1. Evaluating Segmentation-Based Deep Learning Models for Real-Time Electric Vehicle Fire Detection
- Author
-
Heejun Kwon, Sugi Choi, Wonmyung Woo, and Haiyoung Jung
- Subjects
electric vehicle ,fire detection ,YOLOv11-Seg ,segmentation ,object detection ,Physics ,QC1-999 - Abstract
The rapid expansion of the electric vehicle (EV) market has raised significant safety concerns, particularly regarding fires caused by the thermal runaway of lithium-ion batteries. To address this issue, this study investigates the real-time fire detection performance of segmentation-based object detection models for EVs. The evaluated models include YOLOv5-Seg, YOLOv8-Seg, YOLOv11-Seg, Mask R-CNN, and Cascade Mask R-CNN. Performance is analyzed using metrics such as precision, recall, F1-score, mAP50, and FPS. The experimental results reveal that the YOLO-based models outperform Mask R-CNN and Cascade Mask R-CNN across all evaluation metrics. In particular, YOLOv11-Seg demonstrates superior accuracy in delineating fire and smoke boundaries, achieving minimal false positives and high reliability under diverse fire scenarios. Additionally, its real-time processing speed of 136.99 FPS validates its capability for rapid detection and response, even in complex fire environments. Conversely, Mask R-CNN and Cascade Mask R-CNN exhibit suboptimal performance in terms of precision, recall, and FPS, limiting their applicability to real-time fire detection systems. This study establishes YOLO-based segmentation models, particularly the advanced YOLOv11-Seg, as highly effective EV fire detection and response systems.
- Published
- 2025
- Full Text
- View/download PDF