kitazato K, Sakatani N, Matsumoto K, Wada K, Senshu H, Honda C, Michikami T, Takeuchi H, Kouyama T, Honda R, Kameda S, Fuse T, Miyamoto H, Komatsu G, Sugita S, Okada T, Namiki N, Arakawa M, Ishiguro M, Abe M, Gaskell R, Palmer E, Barnouin OS, Michel P, French AS, McMahon JW, Scheeres DJ, Abell PA, Yamamoto Y, Tanaka S, Shirai K, Matsuoka M, Yamada M, Yokota Y, Suzuki H, Yoshioka K, Cho Y, Tanaka S, Nishikawa N, Sugiyama T, Kikuchi H, Hemmi R, Yamaguchi T, Ogawa N, Ono G, Mimasu Y, Yoshikawa K, Takahashi T, Takei Y, Fujii A, Hirose C, Iwata T, Hayakawa M, Hosoda S, Mori O, Sawada H, Shimada T, Soldini S, Yano H, Tsukizaki R, Ozaki M, Iijima Y, Ogawa K, Fujimoto M, Ho TM, Moussi A, Jaumann R, Bibring JP, Krause C, Terui F, Saiki T, Nakazawa S, and Tsuda Y
- Abstract
The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173 Ryugu in 2018. We present Hayabusa2 observations of Ryugu's shape, mass, and geomorphology. Ryugu has an oblate "spinning top" shape, with a prominent circular equatorial ridge. Its bulk density, 1.19 ± 0.02 grams per cubic centimeter, indicates a high-porosity (>50%) interior. Large surface boulders suggest a rubble-pile structure. Surface slope analysis shows Ryugu's shape may have been produced from having once spun at twice the current rate. Coupled with the observed global material homogeneity, this suggests that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation. From these remote-sensing investigations, we identified a suitable sample collection site on the equatorial ridge., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
25. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes.
- Author
-
Sugita S, Honda R, Morota T, Kameda S, Sawada H, Tatsumi E, Yamada M, Honda C, Yokota Y, Kouyama T, Sakatani N, Ogawa K, Suzuki H, Okada T, Namiki N, Tanaka S, Iijima Y, Yoshioka K, Hayakawa M, Cho Y, Matsuoka M, Hirata N, Hirata N, Miyamoto H, Domingue D, Hirabayashi M, Nakamura T, Hiroi T, Michikami T, Michel P, Ballouz RL, Barnouin OS, Ernst CM, Schröder SE, Kikuchi H, Hemmi R, Komatsu G, Fukuhara T, Taguchi M, Arai T, Senshu H, Demura H, Ogawa Y, Shimaki Y, Sekiguchi T, Müller TG, Hagermann A, Mizuno T, Noda H, Matsumoto K, Yamada R, Ishihara Y, Ikeda H, Araki H, Yamamoto K, Abe S, Yoshida F, Higuchi A, Sasaki S, Oshigami S, Tsuruta S, Asari K, Tazawa S, Shizugami M, Kimura J, Otsubo T, Yabuta H, Hasegawa S, Ishiguro M, Tachibana S, Palmer E, Gaskell R, Le Corre L, Jaumann R, Otto K, Schmitz N, Abell PA, Barucci MA, Zolensky ME, Vilas F, Thuillet F, Sugimoto C, Takaki N, Suzuki Y, Kamiyoshihara H, Okada M, Nagata K, Fujimoto M, Yoshikawa M, Yamamoto Y, Shirai K, Noguchi R, Ogawa N, Terui F, Kikuchi S, Yamaguchi T, Oki Y, Takao Y, Takeuchi H, Ono G, Mimasu Y, Yoshikawa K, Takahashi T, Takei Y, Fujii A, Hirose C, Nakazawa S, Hosoda S, Mori O, Shimada T, Soldini S, Iwata T, Abe M, Yano H, Tsukizaki R, Ozaki M, Nishiyama K, Saiki T, Watanabe S, and Tsuda Y
- Abstract
The near-Earth carbonaceous asteroid 162173 Ryugu is thought to have been produced from a parent body that contained water ice and organic molecules. The Hayabusa2 spacecraft has obtained global multicolor images of Ryugu. Geomorphological features present include a circum-equatorial ridge, east-west dichotomy, high boulder abundances across the entire surface, and impact craters. Age estimates from the craters indicate a resurfacing age of [Formula: see text] years for the top 1-meter layer. Ryugu is among the darkest known bodies in the Solar System. The high abundance and spectral properties of boulders are consistent with moderately dehydrated materials, analogous to thermally metamorphosed meteorites found on Earth. The general uniformity in color across Ryugu's surface supports partial dehydration due to internal heating of the asteroid's parent body., (Copyright © 2019, American Association for the Advancement of Science.)
