27 results on '"Hamidi-Sakr, A."'
Search Results
2. Poly(3-hexylthiophene) revisited – Influence of film deposition on the electrochemical behaviour and energy levels
- Author
-
Bruchlos, Kirsten, Trefz, Daniel, Hamidi-Sakr, Amer, Brinkmann, Martin, Heinze, Jürgen, Ruff, Adrian, and Ludwigs, Sabine
- Published
- 2018
- Full Text
- View/download PDF
3. Selective photothermolysis with a novel 1726 nm laser beam: A safe and effective solution for acne vulgaris
- Author
-
David Goldberg, Amogh Kothare, Margot Doucette, Arshdeep Kaur, Stephen Ronan, Jeffrey Fromowitz, and Amer Hamidi‐Sakr
- Subjects
Dermatology - Abstract
Selective photothermolysis on sebaceous glands is an effective method for treating acne vulgaris (AV); however, safety, efficacy, and discomfort hinder its utilization in clinical settings.The primary objective is to evaluate the safety and efficacy of a novel 1726 nm laser with contact cooling to treat AV.Seventeen patients aged 18 to 36 were enrolled and treated in this IRB-approved, single-center, open-label study. Patients received up to three facial laser sessions up to seven weeks apart. Follow-up visits happened ten days post-session and at the 4 and 12 weeks following the final session. The investigator assessed the severity of device-related adverse events (AEs). Investigator Global Assessment (IGA) and inflammatory lesion counts (ILC) were used as metrics to evaluate acne resolution and skin condition enhancement. Patients' perspectives on satisfaction and comfort using this technology were assessed using Subject Experience Questionnaires (SEQ).Safety assessment showed mild and transient AEs. All subjects tolerated anesthetics-free treatments well, with a mean treatment discomfort score of 4.9 ± 1.5. Compared to baseline, a statistically significant reduction in ILC (p = 0.003) of 52% to 56% is achieved four to twelve weeks following treatment. Long-term follow-ups showed progressive improvement 24 months post-treatment with a 97% reduction in ILC. SEQs revealed high subject satisfaction (71%) with psychosocial improvement three months post-treatment.The novel 1726 nm laser appears safe and effective for treating mild-to-severe acne. Acne resolution is apparent within the first month and progresses beyond the study duration.
- Published
- 2022
4. Selective photothermolysis in acne treatment: The impact of laser power.
- Author
-
Scopelliti, Matteo Giuseppe, Hamidi‐Sakr, Amer, Möller, Sönke, Karavitis, Michael, and Kothare, Amogh
- Subjects
- *
SEBACEOUS glands , *LASERS , *LOW temperatures , *ACNE , *HIGH temperatures - Abstract
Background: Selective photothermolysis (SPT) using a 1726 nm laser has emerged as a safe and effective treatment option for acne vulgaris by targeting sebaceous glands (SG). Power output plays a crucial role in determining treatment selectivity and efficacy. Aims: This work highlights the advantages of a higher‐power laser source and outlines the limitations of lower‐power laser sources and the subsequent impact on treatment. Methods: Light transport and bioheat transfer simulations were performed to demonstrate photothermal impact on the SG and the surrounding dermis when irradiated by a high‐ or lower‐power laser source. Results: The simulations showed that a single higher‐power‐shorter‐pulse (HPSP) selectively increases SG temperature well beyond bulk temperatures, which is desirable for SPT. Selectivity decreases linearly with power for the single lower‐power‐longer‐pulses (LPLP) exposure. A multiple‐LPLP approach elevates bulk temperatures significantly more than a single‐pulse strategy, compromising selectivity. Conclusion: The goal of SPT is to damage SG safely and effectively by creating an intense temperature rise localized to the SG while moderately increasing the dermis temperature. This goal is mostly achieved with higher‐power lasers that deliver a single HPSP. Lower‐power lasers, longer pulse widths, and multi‐pulse strategies result in higher bulk temperatures and lower SG selectivity, making such treatment challenging to execute while adding a higher risk of discomfort and downtime. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Selective photothermolysis with a novel 1726 nm laser beam: A safe and effective solution for acne vulgaris
- Author
-
Goldberg, David, primary, Kothare, Amogh, additional, Doucette, Margot, additional, Kaur, Arshdeep, additional, Ronan, Stephen, additional, Fromowitz, Jeffrey, additional, and Hamidi‐Sakr, Amer, additional
- Published
- 2022
- Full Text
- View/download PDF
6. The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors
- Author
-
Sahika Inal, Yazhou Wang, Junxin Chen, Hailiang Liao, Genming Zhu, Wan Yue, Amer Hamidi-Sakr, Jokubas Surgailis, Yecheng Zhou, and Zhengke Li
- Subjects
chemistry.chemical_classification ,Materials science ,Ionic bonding ,General Chemistry ,Polymer ,Acceptor ,chemistry.chemical_compound ,Crystallinity ,Chemical engineering ,chemistry ,Materials Chemistry ,Thiophene ,Moiety ,Lamellar structure ,Density functional theory - Abstract
Organic mixed (ionic and electronic) charge conductors are the building blocks of state-of-the-art bioelectronic devices, including the organic electrochemical transistors (OECTs). Despite the interest in OECTs, the library of polymers that show efficient mixed charge transport is still narrow. In this work, we developed two donor–acceptor (D–A) type polymers based on the glycolated thiophene diketopyrrolopyrrole (TDPP) as the acceptor unit. We combined the acceptor with two donor units distinguished with different electron-donating strengths, i.e., a glycolated thienylenevinylene (gTVT) and a glycolated thiophene–benzothiadiazole–thiophene (gTBTT), leading to the polymers TDPP-gTVT and TDPP-gTBTT, respectively. Using spectral, gravimetric, structural, and electrical characterization techniques combined with density functional theory calculations, we sought to understand the effect of the donor unit on the mixed conduction performance of these D–A type polymers. We found that the stronger electron-donating nature of gTVT vs. gTBTT endowed TDPP-gTVT with a lower backbone curvature, leading to films with a tighter lamellar packing, and thereof, a higher degree of crystallinity compared to TDPP-gTBTT. The combination of a high product of electronic mobility and volumetric capacitance (μC* = 205 F cm−1 V−1 s−1) and a low threshold voltage (−0.36 V) rendered TDPP-gTVT based OECTs superior to TDPP-gTBTT devices. Our work introduces the selection of donor units with higher electron-donating power as a means to tune the film's microstructure, providing an effective approach to optimize mixed conduction properties of D–A type OECT materials.
- Published
- 2021
7. Selective photothermolysis with a novel 1726 nm laser beam: A safe and effective solution for acne vulgaris.
- Author
-
Goldberg, David, Kothare, Amogh, Doucette, Margot, Kaur, Arshdeep, Ronan, Stephen, Fromowitz, Jeffrey, and Hamidi‐Sakr, Amer
- Subjects
ACNE ,LASER beams ,PATIENTS' attitudes ,SEBACEOUS glands ,SATISFACTION - Abstract
Background: Selective photothermolysis on sebaceous glands is an effective method for treating acne vulgaris (AV); however, safety, efficacy, and discomfort hinder its utilization in clinical settings. Aims: The primary objective is to evaluate the safety and efficacy of a novel 1726 nm laser with contact cooling to treat AV. Methods: Seventeen patients aged 18 to 36 were enrolled and treated in this IRB‐approved, single‐center, open‐label study. Patients received up to three facial laser sessions up to seven weeks apart. Follow‐up visits happened ten days post‐session and at the 4 and 12 weeks following the final session. The investigator assessed the severity of device‐related adverse events (AEs). Investigator Global Assessment (IGA) and inflammatory lesion counts (ILC) were used as metrics to evaluate acne resolution and skin condition enhancement. Patients' perspectives on satisfaction and comfort using this technology were assessed using Subject Experience Questionnaires (SEQ). Results: Safety assessment showed mild and transient AEs. All subjects tolerated anesthetics‐free treatments well, with a mean treatment discomfort score of 4.9 ± 1.5. Compared to baseline, a statistically significant reduction in ILC (p = 0.003) of 52% to 56% is achieved four to twelve weeks following treatment. Long‐term follow‐ups showed progressive improvement 24 months post‐treatment with a 97% reduction in ILC. SEQs revealed high subject satisfaction (71%) with psychosocial improvement three months post‐treatment. Conclusion: The novel 1726 nm laser appears safe and effective for treating mild‐to‐severe acne. Acne resolution is apparent within the first month and progresses beyond the study duration. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. Tuning Orientational Order of Highly Aggregating P(NDI2OD-T2) by Solvent Vapor Annealing and Blade Coating
- Author
-
Christopher R. McNeill, Daniel Trefz, Yannic M. Gross, Martin Brinkmann, Roman Tkachov, Amer Hamidi-Sakr, Sabine Ludwigs, Carsten Dingler, and Anton Kiriy
- Subjects
Materials science ,Polymers and Plastics ,Annealing (metallurgy) ,Organic Chemistry ,02 engineering and technology ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Dichroic glass ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Solvent ,Coating ,Chemical engineering ,Liquid crystal ,Materials Chemistry ,engineering ,Copolymer ,Nanometre ,0210 nano-technology ,Anisotropy - Abstract
Its inherent strong tendency to aggregate in solution is used in the following study to prepare highly anisotropic films of the n-type copolymer poly{[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)). Solvent vapor annealing (SVA) allows to tune the size of oriented domains in spherulite-like superstructures with alignment up to several hundreds of micrometers. Blade coating (BC), on the other hand, yields square centimeter large perfectly oriented films with dichroic ratios of 18 and charge transport anisotropies up to 14. On the nanometer scale highly oriented fibers of form I are visible in the oriented areas with the fiber long axis parallel to the chain direction. We give experimental evidence that structure formation does involve liquid crystal (LC) mesophases at high solution concentrations which are frozen upon solvent removal. Temperature post-treatment of the oriented films gives, on the other hand, evidence for a classical semi...
- Published
- 2018
9. Mixed Conduction in an N‐Type Organic Semiconductor in the Absence of Hydrophilic Side‐Chains
- Author
-
Surgailis, Jokubas, primary, Savva, Achilleas, additional, Druet, Victor, additional, Paulsen, Bryan D., additional, Wu, Ruiheng, additional, Hamidi‐Sakr, Amer, additional, Ohayon, David, additional, Nikiforidis, Georgios, additional, Chen, Xingxing, additional, McCulloch, Iain, additional, Rivnay, Jonathan, additional, and Inal, Sahika, additional
- Published
- 2021
- Full Text
- View/download PDF
10. The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors
- Author
-
Wang, Yazhou, primary, Hamidi-Sakr, Amer, additional, Surgailis, Jokubas, additional, Zhou, Yecheng, additional, Liao, Hailiang, additional, Chen, Junxin, additional, Zhu, Genming, additional, Li, Zhengke, additional, Inal, Sahika, additional, and Yue, Wan, additional
- Published
- 2021
- Full Text
- View/download PDF
11. Tuning Orientational Order of Highly Aggregating P(NDI2OD-T2) by Solvent Vapor Annealing and Blade Coating
- Author
-
Trefz, D., Gross, Y.M., Dingler, C., Tkachov, R., Hamidi-Sakr, A., Kiriy, A., McNeill, C.R., Brinkmann, M., Ludwigs, S., and Publica
- Abstract
Its inherent strong tendency to aggregate in solution is used in the following study to prepare highly anisotropic films of the n-type copolymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)). Solvent vapor annealing (SVA) allows to tune the size of oriented domains in spherulite-like superstructures with alignment up to several hundreds of micrometers. Blade coating (BC), on the other hand, yields square centimeter large perfectly oriented films with dichroic ratios of 18 and charge transport anisotropies up to 14. On the nanometer scale highly oriented fibers of form I are visible in the oriented areas with the fiber long axis parallel to the chain direction. We give experimental evidence that structure formation does involve liquid crystal (LC) mesophases at high solution concentrations which are frozen upon solvent removal. Temperature post-treatment of the oriented films gives, on the other hand, evidence for a classical semicrystalline nature of this polymer with spherulites consisting of crystalline and amorphous domains. These findings point to a different growth behavior than previously discussed for the well-studied p-type polymer poly(3-hexylthiophene) and suggests that the definition and distinction between liquid-crystalline and semicrystalline nature might need to be reassessed.
- Published
- 2019
12. Tuning Orientational Order of Highly Aggregating P(NDI2OD-T 2 ) by Solvent Vapor Annealing and Blade Coating
- Author
-
Trefz, Daniel, Gross, Yannic, Dingler, Carsten, Tkachov, Roman, Hamidi-Sakr, Amer, Kiriy, Anton, McNeill, Christopher, Brinkmann, Martin, Ludwigs, Sabine, Institut Charles Sadron (ICS), Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Leibniz Association, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Max-Planck-Gesellschaft, Univ Stuttgart, Inst Polymerchem, Universität Stuttgart [Stuttgart], Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Brinkmann, Martin
- Subjects
[CHIM.POLY] Chemical Sciences/Polymers ,[CHIM.POLY]Chemical Sciences/Polymers ,[CHIM] Chemical Sciences ,[CHIM]Chemical Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
13. Mixed Conduction in an N‐Type Organic Semiconductor in the Absence of Hydrophilic Side‐Chains
- Author
-
Victor Druet, Amer Hamidi-Sakr, Jokubas Surgailis, Jonathan Rivnay, Ruiheng Wu, Achilleas Savva, David Ohayon, Sahika Inal, Xingxing Chen, Iain McCulloch, Bryan D. Paulsen, and Georgios Nikiforidis
- Subjects
Biomaterials ,Materials science ,Electrochemistry ,User Facility ,Advanced Photon Source ,Condensed Matter Physics ,National laboratory ,Electronic, Optical and Magnetic Materials ,Management - Abstract
The research reported in this publication was supported by funding from KAUST, Office of Sponsored Research (OSR), under award number OSR-2016-CRG5-3003, URF/1/4073-01 and OSR-2018-CRG7-3709. J. S. thanks Dr. Yi Zhang for the TEM image of P-90. B.D.P., R.W., and J.R. gratefully acknowledge support from the National Science Foundation Grant No. NSF DMR-1751308. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to thank Joseph Strzalka and Qingteng Zhang for beam line assistance.
- Published
- 2021
14. Structure and charge transport anisotropy of polythieno[3,4- b ]-thiophene- co -benzodithiophene (PTB7) oriented by high-temperature rubbing
- Author
-
Marc Schmutz, Linda Grodd, Yannick J. Dappe, Martin Brinkmann, S. Escoubas, Souren Grigorian, Amer Hamidi-Sakr, Laure Biniek, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), University of Siegen, Universität Siegen [Siegen], Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Groupe Modélisation et Théorie (GMT), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Biniek, Laure, Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Service de physique de l'état condensé (SPEC - UMR3680), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Steric effects ,Materials science ,Stacking ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Rubbing ,Crystallinity ,chemistry.chemical_compound ,Crystallography ,Electron diffraction ,chemistry ,[CHIM] Chemical Sciences ,Thiophene ,Side chain ,[CHIM]Chemical Sciences ,0210 nano-technology ,Alkyl - Abstract
International audience; Structure determination in high performance polymer semiconductors such as polythieno[3,4‐b]‐thiophene‐co‐benzodithiophene (PTB7) is essential to establish proper structure–property correlations. A combination of high‐temperature rubbing and isothermal crystallization leads to oriented and crystalline films of face‐on oriented PTB7 crystals. Electron diffraction indicates that crystallinity is marginal in the rubbed films but develops upon postrubbing annealing at T ≥ 250 °C. The best oriented and crystalline PTB7 films have a dichroic ratio of 12 for UV–vis absorption. The hole mobilities are improved by a factor of six along the rubbing direction over nonaligned films (µ// = 5.8 × 10$^{−3}$ cm$^2$ V$^{−1}$ s$^{−1}$ vs µ⊥ = 3.1 × 10$^{−4}$ cm$^2$ V$^{−1}$ s$^{−1}$). Structural analysis yields three possible models that share similar structural features, however; namely (i) PTB7 chains form a layered packing such as poly(2,5‐bis(3‐dodecyl‐2‐yl)thieno[3,2‐b]thiophene) with $\pi$‐stacked backbones alternating with layers of strongly interdigitated alkyl side chains, (ii) the PTB7 chains adopt a nonplanar zigzag conformation, and (iii) PTB7 chains show a mixed stacking of thieno[3,4‐b]thiophene and benzodithiophene blocks. Overall, these results highlight the key role played in polymer semiconductor crystals by the steric constraints due to the branched alkyl side chains interdigitation on the π‐stacking of conjugated backbones.
- Published
- 2018
15. Poly(3-hexylthiophene) revisited – Influence of film deposition on the electrochemical behaviour and energy levels
- Author
-
Amer Hamidi-Sakr, Adrian Ruff, Martin Brinkmann, Daniel Trefz, Kirsten Bruchlos, Sabine Ludwigs, Jürgen Heinze, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Freiburg University, FREIBURG UNIVERSITY, Univ Stuttgart, Inst Polymerchem, and Universität Stuttgart [Stuttgart]
- Subjects
chemistry.chemical_classification ,Organic electronics ,Work (thermodynamics) ,Materials science ,General Chemical Engineering ,02 engineering and technology ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Electrochemical response ,0104 chemical sciences ,law.invention ,chemistry ,Chemical engineering ,law ,Stress out ,Deposition (phase transition) ,[CHIM]Chemical Sciences ,Crystallization ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
In this article we highlight the importance of film deposition conditions on the electrochemical behaviour of the work horse of the organic electronics community, namely poly(3-hexylthiophene) (P3HT). While a huge number of publications have dealt with the influence of morphology on optical, electronic and opto-electronic properties, the effect on the electrochemical response has been less addressed. Electrochemistry is often only used as convenient tool in this community to determine the energy levels or more specifically the HOMO level of P3HT. This is performed by measuring oxidation onset potentials and introducing correction factors which relate the electrochemical with the Fermi scale. Here we want to stress out that this procedure should be performed with great care in order to get meaningful data. We demonstrate that film deposition conditions can strongly alter the oxidation behaviour of the polymers which makes the determination of the oxidation onset potentials and energy levels very difficult. We compare state-of-the-art of electropolymerisation and solution deposition of chemically synthesized polymers of defined regioregularity with our own expertise on deposition and controlling crystallisation in films.
- Published
- 2018
16. Tuning Orientational Order of Highly Aggregating P(NDI2OD-T2) by Solvent Vapor Annealing and Blade Coating
- Author
-
Trefz, Daniel, primary, Gross, Yannic M., additional, Dingler, Carsten, additional, Tkachov, Roman, additional, Hamidi-Sakr, Amer, additional, Kiriy, Anton, additional, McNeill, Christopher R., additional, Brinkmann, Martin, additional, and Ludwigs, Sabine, additional
- Published
- 2018
- Full Text
- View/download PDF
17. The PCPDTBT Family: Correlations between Chemical Structure, Polymorphism, and Device Performance
- Author
-
Anton Melnyk, Martin Brinkmann, Amer Hamidi-Sakr, Daniel Trefz, Florian S. U. Fischer, Sabine Ludwigs, Denis Andrienko, Gisela L. Schulz, Universität Stuttgart [Stuttgart], Max Planck Institute for Polymer Research, Max-Planck-Gesellschaft, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Brinkmann, Martin
- Subjects
chemistry.chemical_classification ,[CHIM.POLY] Chemical Sciences/Polymers ,Structure formation ,Polymers and Plastics ,Chemical structure ,Organic Chemistry ,Transistor ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Amorphous solid ,Inorganic Chemistry ,Crystallography ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymorphism (materials science) ,chemistry ,law ,Materials Chemistry ,Side chain ,0210 nano-technology ,Alkyl - Abstract
International audience; We highlight the influence of processing conditions on polymorphism and structure formation on the mesoscale for the family of PCPDTBT polymers with branched alkyl side chains. Direct correlations of morphology to the chemical structure and to transistor device performance are established. We found that up to four different packing motifs could be realized depending on the polymer derivative and the processing conditions: amorphous, π-stacked, cross-hatched and dimer-containing polymorphs. While C- and F-PCPDTBT display similar packing behavior organizing in π-stacked and dimer-like structures, Si-PCPDTBT gives rise to cross-hatched structures upon simple deposition from solution. The observed differences in chain packing for C-/F-PCPDTBT versus Si-PCPDTBT are attributed to differences in backbone conformations and aggregation behavior in solution. The effect of polymorphism on charge transport is probed using field-effect transistors, in which both π-stacked and cross-hatched polymer chain arrangements yield the highest hole mobilities. Mesoscopic morphology and mobility simulations rationalize our experimental findings by relating mobility to distributions of electronic coupling elements between the chains.
- Published
- 2017
18. Structure and Charge Transport Anisotropy of Polythieno[3,4-b]-Thiophene-co-Benzodithiophene (PTB7) Oriented by High-Temperature Rubbing
- Author
-
Biniek, Laure, primary, Hamidi-Sakr, Amer, additional, Grodd, Linda, additional, Escoubas, Stéphanie, additional, Dappe, Yannick J., additional, Grigorian, Souren, additional, Schmutz, Marc, additional, and Brinkmann, Martin, additional
- Published
- 2018
- Full Text
- View/download PDF
19. Highly Oriented and Crystalline Films of a Phenyl-Substituted Polythiophene Prepared by Epitaxy: Structural Model and Influence of Molecular Weight
- Author
-
Martin Brinkmann, Daniel Schiefer, Sangeetha Covindarassou, Michael Sommer, Amer Hamidi-Sakr, Laure Biniek, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Dynamics and Self-Organization (MPIDS), Max-Planck-Gesellschaft, Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Ecole nationale supérieure de chimie, polymères et materiaux de strasbourg (ECPM), and Biniek, Laure
- Subjects
Materials science ,Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,Inorganic Chemistry ,chemistry.chemical_compound ,Crystallinity ,law ,[CHIM] Chemical Sciences ,Polymer chemistry ,Materials Chemistry ,Side chain ,Thiophene ,[CHIM]Chemical Sciences ,Crystallization ,Alkyl ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Organic Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Crystallography ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Electron diffraction ,Polythiophene ,0210 nano-technology - Abstract
The large majority of semiconducting polymers based on poly(alkylthiophene)s with either linear or branched alkyl side chains are reported to π-stack in their crystalline phases. In regioregular poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT), however, π–π interactions are absent due to the presence of the bulky 2,5-dioctylphenyl side groups. In this work, high levels of crystallinity and orientation are created in thin films of PDOPT aligned on substrates of naphthalene by slow directional epitaxial crystallization of the side chains. Depending on molecular weight, both edge-on and flat-on lamellar crystals are obtained. As for poly(3-hexylthiophene) (P3HT), electron microscopy imaging reveals a transition from extended to folded chain crystallization in PDOPT for Mn ≈ 12.7 kDa. The high orientation and crystallinity result in high anisotropy in UV–vis absorption and photoluminescence with well-defined vibronic structures. The single-crystal-like electron diffraction patterns are further used to refine a st...
- Published
- 2016
20. Precise Control of Lamellar Thickness in Highly Oriented Regioregular Poly(3-Hexylthiophene) Thin Films Prepared by High-Temperature Rubbing: Correlations with Optical Properties and Charge Transport
- Author
-
Amer Hamidi-Sakr, Laure Biniek, Martin Brinkmann, Sadiara Fall, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Max-Planck-Gesellschaft, Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Strasbourg (UNISTRA), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Biniek, Laure, and Ecole nationale supérieure de chimie, polymères et materiaux de strasbourg (ECPM)
- Subjects
[CHIM.POLY] Chemical Sciences/Polymers ,Materials science ,Analytical chemistry ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,Biomaterials ,Crystal ,Crystallinity ,Differential scanning calorimetry ,Optics ,law ,Electrochemistry ,[CHIM]Chemical Sciences ,Lamellar structure ,Crystallization ,Supercooling ,ComputingMilieux_MISCELLANEOUS ,business.industry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Rubbing ,[CHIM.POLY]Chemical Sciences/Polymers ,0210 nano-technology ,business - Abstract
International audience; Precise control of orientation and crystallinity is achieved in regioregular poly(3-hexylthiophene) (P3HT) thin films by using high-temperature rubbing, a fast and effective alignment method. Rubbing P3HT films at temperatures TR ≥ 144 °C generates highly oriented crystalline films with a periodic lamellar morphology with a dichroic ratio reaching 25. The crystallinity and the average crystal size along the chain axis direction, lc, are determined by high-resolution transmission electron microscopy and differential scanning calorimetry. The inverse of the lamellar period l scales with the supercooling and can accordingly be controlled by the rubbing temperature TR. Uniquely, the observed exciton coupling in P3HT crystals is correlated to the length of the average planarized chain segments lc in the crystals. The high alignment and crystallinity observed for TR > 200 °C cannot translate to high hole mobilities parallel to the rubbing because of the adverse effect of amorphous zones interrupting charge transport between crystalline lamellae. Although tie chains bridge successive P3HT crystals through amorphous zones, their twisted conformation restrains interlamellar charge transport. The evolution of charge transport anisotropy is correlated to the evolution of the dominant contact plane from mainly face-on (TR ≤ 100 °C) to edge-on (TR ≥ 170 °C).
- Published
- 2016
21. A Versatile Method to Fabricate Highly In‐Plane Aligned Conducting Polymer Films with Anisotropic Charge Transport and Thermoelectric Properties: The Key Role of Alkyl Side Chain Layers on the Doping Mechanism
- Author
-
Hamidi‐Sakr, Amer, primary, Biniek, Laure, additional, Bantignies, Jean‐Louis, additional, Maurin, David, additional, Herrmann, Laurent, additional, Leclerc, Nicolas, additional, Lévêque, Patrick, additional, Vijayakumar, Vishnu, additional, Zimmermann, Nicolas, additional, and Brinkmann, Martin, additional
- Published
- 2017
- Full Text
- View/download PDF
22. The PCPDTBT Family: Correlations between Chemical Structure, Polymorphism, and Device Performance
- Author
-
Schulz, G. L., primary, Fischer, F. S. U., additional, Trefz, D., additional, Melnyk, A., additional, Hamidi-Sakr, A., additional, Brinkmann, M., additional, Andrienko, D., additional, and Ludwigs, S., additional
- Published
- 2017
- Full Text
- View/download PDF
23. Tuning Orientational Order of Highly Aggregating P(NDI2OD‑T2) by Solvent Vapor Annealing and Blade Coating.
- Author
-
Trefz, Daniel, Gross, Yannic M., Dingler, Carsten, Tkachov, Roman, Hamidi-Sakr, Amer, Kiriy, Anton, McNeill, Christopher R., Brinkmann, Martin, and Ludwigs, Sabine
- Published
- 2019
- Full Text
- View/download PDF
24. A Versatile Method to Fabricate Highly In-Plane Aligned Conducting Polymer Films with Anisotropic Charge Transport and Thermoelectric Properties: The Key Role of Alkyl Side Chain Layers on the Doping Mechanism
- Author
-
Amer Hamidi-Sakr, Nicolas Leclerc, David Maurin, Vishnu Vijayakumar, Laure Biniek, Martin Brinkmann, Patrick Lévêque, Laurent Herrmann, Jean-Louis Bantignies, Nicolas Zimmermann, Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Biniek, Laure, Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Animal et gestion intégrée des risques (UPR AGIRs), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (LMSPC), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA), Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace, and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Strasbourg (UNISTRA)
- Subjects
[CHIM.POLY] Chemical Sciences/Polymers ,Materials science ,Aucun ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biomaterials ,[CHIM] Chemical Sciences ,Thermoelectric effect ,Electrochemistry ,Side chain ,[CHIM]Chemical Sciences ,Organic chemistry ,Alkyl ,Organic electronics ,chemistry.chemical_classification ,Conductive polymer ,Dopant ,Doping ,Polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,0210 nano-technology ,Chimie/Polymères - Abstract
International audience; A general method is proposed to produce oriented and highly crystalline conducting polymer layers. It combines the controlled orientation/crystallization of polymer films by high-temperature rubbing with a soft-doping method based on spin-coating a solution of dopants in an orthogonal solvent. Doping rubbed films of regioregular poly(3-alkylthiophene) s and poly(2,5-bis(3-dodecylthiophen- 2-yl) thieno[3,2-b] thiophene) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) yields highly oriented conducting polymer films that display polarized UV-visible-near-infrared (NIR) absorption, anisotropy in charge transport, and thermoelectric properties. Transmission electron microscopy and polarized UV-vis-NIR spectroscopy help understand and clarify the structure of the films and the doping mechanism. F(4)TCNQ(-) anions are incorporated into the layers of side chains and orient with their long molecular axis perpendicular to the polymer chains. The ordering of dopant molecules depends closely on the length and packing of the alkyl side chains. Increasing the dopant concentration results in a continuous variation of unit cell parameters of the doped phase. The high orientation results in anisotropic charge conductivity (sigma) and thermoelectric properties that are both enhanced in the direction of the polymer chains (sigma = 22 +/- 5 S cm(-1) and S = 60 +/- 2 mu V K-1 ). The method of fabrication of such highly oriented conducting polymer films is versatile and is applicable to a large palette of semiconducting polymers.
- Published
- 2017
25. Highly Oriented and Crystalline Films of a Phenyl-Substituted Polythiophene Prepared by Epitaxy: Structural Model and Influence of Molecular Weight
- Author
-
Hamidi-Sakr, Amer, primary, Schiefer, Daniel, additional, Covindarassou, Sangeetha, additional, Biniek, Laure, additional, Sommer, Michael, additional, and Brinkmann, Martin, additional
- Published
- 2016
- Full Text
- View/download PDF
26. Precise Control of Lamellar Thickness in Highly Oriented Regioregular Poly(3-Hexylthiophene) Thin Films Prepared by High-Temperature Rubbing: Correlations with Optical Properties and Charge Transport
- Author
-
Hamidi-Sakr, Amer, primary, Biniek, Laure, additional, Fall, Sadiara, additional, and Brinkmann, Martin, additional
- Published
- 2015
- Full Text
- View/download PDF
27. Precise Control of Lamellar Thickness in Highly Oriented Regioregular Poly(3-Hexylthiophene) Thin Films Prepared by High-Temperature Rubbing: Correlations with Optical Properties and Charge Transport.
- Author
-
Hamidi‐Sakr, Amer, Biniek, Laure, Fall, Sadiara, and Brinkmann, Martin
- Subjects
- *
POLYTHIOPHENES , *THIN films , *OPTICAL properties , *CRYSTALLINITY , *MICROSTRUCTURE - Abstract
Precise control of orientation and crystallinity is achieved in regioregular poly(3-hexylthiophene) (P3HT) thin films by using high-temperature rubbing, a fast and effective alignment method. Rubbing P3HT films at temperatures TR ≥ 144 °C generates highly oriented crystalline films with a periodic lamellar morphology with a dichroic ratio reaching 25. The crystallinity and the average crystal size along the chain axis direction, lc, are determined by high-resolution transmission electron microscopy and differential scanning calorimetry. The inverse of the lamellar period l scales with the supercooling and can accordingly be controlled by the rubbing temperature TR. Uniquely, the observed exciton coupling in P3HT crystals is correlated to the length of the average planarized chain segments lc in the crystals. The high alignment and crystallinity observed for TR > 200 °C cannot translate to high hole mobilities parallel to the rubbing because of the adverse effect of amorphous zones interrupting charge transport between crystalline lamellae. Although tie chains bridge successive P3HT crystals through amorphous zones, their twisted conformation restrains interlamellar charge transport. The evolution of charge transport anisotropy is correlated to the evolution of the dominant contact plane from mainly face-on ( TR ≤ 100 °C) to edge-on ( TR ≥ 170 °C). [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.