8 results on '"Hanifi, Nassim"'
Search Results
2. An algorithm for the 2D guillotine cutting stock problem
- Author
-
MacLeod, Bruce, Moll, Robert, Girkar, Mahesh, and Hanifi, Nassim
- Subjects
Algorithms -- Models ,Heuristic programming -- Research ,Cutting -- Production management ,Guillotine -- Usage ,Business ,Business, general ,Business, international - Abstract
The two-dimensional guillotine cutting stock problem seeks to apply a sequence of guillotine (edge to edge) cuts to extract a collection of smaller rectangles from a stock piece. In this paper approximation algorithm for the two-dimensional guillotine cutting stock problem is presented. The algorithm considers each rectangle, in turn, and attempts to locate a guillotine feasible position o stock piece. The algorithm has the property that a position will be located for the n-th rectangle i only if such a feasible placement exists. This paper establishes the efficiency and effectiveness of algorithm by presenting computational results., An 0 (n to the third power) approximation algorithm can be applied to solve a two-dimensional guillotine cutting stock problem. In such problems, the application of edge-to edge guillotine cuts is sought for the extraction of a variety of smaller rectangles from a stock piece. Each rectangle is considered in the algorithm and the most viable guillotine position on the stock piece is identified. A position will only be identified for the nth rectangle if a viable location exists. Computational results are described to establish the algorithm's efficacy.
- Published
- 1993
3. Gram-scale carbon nanotubes as semiconducting material for highly versatile route of integration in plastic electronics
- Author
-
Hugot, Nathalie, Casademont, Hugo, Jouni, Mohammad, Hanifi, Nassim, Darchy, Léa, Azevedo, Joël, Derycke, Vincent, Simonato, Jean-Pierre, Celle, Caroline, Chenevier, Pascale, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN UMR 3685), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
semiconductor ink ,carbon nanotubes ,spray ,[CHIM.MATE]Chemical Sciences/Material chemistry ,plastic electronics - Abstract
International audience; A versatile chemical functionalization of single-walled carbon nanotubes (SWNT) is developed to eliminate the conductivity of metallic SWNTs in pristine SWNT mixtures, without sorting. Thanks to the high selectivity of the diazoether reagent, metallic SWNTs can be functionalized while preserving the transport properties of semiconducting SWNTs, even in nonindividually dispersed SWNT solutions. In this way, liters of aqueous semiconducting ink for printing or spray can be prepared at the laboratory scale and used for the fabrication of thin-film transistors (TFT) by spraying. Diazoether grafting also improved SWNT dispersion by preventing rebundling. Consequently, while less conductive than pristine SWNTs, diazoether-treated SWNTs provided higher TFT transconductance thanks to a more homogeneous percolation in the film. SWNT TFTs made on wafer and plastic with pristine and diazoether-treated SWNTs were compared. Sprayed films of diazoether treated, unsorted SWNTs provided TFTs with I ON /I OFF around 500, about 2 orders of magnitude higher than pristine SWNT TFTs. Mobilities were similar, up to 1 cm 2 /V s. Interestingly, diazoether-treated SWNT TFTs kept a high I ON /I OFF in a wide range of SWNT density and channel length, where pristine SWNT films became metallic.
- Published
- 2015
- Full Text
- View/download PDF
4. Incorporation de nanotubes de carbone semi-conducteurs dans des cellules organiques à bulk hétérojonction et dans des transistors organiques
- Author
-
Darchy, Lea, Hanifi, Nassim, Marzouk, Jaouad, Ratier, Bernard, Chenevier, Pascale, Laboratoire Interfaces et Surfaces d'Oxydes (LISO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), MINACOM (XLIM-MINACOM), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Ratier, Bernard, Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN UMR 3685), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2012
5. Carbon nanotube semiconductors for printable electronics
- Author
-
Hanifi, Nassim, Darchy, Lea, Vialla, Fabien, Voisin, Christophe, Filoramo, Arianna, Simonato, Jean-Pierre, Chenevier, Pascale, Laboratoire Interfaces et Surfaces d'Oxydes (LISO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and Roussignol, Philippe
- Subjects
[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,ComputingMethodologies_GENERAL ,ComputingMilieux_MISCELLANEOUS - Abstract
Poster; International audience
- Published
- 2012
6. Gram‐scale carbon nanotubes as semiconducting material for highly versatile route of integration in plastic electronics
- Author
-
Hugot, Nathalie, primary, Casademont, Hugo, additional, Jouni, Mohammad, additional, Hanifi, Nassim, additional, Darchy, Léa, additional, Azevedo, Joël, additional, Derycke, Vincent, additional, Simonato, Jean‐Pierre, additional, Celle, Caroline, additional, and Chenevier, Pascale, additional
- Published
- 2015
- Full Text
- View/download PDF
7. Polymer Grafting by Inkjet Printing: A Direct Chemical Writing Toolset
- Author
-
Garcia, Alexandre, primary, Hanifi, Nassim, additional, Jousselme, Bruno, additional, Jégou, Pascale, additional, Palacin, Serge, additional, Viel, Pascal, additional, and Berthelot, Thomas, additional
- Published
- 2013
- Full Text
- View/download PDF
8. Gram-scale carbon nanotubes as semiconducting material for highly versatile route of integration in plastic electronics.
- Author
-
Hugot, Nathalie, Casademont, Hugo, Jouni, Mohammad, Hanifi, Nassim, Darchy, Léa, Azevedo, Joël, Derycke, Vincent, Simonato, Jean‐Pierre, Celle, Caroline, and Chenevier, Pascale
- Subjects
CARBON nanotubes ,SEMICONDUCTORS ,THIN film transistors ,PERCOLATION ,ULTRACENTRIFUGATION ,POLYFLUORENES - Abstract
A versatile chemical functionalization of single-walled carbon nanotubes (SWNT) is developed to eliminate the conductivity of metallic SWNTs in pristine SWNT mixtures, without sorting. Thanks to the high selectivity of the diazoether reagent, metallic SWNTs can be functionalized while preserving the transport properties of semiconducting SWNTs, even in nonindividually dispersed SWNT solutions. In this way, liters of aqueous semiconducting ink for printing or spray can be prepared at the laboratory scale and used for the fabrication of thin-film transistors (TFT) by spraying. Diazoether grafting also improved SWNT dispersion by preventing rebundling. Consequently, while less conductive than pristine SWNTs, diazoether-treated SWNTs provided higher TFT transconductance thanks to a more homogeneous percolation in the film. SWNT TFTs made on wafer and plastic with pristine and diazoether-treated SWNTs were compared. Sprayed films of diazoether treated, unsorted SWNTs provided TFTs with I
ON / IOFF around 500, about 2 orders of magnitude higher than pristine SWNT TFTs. Mobilities were similar, up to 1 cm2 /V s. Interestingly, diazoether-treated SWNT TFTs kept a high ION / IOFF in a wide range of SWNT density and channel length, where pristine SWNT films became metallic. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.