- Published
- 2019
- Full Text
- View/download PDF
26. In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor.
- Author
-
Okano Y, Senshu H, Hashimoto M, Neriya Y, Netsu O, Minato N, Yoshida T, Maejima K, Oshima K, Komatsu K, Yamaji Y, and Namba S
- Abstract
RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs., (© 2014 American Society of Plant Biologists. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
27. Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1.
- Author
-
Minato N, Komatsu K, Okano Y, Maejima K, Ozeki J, Senshu H, Takahashi S, Yamaji Y, and Namba S
- Subjects
- Green Fluorescent Proteins genetics, Green Fluorescent Proteins metabolism, Plant Diseases virology, Potexvirus genetics, RNA Interference, Arabidopsis virology, Gene Expression Regulation, Viral physiology, Potexvirus metabolism, Nicotiana virology, Viral Proteins metabolism
- Abstract
Plant virus expression vectors provide a powerful tool for basic research as well as for practical applications. Here, we report the construction of an expression vector based on plantago asiatica mosaic virus (PlAMV), a member of the genus Potexvirus. Modification of a vector to enhance the expression of a foreign gene, combined with the use of the foot-and-mouth disease virus 2A peptide, allowed efficient expression of the foreign gene in two model plant species, Arabidopsis thaliana and Nicotiana benthamiana. Comparison with the widely used potato virus X (PVX) vector demonstrated that the PlAMV vector retains an inserted foreign gene for a longer period than PVX. Moreover, our results showed that the GFP expression construct PlAMV-GFP exhibits stronger RNA silencing suppression activity than PVX-GFP, which is likely to contribute to the stability of the PlAMV vector.
- Published
- 2014
- Full Text
- View/download PDF
28. A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M.
- Author
-
Senshu H, Yamaji Y, Minato N, Shiraishi T, Maejima K, Hashimoto M, Miura C, Neriya Y, and Namba S
- Subjects
- Nicotiana virology, Carlavirus immunology, Carlavirus pathogenicity, Gene Silencing, Host-Pathogen Interactions, Plant Diseases virology, Viral Proteins metabolism
- Abstract
Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.
- Published
- 2011
- Full Text
- View/download PDF
29. Genetic heterogeneity found in the replicase gene of poinsettia mosaic virus isolates.
- Author
-
Okano Y, Maejima K, Shiraishi T, Hashimoto M, Senshu H, Ozeki J, Takahashi S, Komatsu K, Yamaji Y, and Namba S
- Subjects
- Amino Acid Sequence, Genome, Viral, Japan, Molecular Sequence Data, Phylogeny, Plant Viruses classification, Plant Viruses genetics, Plant Viruses isolation & purification, Sequence Analysis, DNA, Tymoviridae classification, Tymoviridae isolation & purification, Euphorbia virology, Genetic Variation, RNA-Dependent RNA Polymerase genetics, Tymoviridae genetics
- Abstract
The complete nucleotide sequences of five isolates of poinsettia mosaic virus (PnMV) from Japan (JN, JO1, JO2, JO4, and JO5) were determined. These isolates contained a single large open reading frame in their genomes and shared 96.6-97.8% identity at the nucleotide level and 91.3-98.1% identity at the amino acid level with two previously reported European isolates. Interestingly, the JO isolates were found to possess eight common translational frameshift sites in the interdomain region between the methyltransferase and protease domains, resulting in considerable variation in the interdomain region compared to the other isolates. This suggests that PnMV might have evolved by creating variations in its genome by such translational frameshifts.
- Published
- 2010
- Full Text
- View/download PDF
30. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways.
- Author
-
Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Okano Y, Kagiwada S, and Namba S
- Subjects
- Blotting, Northern, Gene Expression Regulation, Plant, Gene Expression Regulation, Viral, Host-Pathogen Interactions, Immunity, Innate genetics, Immunoblotting, Mitogen-Activated Protein Kinases genetics, Mitogen-Activated Protein Kinases metabolism, Necrosis, Plant Diseases genetics, Plant Diseases virology, Plant Leaves genetics, Plant Leaves physiology, Plant Leaves virology, Plant Proteins genetics, Plant Proteins metabolism, Plantago virology, Potexvirus genetics, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction genetics, Nicotiana genetics, Nicotiana physiology, Nicotiana virology, Virus Replication genetics, Apoptosis, Potexvirus physiology, Signal Transduction physiology, Virus Replication physiology
- Abstract
Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.
- Published
- 2010
- Full Text
- View/download PDF
31. The N-terminal region of the Plantago asiatica mosaic virus coat protein is required for cell-to-cell movement but is dispensable for virion assembly.
- Author
-
Ozeki J, Hashimoto M, Komatsu K, Maejima K, Himeno M, Senshu H, Kawanishi T, Kagiwada S, Yamaji Y, and Namba S
- Subjects
- Amino Acid Sequence, Base Sequence, Capsid Proteins chemistry, Codon, Initiator, Green Fluorescent Proteins analysis, Molecular Sequence Data, Mutation, Open Reading Frames, Plant Diseases virology, Plant Leaves virology, Potexvirus genetics, Potexvirus pathogenicity, Sequence Alignment, Viral Proteins genetics, Viral Proteins metabolism, Capsid Proteins physiology, Potexvirus metabolism, Virion metabolism
- Abstract
Potexvirus cell-to-cell movement requires coat protein (CP) and movement proteins. In this study, mutations in two conserved in-frame AUG codons in the 5' region of the CP open reading frame of Plantago asiatica mosaic virus (PlAMV) were introduced, and virus accumulation of these mutants was analyzed in inoculated and upper noninoculated leaves. When CP was translated only from the second AUG codon, virus accumulation in inoculated leaves was lower than that of wild-type PlAMV, and the viral spread was impaired. Trans-complementation analysis showed that the leucine residue at the third position (Leu-3) of CP is important for cell-to-cell movement of PlAMV. The 14-amino-acid N-terminal region of CP was dispensable for virion formation. Immunoprecipitation assays conducted with an anti-TGBp1 antibody indicated that PlAMV CP interacts with TGBp1 in vivo and that this interaction is not affected by alanine substitution at Leu-3. These results support the concept that the N-terminal region of potexvirus CP can be separated into two distinct functional domains.
- Published
- 2009
- Full Text
- View/download PDF
32. Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection.
- Author
-
Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, and Namba S
- Subjects
- Gene Expression Regulation, Green Fluorescent Proteins genetics, Green Fluorescent Proteins metabolism, MicroRNAs genetics, MicroRNAs metabolism, Plant Leaves virology, Potexvirus classification, Potexvirus genetics, RNA, Small Interfering genetics, RNA, Small Interfering metabolism, RNA, Viral genetics, RNA, Viral metabolism, Transgenes, Viral Proteins genetics, Viral Proteins metabolism, Plant Diseases virology, Potexvirus pathogenicity, RNA Interference drug effects, Rhizobium virology, Nicotiana virology, Viral Proteins pharmacology
- Abstract
RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.
- Published
- 2009
- Full Text
- View/download PDF
33. Complete nucleotide sequence of asparagus virus 3.
- Author
-
Hashimoto M, Ozeki J, Komatsu K, Senshu H, Kagiwada S, Mori T, Yamaji Y, and Namba S
- Subjects
- Base Sequence, Molecular Sequence Data, Plant Viruses classification, RNA, Viral analysis, Asparagus Plant virology, Plant Viruses genetics, RNA, Viral genetics
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.