8 results on '"Hamya M"'
Search Results
2. Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence.
- Author
-
Louis T, Lucia F, Cousin F, Mievis C, Jansen N, Duysinx B, Le Pennec R, Visvikis D, Nebbache M, Rehn M, Hamya M, Geier M, Salaun PY, Schick U, Hatt M, Coucke P, Lovinfosse P, and Hustinx R
- Subjects
- Humans, Radiomics, Tomography, X-Ray Computed, Lung Neoplasms diagnostic imaging, Lung Neoplasms radiotherapy, Lung Neoplasms pathology, Carcinoma, Non-Small-Cell Lung diagnostic imaging, Carcinoma, Non-Small-Cell Lung radiotherapy, Carcinoma, Non-Small-Cell Lung pathology, Radiosurgery methods, Small Cell Lung Carcinoma
- Abstract
The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Correlation between rCBV Delineation Similarity and Overall Survival in a Prospective Cohort of High-Grade Gliomas Patients: The Hidden Value of Multimodal MRI?
- Author
-
Latreche A, Dissaux G, Querellou S, Mazouz Fatmi D, Lucia F, Bordron A, Vu A, Touati R, Nguyen V, Hamya M, Dissaux B, and Bourbonne V
- Abstract
Purpose: The accuracy of target delineation in radiation treatment planning of high-grade gliomas (HGGs) is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Magnetic resonance imaging (MRI) represents the standard imaging modality for delineation of gliomas with inherent limitations in accurately determining the microscopic extent of tumors. The purpose of this study was to assess the survival impact of multi-observer delineation variability of multiparametric MRI (mpMRI) and [
18 F]-FET PET/CT., Materials and Methods: Thirty prospectively included patients with histologically confirmed HGGs underwent a PET/CT and mpMRI including diffusion-weighted imaging (DWI: b0, b1000, ADC), contrast-enhanced T1-weighted imaging (T1-Gado), T2-weighted fluid-attenuated inversion recovery (T2Flair), and perfusion-weighted imaging with computation of relative cerebral blood volume (rCBV) and K2 maps. Nine radiation oncologists delineated the PET/CT and MRI sequences. Spatial similarity (Dice similarity coefficient: DSC) was calculated between the readers for each sequence. Impact of the DSC on progression-free survival (PFS) and overall survival (OS) was assessed using Kaplan-Meier curves and the log-rank test., Results: The highest DSC mean values were reached for morphological sequences, ranging from 0.71 +/- 0.18 to 0.84 +/- 0.09 for T2Flair and T1Gado, respectively, while metabolic volumes defined by PET/CT achieved a mean DSC of 0.75 +/- 0.11. rCBV variability (mean DSC0.32 +/- 0.20) significantly impacted PFS ( p = 0.02) and OS ( p = 0.002)., Conclusions: Our data suggest that the T1-Gado and T2Flair sequences were the most reproducible sequences, followed by PET/CT. Reproducibility for functional sequences was low, but rCBV inter-reader similarity significantly impacted PFS and OS.- Published
- 2024
- Full Text
- View/download PDF
4. Prediction of Acute Radiation-Induced Lung Toxicity After Stereotactic Body Radiation Therapy Using Dose-Volume Parameters From Functional Mapping on Gallium 68 Perfusion Positron Emission Tomography/Computed Tomography.
- Author
-
Lucia F, Bourhis D, Pinot F, Hamya M, Goasduff G, Blanc-Béguin F, Hennebicq S, Mauguen M, Kerleguer K, Schick U, Consigny M, Pradier O, Le Gal G, Salaun PY, Bourbonne V, and Le Roux PY
- Subjects
- Humans, Lung diagnostic imaging, Lung pathology, Positron Emission Tomography Computed Tomography, Perfusion, Carcinoma, Non-Small-Cell Lung diagnostic imaging, Carcinoma, Non-Small-Cell Lung radiotherapy, Carcinoma, Non-Small-Cell Lung drug therapy, Lung Neoplasms diagnostic imaging, Lung Neoplasms radiotherapy, Lung Neoplasms drug therapy, Radiation Pneumonitis pathology, Acute Radiation Syndrome, Gallium therapeutic use
- Abstract
