63 results on '"Haubrock PJ"'
Search Results
2. Simulating capture efficiency of pitfall traps based on sampling strategy and the movement of ground-dwelling arthropods
- Author
-
Ahmed, D, Beidas, A, Petrovskii, SV, Bailey, JD, Bonsall, MB, Hood, ASC, Byers, JA, Hudgins, EJ, Russell, JC, Růžičková, J, Bodey, TW, Renault, D, Bonnaud, E, Haubrock, PJ, Soto, I, and Haase, P
- Published
- 2023
3. Global economic costs of aquatic invasive alien species
- Author
-
Cuthbert, RN, Pattison, Z, Taylor, NG, Verbrugge, L, Diagne, C, Ahmed, DA, Leroy, B, Angulo, E, Briski, E, Capinha, C, Catford, JA, Dalu, T, Essl, F, Gozlan, RE, Haubrock, PJ, Kourantidou, M, Kramer, AM, Renault, D, Wasserman, RJ, Courchamp, F, Cuthbert, RN, Pattison, Z, Taylor, NG, Verbrugge, L, Diagne, C, Ahmed, DA, Leroy, B, Angulo, E, Briski, E, Capinha, C, Catford, JA, Dalu, T, Essl, F, Gozlan, RE, Haubrock, PJ, Kourantidou, M, Kramer, AM, Renault, D, Wasserman, RJ, and Courchamp, F
- Abstract
Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prev
- Published
- 2021
4. Economic costs of biological invasions in the United Kingdom
- Author
-
Cuthbert, RN, Bartlett, AC, Turbelin, AJ, Haubrock, PJ, Diagne, C, Pattison, Z, Courchamp, F, Catford, JA, Cuthbert, RN, Bartlett, AC, Turbelin, AJ, Haubrock, PJ, Diagne, C, Pattison, Z, Courchamp, F, and Catford, JA
- Abstract
Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US$6.9 billion and $17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest ($4.7 billion), then plant ($1.3 billion) and fungal ($206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial ($4.8 billion) than aquatic or semi-aquatic environments ($29.8 million), and primarily impacted agriculture ($4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required.
- Published
- 2021
5. Unveiling the hidden economic toll of biological invasions in the European Union
- Author
-
Henry, M, Leung, B, Cuthbert, RN, Bodey, TW, Ahmed, DA, Angulo, E, Balzani, P, Briski, E, Courchamp, F, Hulme, Philip, Kouba, A, Kourantidou, M, Liu, C, Macêdo, RL, Oficialdegui, FJ, Renault, D, Soto, I, Tarkan, AS, Turbelin, AJ, Bradshaw, CJA, and Haubrock, PJ
- Published
- 2023
- Full Text
- View/download PDF
6. Testing the Dispersal-Origin-Status-Impact (DOSI) scheme to prioritise non-native and translocated species management.
- Author
-
Tarkan AS, Emiroğlu Ö, Aksu S, Kurtul I, Błońska D, Bayçelebi E, Soto I, Chan SS, Haubrock PJ, and Bradshaw CJA
- Subjects
- Animals, Fishes, Biodiversity, Invertebrates, Introduced Species, Ecosystem, Conservation of Natural Resources methods, Lakes
- Abstract
Assessing actual and potential impacts of non-native species is necessary for prioritising their management. Traditional assessments often occur at the species level, potentially overlooking differences among populations. The recently developed Dispersal-Origin-Status-Impact (DOSI) assessment scheme addresses this by treating biological invasions as population-level phenomena, incorporating the complexities affecting populations of non-native species. We applied the DOSI scheme to the non-native and translocated species reported in a shallow alluvial lake (Lake Gala) and a reservoir (Sığırcı Reservoir) in north-western Türkiye. DOSI identified 12 established species across both ecosystems, including nine fish, two invertebrates, and one mammal. Most species received High and Medium-High priority rankings, in both sites. In contrast, Medium and Low priority rankings were less common, each occurring once in Lake Gala and four times in Sığırcı Reservoir. These high-priority species warrant targeted management interventions due to their established status, autonomous spread, and observed negative impacts. By enabling a more nuanced and context-specific approach, DOSI facilitates the development of targeted strategies for managing species posing the highest risks. Moreover, DOSI's focus on population-level assessment within ecosystems is highly relevant for stakeholders, decision-makers, and environmental managers, because it provides a more detailed and precise unit of evaluation., Competing Interests: Declarations. Competing interests: The authors declare no competing interests., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Site characteristics determine the prevalence of extreme weather events affecting freshwater macroinvertebrate communities.
- Author
-
Haubrock PJ
- Subjects
- Animals, Germany, Environmental Monitoring, Ecosystem, Rivers, Fresh Water, Aquatic Organisms, Invertebrates physiology, Biodiversity, Extreme Weather
- Abstract
Understanding the impacts of extreme weather events on freshwater ecosystems is imperative during a time when a multitude of challenges compromises these environments' health. Exploring how such events affect macroinvertebrate communities in rivers sheds light on the resilience of freshwater ecosystems, which is essential for human well-being and biodiversity conservation. In this study, long-term time series of benthic macroinvertebrate communities from four sites along three freshwater streams within the Rhine-Main-Observatory Long-Term Ecological Research site in Germany were analyzed. Each of them was sampled annually over a span of ~20 years to assess the impacts of extreme weather events (floods, droughts, and extreme heat) on macroinvertebrate communities. The findings reveal that the effects of extreme events are site-specific, suggesting that the impacts of an extreme event can vary based on several potential factors, including the life history traits of the organisms within the community and, among others, the hydrography of the site. Moreover, the analysis highlights that the cumulative impact of these events over time is more significant than the impact of a single event's magnitude, while following distinct temporal dynamics. This underscores the importance of considering both the temporal dynamics and the biological characteristics of communities when evaluating the consequences of extreme weather events on biodiversity, illustrating that the resilience of freshwater ecosystems and their biodiversity under such conditions depends on a complex interplay of factors rather than the severity of individual events., Competing Interests: Declaration of competing interest The author have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2024 The Author. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. Competency in invasion science: addressing stagnation challenges by promoting innovation and creative thinking.
- Author
-
Haubrock PJ, Kurtul I, Macêdo RL, Mammola S, Franco ACS, and Soto I
- Subjects
- Humans, Introduced Species, Thinking, Professional Competence, Science, Creativity
- Abstract
In today's ever-evolving scientific landscape, invasion science faces a plethora of challenges, such as terminological inconsistency and the rapidly growing literature corpus with few or incomplete syntheses of knowledge, which may be perceived as a stagnation in scientific progress. We explore the concept of 'competency', which is extensively debated across disciplines such as psychology, philosophy, and linguistics. Traditionally, it is associated with attributes that enable superior performance and continuous ingenuity. We propose that the concept of competency can be applied to invasion science as the ability to creatively and critically engage with global challenges. For example, competency may help develop innovative strategies for understanding and managing the multifaceted, unprecedented challenges posed by the spread and impacts of non-native species, as well as identifying novel avenues of inquiry for management. Despite notable advancements and the exponential increase in scholarly publications, invasion science still encounters obstacles such as insufficient interdisciplinary collaboration paralleled by a lack of groundbreaking or actionable scientific advancements. To enhance competency in invasion science, a paradigm shift is needed. This shift entails fostering interdisciplinary collaboration, nurturing creative and critical thinking, and establishing a stable and supportive environment for early career researchers, thereby promoting the emergence of competency and innovation. Embracing perspectives from practitioners and decision makers, alongside diverse disciplines beyond traditional ecological frameworks, can further add novel insights and innovative methodologies into invasion science. Invasion science must also address the ethical implications of its practices and engage the public in awareness and education programs. Such initiatives can encourage a more holistic understanding of invasions, attracting and cultivating competent minds capable of thinking beyond conventional paradigms and contributing to the advancement of the field in a rapidly changing world., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Socioeconomic prerequisites determine national long-term biomonitoring efforts.
- Author
-
Haubrock PJ, Soto I, Tarkan AS, Macêdo RL, Kouba A, Cuthbert RN, Briski E, Everts T, and Kurtul I
- Subjects
- Humans, Biodiversity, Ecosystem, Environmental Monitoring methods, Socioeconomic Factors, Europe, Biological Monitoring
- Abstract
In the current anthropogenic era characterised by human-induced environmental changes, long-term biomonitoring has become a crucial component for understanding ecological patterns and detecting shifts in biodiversity. However, spatiotemporal inconsistencies in biomonitoring efforts hinder transboundary progress in understanding and mitigating global environmental change effectively. The International Long-Term Ecosystem Research (ILTER) network is one of the largest standardised biomonitoring initiatives worldwide, encompassing 44 countries globally, including 26 European countries that are part of the European Long-Term Ecosystem Research network (eLTER). To better understand the establishment and development of such long-term biomonitoring efforts, we analysed spatial and temporal trends within the eLTER network. Additionally, we evaluated the environmental, social, and economic factors influencing engagement in biomonitoring activities within this European network. Our findings reveal a spatial imbalance, with biomonitoring efforts concentrated in Central and Western European countries, where monitoring initiatives have typically been established for a longer duration. Furthermore, our analyses underscore the complex interplay of economic, geographic, and cultural factors in the development of long-term ecological research infrastructures. Countries with greater geographic connectivity, slower economic growth, and higher research activity are more likely to be involved in the eLTER network. The intensity of biomonitoring significantly increased with greater research investments, economic growth, and elevated levels of tourism. In contrast, it decreased in countries that are more inward-facing and exhibit a belief in their ability to control environmental outcomes independently. Addressing spatial gaps in monitoring necessitates enhanced support and funding to ensure comprehensive ecological monitoring over extended time periods. This is essential for achieving transboundary sustainability and effective biodiversity conservation in the face of global change drivers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. Prioritising non-native fish species for management actions in three Polish rivers using the newly developed tool-dispersal-origin-status-impact scheme.
- Author
-
Błońska D, Grabowska J, Tarkan AS, Soto I, and Haubrock PJ
- Subjects
- Animals, Poland, Conservation of Natural Resources methods, Ecosystem, Rivers, Introduced Species, Fishes, Biodiversity
- Abstract
Background: Biological invasions are a major threat to global biodiversity, with freshwater ecosystems being among the most susceptible to the successful establishment of non-native species and their respective potential impacts. In Poland, the introduction and spreading of non-native fish has led to biodiversity loss and ecosystem homogenisation., Methods: Our study applies the Dispersal-Origin-Status-Impact (DOSI) assessment scheme, which is a population-level specific assessment that integrates multiple factors, including dispersal mechanisms, origin, status, and impacts, providing a nuanced framework for assessing invasion risks at local and regional levels. We used this tool to evaluate the risks associated with non-native fish species across three major Polish rivers (Pilica, Bzura, and Skrwa Prawa) and to prioritise them for management actions., Results: Using DOSI, we assessed eight non-native species identified in the three studied rivers: seven in both Pilica and Bzura and four in Skrwa Prawa. The DOSI assessment scheme identified high variability in the ecological impacts and management priorities among the identified non-native species. Notably, species such as the Ponto-Caspian gobies exhibited higher risk levels due to their rapid spread and considerable ecological effects, contrasting with other species that demonstrated lower impact levels and, hence, received a lower priority for intervention., Conclusion: The adoption of the DOSI scheme in three major rivers in Poland has provided valuable insights into the complexities of managing biological invasions, suggesting that localised, detailed assessments are crucial for effective conservation strategies and highlighting the importance of managing non-native populations locally., Competing Interests: The authors declare there are no competing interests., (©2024 Błońska et al.)
- Published
- 2024
- Full Text
- View/download PDF
11. World of Crayfish™: a web platform towards real-time global mapping of freshwater crayfish and their pathogens.
- Author
-
Ion MC, Bloomer CC, Bărăscu TI, Oficialdegui FJ, Shoobs NF, Williams BW, Scheers K, Clavero M, Grandjean F, Collas M, Baudry T, Loughman Z, Wright JJ, Ruokonen TJ, Chucholl C, Guareschi S, Koese B, Banyai ZM, Hodson J, Hurt M, Kaldre K, Lipták B, Fetzner JW, Cancellario T, Weiperth A, Birzaks J, Trichkova T, Todorov M, Balalaikins M, Griffin B, Petko ON, Acevedo-Alonso A, D'Elía G, Śliwińska K, Alekhnovich A, Choong H, South J, Whiterod N, Zorić K, Haase P, Soto I, Brady DJ, Haubrock PJ, Torres PJ, Şadrin D, