21 results on '"Harshad Mishra"'
Search Results
2. Control of the magnetic response in magnetic field SAW sensors.
- Author
-
Harshad Mishra, Vincent Polewczyk, Michel Hehn, Mohammed Moutaouekkil, Cécile Floer, Karine Dumesnil, Daniel Lacour, Sébastien Petit-Watelot, Hamid M'Jahed, Sami Hage-Ali, Omar Elmazria, Nicolas Tiercelin, Yannick Dusch, Abdelkrim Talbi, and Olivier Bou Matar
- Published
- 2017
- Full Text
- View/download PDF
3. Magnomechanics in suspended magnetic beams
- Author
-
Kalle S. U. Kansanen, Camillo Tassi, Harshad Mishra, Mika A. Sillanpää, Tero T. Heikkilä, University of Jyväskylä, Quantum Nanomechanics, Centre of Excellence in Quantum Technology, QTF, Department of Applied Physics, Aalto-yliopisto, and Aalto University
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,magneettikentät ,01 natural sciences ,tiiviin aineen fysiikka ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,0210 nano-technology ,Quantum Physics (quant-ph) ,kvanttifysiikka - Abstract
Cavity optomechanical systems have become a popular playground for studies of controllable nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several of them on the same chip. An alternative scheme with much smaller footprint is provided by magnomechanics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic shape anisotropy. Here, we consider the magnomechanical interaction occurring in a suspended magnetic beam -- a scheme in which both magnetic and mechanical modes physically overlap and can also be driven individually. We show that a sizable interaction can be produced if the beam has some initial static deformation, as is often the case due to unequal strains in the constituent materials. We also show how the magnetism affects the magnetomotive detection of the vibrations, and how the magnomechanics interaction can be used in microwave signal amplification. Finally, we discuss experimental progress towards realizing the scheme., Comment: 17 pages, 10 figures; a few added paragraphs and several typographical errors corrected
- Published
- 2021
4. Sensing Mechanism of Surface Acoustic Wave Magnetic Field Sensors Based on Ferromagnetic Films
- Author
-
Omar Elmazria, Sami Hage-Ali, Tao Han, Harshad Mishra, Michel Hehn, Yang Yang, Shanghai Jiao Tong University [Shanghai], Institut Jean Lamour (IJL), and Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Materials science ,Acoustics and Ultrasonics ,Condensed matter physics ,010401 analytical chemistry ,Surface acoustic wave ,sensing mechanism ,Magnetostriction ,magnetic field ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Magnetic field ,Resonator ,Ferromagnetism ,Electric field ,Solid mechanics ,Electrical and Electronic Engineering ,Electric current ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Instrumentation - Abstract
International audience; Surface acoustic wave (SAW) sensors with ferromagnetic materials are used to measure magnetic fields or electric currents. The magnetic field sensitivities of SAW magnetic field sensors are essentially influenced by various factors. The sensing mechanism is complex due to the multiphysics coupling of the magnetic field, solid mechanics, and electric field. The magnetostriction effect, ΔE effect, and the third-order material constants are taken into consideration. The shape demagnetizing effect is reduced by increasing the lengthwidth ratio and length-height ratio of a ferromagnetic film on a SAW resonator. The model is verified by experiments and accurately predicts the magnetic field sensitivities of SAW resonant magnetic field sensors. The factors affecting the sensitivities are investigated from the perspective of the sensing mechanism. A grooved sensing surface structure is explored for an improved sensitivity. The results are beneficial to design reliable SAW magnetic field sensors with an enhanced sensitivity.
- Published
- 2021
- Full Text
- View/download PDF
5. Multifunctional sensor (Magnetic field and temperature) based on Micro-structured and multilayered SAW device
- Author
-
Sébastien Petit-Watelot, S. Zghoon, Hamid M'Jahed, Daniel Lacour, Michel Hehn, Prince Mengue, Sami Hage-Ali, Omar Elmazria, and Harshad Mishra
- Subjects
Work (thermodynamics) ,Materials science ,business.industry ,010401 analytical chemistry ,Surface acoustic wave ,02 engineering and technology ,Saw (device) ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Magnetic field ,Magnetic anisotropy ,Love wave ,Optoelectronics ,0210 nano-technology ,business ,Layer (electronics) - Abstract
This work aims to present a multifunctional surface acoustic wave (SAW) device that is capable of simultaneously measuring magnetic field as well as temperature. This is achieved in three parts where a multilayered approach is used to first achieve a temperature compensated Love wave structure, followed by a micro-structuration of the sensitive layer to eliminate the effects of temperature on magnetic anisotropy and finally multiple resonances observed allow a multifunctionality in our device.
- Published
- 2020
- Full Text
- View/download PDF
6. Microstructured Multilayered Surface-Acoustic-Wave Device for Multifunctional Sensing
- Author
-
Michel Hehn, Sami Hage-Ali, Daniel Lacour, Harshad Mishra, Hamid M'Jahed, Omar Elmazria, Prince Mengue, S. Zghoon, Sébastien Petit-Watelot, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Moscow Power Engineering Institute (MPEI)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Materials science ,Condensed matter physics ,Surface acoustic wave ,General Physics and Astronomy ,Resonance ,Magnetostriction ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,Magnetic anisotropy ,symbols.namesake ,Resonator ,0103 physical sciences ,symbols ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Rayleigh scattering ,010306 general physics ,0210 nano-technology ,Temperature coefficient - Abstract
A multifunctional sensor based on a surface-acoustic-wave (SAW) device is fabricated. It allows independent measurements of temperature and applied magnetic field. Optimization of the multilayered device structure leads to a temperature-coefficient frequency of the Love-wave resonance reduced to zero. The sensitivity to an applied magnetic field is obtained through magnetostriction of a $\mathrm{Co}$-$\mathrm{Fe}$-$\mathrm{B}$ layer. By use of shape anisotropy, the variation of intrinsic magnetic anisotropy with temperature is strongly reduced. On one hand, interrogating the device at the Love-wave-resonance frequency allows us to extract the applied magnetic field independently of the temperature in a [130--370 K] range. On the other hand, the Rayleigh or Leaky waves are less or not sensitive to applied fields but have a high temperature coefficient of frequency. So interrogating the device at the Rayleigh resonance frequency allows us to extract the temperature independently of the magnetic field. In addition, the used resonator geometry offers the possibility for future batteryless and wireless interrogation.
- Published
- 2020
- Full Text
- View/download PDF
7. Temperature compensated magnetic field sensor based on Love waves
- Author
-
Prince Mengue, Omar Elmazria, Vincent Polewczyk, Karine Dumesnil, Harshad Mishra, Daniel Lacour, Sébastien Petit-Watelot, Sami Hage-Ali, Jeremy Streque, Abdelkrim Talbi, Michel Hehn, Sergei Zhgoon, Hamid M'Jahed, Aurelien Mazzamurro, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), National Research University, Moscow Power Engineering Institute, Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Materials science ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,law.invention ,Magnetization ,symbols.namesake ,Condensed Matter::Materials Science ,[SPI]Engineering Sciences [physics] ,magnetic field sensor ,law ,0103 physical sciences ,General Materials Science ,Electrical and Electronic Engineering ,Rayleigh wave ,temperature compensated ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Civil and Structural Engineering ,010302 applied physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Guided wave testing ,Condensed matter physics ,Acoustic wave ,resonators ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Magnetic field ,Love wave ,Mechanics of Materials ,Signal Processing ,symbols ,piezoelectric ,0210 nano-technology ,SAW devices ,Waveguide ,Temperature coefficient ,Love waves - Abstract
International audience; A temperature compensated magnetic field sensor based on the combination of CoFeB ferromagnetic thin films and Quartz/ZnO Love waveguide platform is developed and optimized. The Love wave is a shear horizontal guided wave and therefore provides an optimal interaction with magnetisation in the magneto-elastic thin film resulting in higher acoustic wave magneto-elastic coupling compared to the conventional Rayleigh wave based devices. ST-cut Quartz was chosen as substrate, ZnO as insulating layer for Love wave generation and temperature coefficient of frequency (TCF) compensation and CoFeB as the magnetostrictive layer sensitive to magnetic field. Experimental results show a magneto-acoustic sensitivity of 15.53 MHz/T with almost zero TCF.
- Published
- 2020
- Full Text
- View/download PDF
8. An Analysis on the Growth of Physical Education Facilities In Senior Secondary Schools of Madhya Pradesh
- Author
-
Harshad Mishra and Deepak Mehta
- Subjects
Medical education ,Geography ,Physical education - Published
- 2018
- Full Text
- View/download PDF
9. Wireless Multifunctional Surface Acoustic Wave Sensor for Magnetic Field and Temperature Monitoring
- Author
-
Prince Mengue, Daniel Lacour, Harshad Mishra, Michel Hehn, Sami Hage-Ali, Sébastien Petit-Watelot, Yang Yang, Omar Elmazria, Cecile Floer, Tao Han, Shanghai Jiao Tong University [Shanghai], Institut Jean Lamour (IJL), and Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,010302 applied physics ,Materials science ,business.industry ,Surface acoustic wave ,01 natural sciences ,Temperature measurement ,Industrial and Manufacturing Engineering ,Magnetic field ,Condensed Matter::Materials Science ,symbols.namesake ,Resonator ,Love wave ,Mechanics of Materials ,0103 physical sciences ,symbols ,Optoelectronics ,General Materials Science ,Surface acoustic wave sensor ,Rayleigh wave ,Rayleigh scattering ,business ,010301 acoustics - Abstract
International audience; A one-port surface acoustic wave (SAW) resonator based on Co40–Fe40–B20/SiO2/ZnO/quartz multilayer structure and exhibiting a dual mode, Rayleigh and Love wave modes, is investigated to achieve a multifunctional sensor measuring both temperatures and magnetic fields. The Rayleigh wave mode of the resonator is used for temperature measurement with a temperature sensitivity of −37.9 ppm/°C, and the Love wave mode is used for magnetic field measurement. Co40-Fe40-B20 is the magnetic sensitive layer, and quartz crystal is the piezoelectric substrate. ZnO film is also a piezoelectric but considered here in combination with SiO2 as insulating layers and serves to control impedance matching and temperature dependence of the sensor. ZnO and SiO2 thicknesses are selected to realize temperature compensation for the Love wave mode and making this mode highly sensitive to magnetic fields and insensitive to temperatures. The magnetic field sensitivities of −170.4 kHz m−1 T−1 and −621.6 kHz m−1 T−1 are obtained respectively for the fundamental and the third harmonic of the Love wave mode. The proposed structure is beneficial to design reliable hybrid SAW magnetic field and temperature sensors
- Published
- 2021
- Full Text
- View/download PDF
10. A Weak Form Nonlinear Model for Thermal Sensitivity of Love Wave Mode on Layered Structures
- Author
-
Sami Hage-Ali, Tao Han, Qiaozhen Zhang, Yang Yang, Omar Elmazria, Harshad Mishra, Shanghai Jiao Tong University [Shanghai], Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), and ANR-18-CE42-0004,SAWGOOD,Dispositifs sans fils étirables à ondes acoustiques de surface : vers des capteurs passifs multifonctionnels imprimés sur la peau(2018)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Materials science ,Acoustics and Ultrasonics ,Interdigital transducer ,Love wave ,Constitutive equation ,Mechanics ,thermal sensitivity ,frequency temperature characteristic ,01 natural sciences ,Piezoelectricity ,Stress (mechanics) ,Resonator ,Nonlinear system ,0103 physical sciences ,Boundary value problem ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010301 acoustics ,Instrumentation ,third-order constants - Abstract
A precise theoretical model for the thermal sensitivity of Love wave mode is significant in the structure design, temperature compensation, and the prediction of thermal behavior. This article proposes a weak form nonlinear model to calculate the thermal sensitivity of Love waves on arbitrary layered structures. The third-order material constants, as well as the thermal stress and strain tensors between the substrate, electrodes, and wave-guiding layer, are considered in the model. The $9 \times 9$ effective elastic and the $3 \times 9$ effective piezoelectric matrixes are imported into the nonlinear constitutive equations and boundary conditions using weak form expressions. A temperature-compensated Love wave mode resonator on a layered ZnO/interdigital transducer (IDT)/quartz structure is obtained. The theoretical model is verified through the comparison of experimental and analytical results. The model is beneficial for the design of Love wave devices and sensors.
- Published
- 2020
- Full Text
- View/download PDF
11. Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensors
- Author
-
Omar Elmazria, Nicolas Tiercelin, Karine Dumesnil, Sami Hage-Ali, Vincent Polewczyk, Olivier Bou Matar, Abdelkrim Talbi, Sebastien Petit Watelot, Michel Hehn, Hamid M'Jahed, Harshad Mishra, Daniel Lacour, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique (LIA LICS/LEMAC), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Université Polytechnique Hauts-de-France (UPHF)-Institut supérieur de l'électronique et du numérique (ISEN), ANR-15-IDEX-04-LUE,LUE,Lorraine Université d'Excellence(2016), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)
- Subjects
Materials science ,magnetic ,micromagnetics ,02 engineering and technology ,01 natural sciences ,0103 physical sciences ,General Materials Science ,Electrical and Electronic Engineering ,Anisotropy ,saw sensors ,Civil and Structural Engineering ,010302 applied physics ,Condensed matter physics ,Surface acoustic wave ,Magnetostriction ,Acoustic wave ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,micro-structured thin films ,Atomic and Molecular Physics, and Optics ,Magnetic field ,Magnetic anisotropy ,Mechanics of Materials ,Magnet ,Signal Processing ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Surface acoustic wave sensor ,0210 nano-technology ,shape-effects - Abstract
International audience; This work aims at studying the interaction between surface acoustic waves (SAW) and micro-structured magnetostrictive layers under a magnetic field with a perspective to develop magnetic field sensors. The impact of the competition between the strong intrinsic magnetic anisotropy of the magnetic material and the shape anisotropy of the interdigitated transducer (IDT) fingers introduced by the micro-structuration is investigated. Therefore, the macroscopic and microscopic magnetic properties of the IDT and their influence on the magneto-acoustic response are studied. A SAW resonator with the IDTs made of the magnetostrictive thin film was elaborated and the magnetic surface acoustic wave (MSAW) response under a magnetic field was performed and discussed. Depending on the energy balance, the anisotropy gets modified and a correlation with the MSAW sensitivity to an externally applied magnetic field is made.
- Published
- 2019
- Full Text
- View/download PDF
12. Corrections to 'Enhanced Performance Love Wave Magnetic Field Sensors With Temperature Compensation' [Oct 20 11292-11301]
- Author
-
Daniel Lacour, Tao Han, Harshad Mishra, Sami Hage-Ali, Michel Hehn, Omar Elmazria, Prince Mengue, Hamid M'Jahed, Sébastien Petit-Watelot, and Yang Yang
- Subjects
Physics ,Love wave ,Quantum electrodynamics ,010401 analytical chemistry ,Electrical and Electronic Engineering ,01 natural sciences ,Instrumentation ,0104 chemical sciences ,Compensation (engineering) ,Volume (compression) ,Magnetic field - Abstract
In the above article [1] , by Yang et al. , published in IEEE Sensors Journal, volume 20, issue 19, pp. 11292–11301, in 2020, we would like to correct the coauthor Daniel Lacour’s biography on page 11300.
- Published
- 2021
- Full Text
- View/download PDF
13. AlN/ZnO/LiNbO 3 Packageless Structure as a Low-Profile Sensor for Potential On-Body Applications
- Author
-
M. Moutaouekkil, Florian Bartoli, Omar Elmazria, Cecile Floer, Olivier Bou Matar, Philippe Pigeat, Sami Hage-Ali, Sergei Zhgoon, Harshad Mishra, Thierry Aubert, Abdelkrim Talbi, Stefan Mc Murtry, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Research University, Moscow Power Engineering Institute, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), ANR-18-CE42-0004,SAWGOOD,Dispositifs sans fils étirables à ondes acoustiques de surface : vers des capteurs passifs multifonctionnels imprimés sur la peau(2018), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), ACKNOWLEDGMENTThe authors would like to thank L. Badie, G. Lengaigne, and F. Montaigne from Minalor platform, Institut Jean Lamour, Nancy, France, for their help in the microfabrication., and This work was supported in part by the Direction Générale de l’Armement, in part by the Région Grand-Est, in part by the European funds FEDER, in part by the French PIA project 'Lorraine Université d’Excellence' under Grant ANR-15-IDEX-04-LUE, and in part by the Ministry of Science and Education of Russian Federation under Grant 8.6108.2017/6.7.
- Subjects
Materials science ,Acoustics and Ultrasonics ,Temperature sensing ,Acoustics ,Lithium niobate ,Structure (category theory) ,02 engineering and technology ,Particle displacement ,Acoustic wave ,021001 nanoscience & nanotechnology ,01 natural sciences ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,0103 physical sciences ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Surface acoustic wave sensor ,Electrical and Electronic Engineering ,Rayleigh wave ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,010301 acoustics ,Instrumentation - Abstract
International audience; Surface acoustic wave (SAW) sensors find their application in a growing number of fields. This interest stems in particular from their passive nature and the possibility of remote interrogation. Still, the sensor package, due to its size, remains an obstacle for some applications. In this regard, packageless solutions are very promising. This paper describes the potential of the AlN/ZnO/LiNbO3 structure for packageless acoustic wave sensors. This structure, based on the waveguided acoustic wave principle, is studied numerically and experimentally. According to the COMSOL simulations, a wave, whose particle displacement is similar to a Rayleigh wave, is confined within the structure when the AlN film is thick enough. This result is confirmed by comprehensive experimental tests, thus proving the potential of this structure for packageless applications, notably temperature sensing. Index Terms-Surface acoustic wave SAW, temperature sensor, waveguiding layer acoustic wave WLAW, packageless, low-profile.
- Published
- 2018
- Full Text
- View/download PDF
14. AlN/ZnO/LiNbO
- Author
-
Cecile, Floer, Sami, Hage-Ali, Sergei, Zhgoon, Mohammed, Moutaouekkil, Florian, Bartoli, Harshad, Mishra, Stefan, Mc Murtry, Philippe, Pigeat, Thierry, Aubert, Olivier, Bou Matar, Abdelkrim, Talbi, and Omar, Elmazria
- Abstract
Surface acoustic wave sensors find their application in a growing number of fields. This interest stems in particular from their passive nature and the possibility of remote interrogation. Still, the sensor package, due to its size, remains an obstacle for some applications. In this regard, packageless solutions are very promising. This paper describes the potential of the AlN/ZnO/LiNbO
- Published
- 2018
15. Studies of the magnetostriction in thin films: Experimental, analytical and numerical analysis
- Author
-
J. Arout Chelvane, Harshad Mishra, and A. Arockiarajan
- Subjects
Materials science ,Thin films ,Multiphysics ,Analytical chemistry ,Deflection (structures) ,Transversely isotropic materials ,Comsol multiphysics ,Magnetostrictive devices ,COMSOL ,Magnetization ,Magnetostrictive thin films ,Transverse isotropy ,Electrical and Electronic Engineering ,Composite material ,Thin film ,Instrumentation ,Micro electro mechanical system ,Metals and Alloys ,Magnetostriction ,Elasticity (physics) ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Magnetic field ,MEMS ,Magnetic fields ,Magnetization curves ,Tip deflection ,Material properties ,Mechanical deformation - Abstract
Magnetostrictive thin films primarily find use for their actuation properties. Micro-electro-mechanical systems (MEMS devices) capitalize on the induced mechanical deformations when these thin films are subjected to a magnetic field. In this study, experiments are conducted on Tb-Dy-Fe thin film samples to determine their characteristic magnetization curves. The thin films are subjected to a periodically varying magnetic field of �0.6 T and the deflections at the tip are measured. A simple analytical model based on the theories of elasticity and considering transversely isotropic material properties of both the film and the substrate layers has been proposed to predict the deflections. The study has been extended to predict the tip deflections numerically using Comsol Multiphysics. The measured tip deflections are further compared with the simulated analytical and numerical results, which are found to agree with each other. � 2015 Elsevier B.V. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
16. AlN/ZnO/LiNbO3 packageless structure as a low-profile sensor for on-body applications
- Author
-
Olivier Bou Matar, Stefan Mc Murtry, Thierry Aubert, M. Moutaouekkil, Abdelkrim Talbi, Cecile Floer, Omar Elmazria, Sami Hage-Ali, Florian Bartoli, Sergei Zhgoon, Harshad Mishra, Philippe Pigeat, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), CentraleSupélec-Université de Lorraine (UL), National Research University, Moscow Power Engineering Institute, Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), and Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN)
- Subjects
010302 applied physics ,Materials science ,business.industry ,Surface acoustic wave ,02 engineering and technology ,Acoustic wave ,Conformable matrix ,021001 nanoscience & nanotechnology ,01 natural sciences ,Resonator ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Wireless ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business ,Layer (electronics) ,ComputingMilieux_MISCELLANEOUS - Abstract
Surface acoustic wave (SAW) devices are widely used as filters or resonators for mobile communications or radars applications. However, the velocity of the wave can be very sensitive to physical parameters of the environment (temperature, strain…), which allows the device to be used as a sensor. SAW devices are passive (batteryless) and wireless, but are often bulky due to the package. To dramatically reduces their profile, it is possible to use a Wave-guiding Layer Acoustic Wave (WLAW) structure, which consists of a low velocity layer between two higher velocity layers. These structures have the potential to be ultra-thin and conformable and thus could be used for flexible on-body biomedical applications. This work investigates the AlN/ZnO/LiNbO 3 structure as a candidate for a WLAW temperature sensor.
- Published
- 2017
17. Notice of Removal: SAW resonators for magnetic field sensing with (TbCo2/FeCo) multilayered IDTs as sensitive layer
- Author
-
Sami Hage-Ali, Karine Dumesnil, M. Moutaouekkil, Omar Elmazria, Vincent Polewczyk, Nicolas Tiercelin, Cecile Floer, Harshad Mishra, Abdelkrim Talbi, and Michel Hehn
- Subjects
Resonator ,Nuclear magnetic resonance ,Transducer ,Materials science ,business.industry ,Optoelectronics ,Magnetostriction ,Substrate (electronics) ,Acoustic wave ,business ,Layer (electronics) ,Line (electrical engineering) ,Magnetic field - Abstract
In previous studies [1,2] we have shown the possibility to realize wireless magnetic SAW sensors with a delay line configuration using layered structures. SAW devices in resonator configuration with Ni interdigital transducers (IDT) on the substrate were also investigated by Kadota et al. [3]. The physical phenomena behind sensor behavior is still unclear and the interpretation of the results is not fully in line with the proposed theoretical models. This work aims to understand the physics and the interaction between acoustic waves and magnetostrictive layers under magnetic fields. Here, we investigate multilayer (LiNbO3/(TbCo2/FeCo)) SAW structures with different geometries and configurations.
- Published
- 2017
- Full Text
- View/download PDF
18. AlN/ZnO/LiNbO3 packageless structure as a low-profile sensor for on-body applications
- Author
-
Cecile Floer, Florian Bartoli, Thierry Aubert, Olivier Bou Matar, Abdelkrim Talbi, Mohammed Moutaouekkil, Harshad Mishra, Sami Hage-Ali, Stefan McMurtry, Philippe Pigeat, Omar Elmazria, and Sergei Zhgoon
- Published
- 2017
- Full Text
- View/download PDF
19. Unipolar and Bipolar High-Magnetic-Field Sensors Based on Surface Acoustic Wave Resonators
- Author
-
Abdelkrim Talbi, S. Petit Watelot, Harshad Mishra, Michel Hehn, Karine Dumesnil, O. Bou Matar, Yannick Dusch, Sami Hage-Ali, Nicolas Tiercelin, Omar Elmazria, Hamid M'Jahed, François Montaigne, Vincent Polewczyk, M. Moutaouekkil, Daniel Lacour, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique (LIA LICS/LEMAC), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Université Polytechnique Hauts-de-France (UPHF)-Institut supérieur de l'électronique et du numérique (ISEN), ANR-15-IDEX-04-LUE,LUE,Lorraine Université d'Excellence(2016), Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS-IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), and Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Surface acoustic wave resonators ,Materials science ,Acoustics ,Surface acoustic wave ,Measure (physics) ,General Physics and Astronomy ,Magnetostriction ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,Transducer ,Ferromagnetism ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Surface acoustic wave sensor ,0210 nano-technology - Abstract
International audience; While surface acoustic wave (SAW) sensors have been used to measure temperature, pressure, strains, and low magnetic fields, the capability to measure bipolar fields and high fields is lacking. In this paper, we report magnetic surface acoustic wave sensors that consist of interdigital transducers made of a single magnetostrictive material, either Ni or TbFe 2 , or based on exchange-biased (Co=IrMn) multilayers. By controlling the ferromagnet magnetic properties, high-field sensors can be obtained with unipolar or bipolar responses. The issue of hysteretic response of the ferromagnetic material is especially addressed, and the control of the magnetic properties ensures the reversible behavior in the SAW response.
- Published
- 2017
- Full Text
- View/download PDF
20. Temperature compensated magnetic field sensor based on love waves.
- Author
-
Harshad Mishra, Jérémy Streque, Michel Hehn, Prince Mengue, Hamid M’Jahed, Daniel Lacour, Karine Dumesnil, Sébastien Petit-Watelot, Sergei Zhgoon, Vincent Polewczyk, Aurélien Mazzamurro, Abdelkrim Talbi, Sami Hage-Ali, and Omar Elmazria
- Abstract
A temperature compensated magnetic field sensor based on the combination of CoFeB ferromagnetic thin films and Quartz/ZnO Love waveguide platform is developed and optimized. The Love wave is a shear horizontal guided wave and therefore provides an optimal interaction with magnetization in the magneto-elastic thin film resulting in higher acoustic wave magneto-elastic coupling compared to the conventional Rayleigh wave based devices. ST-cut Quartz was chosen as substrate, ZnO as insulating layer for Love wave generation and temperature coefficient of frequency (TCF) compensation and CoFeB as the magnetostrictive layer sensitive to magnetic field. Experimental results show a magneto-acoustic sensitivity of 15.53 MHz T
−1 with almost zero TCF. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
21. Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensors.
- Author
-
Harshad Mishra, Michel Hehn, Daniel Lacour, Omar Elmazria, Nicolas Tiercelin, Hamid Mjahed, Karine Dumesnil, Sebastien Petit Watelot, Vincent Polewczyk, Abdelkrim Talbi, Olivier Bou Matar, and Sami Hage-Ali
- Abstract
This work aims at studying the interaction between surface acoustic waves (SAW) and micro-structured magnetostrictive layers under a magnetic field with a perspective to develop magnetic field sensors. The impact of the competition between the strong intrinsic magnetic anisotropy of the magnetic material and the shape anisotropy of the interdigitated transducer (IDT) fingers introduced by the micro-structuration is investigated. Therefore, the macroscopic and microscopic magnetic properties of the IDT and their influence on the magneto-acoustic response are studied. A SAW resonator with the IDTs made of the magnetostrictive thin film was elaborated and the magnetic surface acoustic wave (MSAW) response under a magnetic field was performed and discussed. Depending on the energy balance, the anisotropy gets modified and a correlation with the MSAW sensitivity to an externally applied magnetic field is made. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.