Purpose: The aim of this work was to compare anatomic and functional dose-volume parameters as predictors of acute radiation-induced lung toxicity (RILT) in patients with lung tumors treated with stereotactic body radiation therapy., Methods and Materials: Fifty-nine patients treated with stereotactic body radiation therapy were prospectively included. All patients underwent gallium 68 lung perfusion positron emission tomography (PET)/computed tomography (CT) imaging before treatment. Mean lung dose (MLD) and volumes receiving x Gy (VxGy, 5-30 Gy) were calculated in 5 lung volumes: the conventional anatomic volume (AV) delineated on CT images, 3 lung functional volumes (FVs) defined on lung perfusion PET imaging (FV50%, FV70%, and FV90%; ie, the minimal volume containing 50%, 70%, and 90% of the total activity within the AV), and a low FV (LFV; LFV = AV - FV90%). The primary endpoint of this analysis was grade ≥2 acute RILT at 3 months as assessed with National Cancer Institute Common Terminology Criteria for Adverse Events version 5. Dose-volume parameters in patients with and without acute RILT were compared. Receiver operating characteristic curves assessing the ability of dose-volume parameters to discriminate between patients with and without acute RILT were generated, and area under the curve (AUC) values were calculated., Results: Of the 59 patients, 10 (17%) had grade ≥2 acute RILT. The MLD and the VxGy in the AV and LFV were not statistically different between patients with and without acute RILT (P > .05). All functional parameters were significantly higher in acute RILT patients (P < .05). AUC values (95% CI) for MLD AV, LFV, FV50%, FV70%, and FV90% were 0.66 (0.46-0.85), 0.60 (0.39-0.80), 0.77 (0.63-0.91), 0.77 (0.64-0.91), and 0.75 (0.58-0.91), respectively. AUC values for V20Gy AV, LFV, FV50%, FV70%, and FV90% were 0.65 (0.44-0.87), 0.64 (0.46-0.83), 0.82 (0.69-0.95), 0.81 (0.67-0.96), and 0.75 (0.57-0.94), respectively., Conclusions: The predictive value of PET perfusion-based functional parameters outperforms the standard CT-based dose-volume parameters for the risk of grade ≥2 acute RILT. Functional parameters could be useful for guiding radiation therapy planning and reducing the risk of acute RILT., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Multicentric development and evaluation of [ 18 F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy.
- Author
-
Lucia F, Louis T, Cousin F, Bourbonne V, Visvikis D, Mievis C, Jansen N, Duysinx B, Le Pennec R, Nebbache M, Rehn M, Hamya M, Geier M, Salaun PY, Schick U, Hatt M, Coucke P, Hustinx R, and Lovinfosse P
- Subjects
- Humans, Positron Emission Tomography Computed Tomography, Fluorodeoxyglucose F18, Retrospective Studies, Radiomics, Carcinoma, Non-Small-Cell Lung diagnostic imaging, Carcinoma, Non-Small-Cell Lung radiotherapy, Carcinoma, Non-Small-Cell Lung surgery, Lung Neoplasms diagnostic imaging, Lung Neoplasms radiotherapy, Lung Neoplasms surgery, Radiosurgery methods, Small Cell Lung Carcinoma
- Abstract
Purpose: To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation therapy (SBRT) using [
18 F]FDG PET/CT and CT radiomics combined with clinical and dosimetric parameters., Methods: We retrospectively collected 464 patients (60% for training and 40% for testing) from University Hospital of Liège and 63 patients from University Hospital of Brest (external testing set) with ES-NSCLC treated with SBRT between 2010 and 2020 and who had undergone pretreatment [18 F]FDG PET/CT and planning CT. Radiomic features were extracted using the PyRadiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Clinical, radiomic, and combined models were trained and tested using a neural network approach to predict regional and/or distant recurrence., Results: In the training (n = 273) and testing sets (n = 191 and n = 63), the clinical model achieved moderate performances to predict regional and/or distant recurrence with C-statistics from 0.53 to 0.59 (95% CI, 0.41, 0.67). The radiomic (original_firstorder_Entropy, original_gldm_LowGrayLevelEmphasis and original_glcm_DifferenceAverage) model achieved higher predictive ability in the training set and kept the same performance in the testing sets, with C-statistics from 0.70 to 0.78 (95% CI, 0.63, 0.88) while the combined model performs moderately well with C-statistics from 0.50 to 0.62 (95% CI, 0.37, 0.69)., Conclusion: Radiomic features extracted from pre-SBRT analog and digital [18 F]FDG PET/CT outperform clinical parameters in the prediction of regional and/or distant recurrence and to discuss an adjuvant systemic treatment in ES-NSCLC. Prospective validation of our models should now be carried out., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
