1. Confronting the thermodynamics knowledge gap: A short course on computational thermodynamics in Julia
- Author
-
Paoli, Luc, Inguva, Pavan K., Haslam, Andrew J., and Walker, Pierre J.
- Subjects
Physics - Physics Education - Abstract
Computational elements in thermodynamics have become increasingly important in contemporary chemical-engineering research and practice. However, traditional thermodynamics instruction provides little exposure to computational thermodynamics, leaving students ill-equipped to engage with the state-of-the-art deployed in industry and academia. The recent rise of easy-to-use open-source thermodynamic codes presents an opportunity for educators to help bridge this gap. In this work, we present a short course that was developed and rolled-out using the Clapeyron.jl package, the material of which is all openly available on GitHub. The course can serve as a foundation for others to similarly integrate computational material in thermodynamics education. The course is structured into three sections. Section one serves as a refresher and covers core material in numerical methods and thermodynamics. Section two introduces a range of thermodynamic models such as activity-coefficient models and cubic equations of state, outlining their implementation. In section three the focus is moved to deployment, guiding students on how to implement computational-thermodynamics methods covering volume solvers, saturation solvers, chemical-stability analysis and flash problems. In a pilot study conducted with both undergraduate and graduate students, participants found the material engaging and highly relevant to their chemical-engineering education.
- Published
- 2023