1. The coevolution of cooperation and dispersal in social groups and its implications for the emergence of multicellularity
- Author
-
Michael E. Hochberg, Daniel J. Rankin, Michael Taborsky, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, National Center for Ecological Analysis and Synthesis (NCEAS), Santa Fe Institute, Department of Behavioural Ecology, University of Bern, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,BACTERIUM MYXOCOCCUS-XANTHUS ,Evolution ,Population Dynamics ,NAKED MOLE-RAT ,Biology ,010603 evolutionary biology ,01 natural sciences ,Social group ,DIVISION-OF-LABOR ,03 medical and health sciences ,PEMPHIGUS-SPYROTHECAE HEMIPTERA ,QH359-425 ,KIN-SELECTION ,Cooperative Behavior ,Selection, Genetic ,Control (linguistics) ,Ecology, Evolution, Behavior and Systematics ,Coevolution ,030304 developmental biology ,Cognitive science ,0303 health sciences ,Models, Genetic ,Public good ,Biological Evolution ,HYDROID HYDRACTINIA-SYMBIOLONGICARPUS ,Multicellular organism ,Phenotype ,Evolutionary biology ,WHITE-WINGED CHOUGHS ,HISTORY TRADE-OFFS ,Biological dispersal ,Cooperative behavior ,GERM-SOMA DIFFERENTIATION ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Commons ,CELLULAR SLIME-MOLDS ,Research Article - Abstract
Background Recent work on the complexity of life highlights the roles played by evolutionary forces at different levels of individuality. One of the central puzzles in explaining transitions in individuality for entities ranging from complex cells, to multicellular organisms and societies, is how different autonomous units relinquish control over their functions to others in the group. In addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups must control the exploitation of the commons, or else be out-competed by more fit groups. Results We propose that two forms of conflict – access to resources within groups and representation in germ line – may be resolved in tandem through individual and group-level selective effects. Specifically, we employ an optimization model to show the conditions under which different within-group social behaviors (cooperators producing a public good or cheaters exploiting the public good) may be selected to disperse, thereby not affecting the commons and functioning as germ line. We find that partial or complete dispersal specialization of cheaters is a general outcome. The propensity for cheaters to disperse is highest with intermediate benefit:cost ratios of cooperative acts and with high relatedness. An examination of a range of real biological systems tends to support our theory, although additional study is required to provide robust tests. Conclusion We suggest that trait linkage between dispersal and cheating should be operative regardless of whether groups ever achieve higher levels of individuality, because individual selection will always tend to increase exploitation, and stronger group structure will tend to increase overall cooperation through kin selected benefits. Cheater specialization as dispersers offers simultaneous solutions to the evolution of cooperation in social groups and the origin of specialization of germ and soma in multicellular organisms.
- Published
- 2008
- Full Text
- View/download PDF