6. New Automated Method for Lung Functional Volumes Delineation with Lung Perfusion PET/CT Imaging.
- Author
-
Pinot F, Bourhis D, Bourbonne V, Floch R, Mauguen M, Blanc-Béguin F, Schick U, Hamya M, Abgral R, Le Gal G, Salaün PY, Lucia F, and Le Roux PY
- Abstract
Background: Gallium-68 lung perfusion PET/CT is an emerging imaging modality for the assessment of regional lung function, especially to optimise radiotherapy (RT) planning. A key step of lung functional avoidance RT is the delineation of lung functional volumes (LFVs) to be integrated into radiation plans. However, there is currently no consistent and reproducible delineation method for LFVs. The aim of this study was to develop and evaluate an automated delineation threshold method based on total lung function for LFVs delineation with Gallium-68 MAA lung PET/CT imaging., Material and Method: Patients prospectively enrolled in the PEGASUS trial-a pilot study assessing the feasibility of lung functional avoidance using perfusion PET/CT imaging for lung stereotactic body radiotherapy (SBRT) of primary or secondary lesion-were analysed. Patients underwent lung perfusion MAA-68Ga PET/CT imaging and pulmonary function tests (PFTs) as part of pre-treatment evaluation. LFVs were delineated using two methods: the commonly used relative to the maximal pixel value threshold method (pmax threshold method, X%pmax volumes) and a new approach based on a relative to whole lung function threshold method (WLF threshold method, FVX% volumes) using a dedicated iterative algorithm. For both methods, LFVs were expressed in terms of % of the anatomical lung volume (AV) and of % of the total lung activity. Functional volumes were compared for patients with normal PFTs and pre-existing airway disease., Results: 60 patients were analysed. Among the 48 patients who had PFTs, 31 (65%) had pre-existing lung disease. The pmax and WLF threshold methods clearly provided different functional volumes with a wide range of relative lung function for a given pmax volume, and conversely, a wide range of corresponding pmax values for a given WLF volume. The WLF threshold method provided more reliable and consistent volumes with much lower dispersion of LFVs as compared to the pmax method, especially in patients with normal PFTs., Conclusions: We developed a relative to whole lung function threshold segmentation method to delineate lung functional volumes on perfusion PET/CT imaging. The automated algorithm allows for reproducible contouring. This new approach, relatively unaffected by the presence of hot spots, provides reliable and consistent functional volumes, and is clinically meaningful for clinicians.
- Published
- 2023
- Full Text
- View/download PDF
7. A Feasibility Study of Functional Lung Volume Preservation during Stereotactic Body Radiotherapy Guided by Gallium- 68 Perfusion PET/CT.
- Author
-
Lucia F, Hamya M, Pinot F, Goasduff G, Blanc-Béguin F, Bourhis D, Pradier O, Lucia AS, Hennebicq S, Mauguen M, Floch R, Schick U, Bourbonne V, Salaün PY, and Le Roux PY
- Abstract
The aim of this study was to assess the feasibility of sparing functional lung areas by integration of pulmonary functional mapping guided by
68 Ga-perfusion PET/CT imaging in lung SBRT planification. Sixty patients that planned to receive SBRT for primary or secondary lung tumors were prospectively enrolled. Lung functional volumes were defined as the minimal volume containing 50% (FV50%), 70% (FV70%) and 90% (FV90%) of the total activity within the anatomical volume. All patients had a treatment planning carried out in 2 stages: an anatomical planning blinded to the PET results and then a functional planning respecting the standard constraints but also incorporating "lung functional volume" constraints. The mean lung dose (MLD) in functional volumes and the percentage of lung volumes receiving xGy (VxGy) within the lung functional volumes using both plans were calculated and compared. SBRT planning optimized to spare lung functional regions led to a significant reduction ( p < 0.0001) of the MLD and V5 to V20 Gy in all functional volumes. Median relative difference of the MLD in the FV50%, FV70% and FV90% was -8.0% (-43.0 to 1.2%), -7.1% (-34.3 to 1.2%) and -5.7% (-22.3 to 4.4%), respectively. Median relative differences for VxGy ranged from -12.5% to -9.2% in the FV50%, -11.3% to -7.2% in the FV70% and -8.0% to -5.3% in the FV90%. This study shows the feasibility of significantly decreasing the doses delivered to the lung functional volumes using68 Ga-perfusion PET/CT while still respecting target volume coverage and doses to other organs at risk.- Published
- 2023
- Full Text
- View/download PDF
8. Lung Stereotactic Body Radiation Therapy in a Patient with Severe Lung Function Impairment Allowed by Gallium-68 Perfusion PET/CT Imaging: A Case Report.
- Author
-
Lucia F, Hamya M, Pinot F, Bourhis D, and Le Roux PY
- Abstract
Lung stereotactic body radiotherapy (SBRT) is increasingly proposed, especially for patients with poor lung function who are not eligible for surgery. However, radiation-induced lung injury remains a significant treatment-related adverse event in these patients. Moreover, for patients with very severe COPD, we have very few data about the safety of SBRT for lung cancer. We present the case of a female with very severe chronic obstructive pulmonary disease (COPD) with a forced expiratory volume in one second (FEV1) of 0.23 L (11%), for whom a localized lung tumor was found. Lung SBRT was the only possible treatment. It was allowed and safely performed, based on a pre-therapeutic evaluation of regional lung function with Gallium-68 perfusion lung positron emission tomography combined with computed tomography (PET/CT). This is the first case report to highlight the potential use of a Gallium-68 perfusion PET/CT in order to safely select patients with very severe COPD who can benefit from SBRT., Competing Interests: The authors declare no conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.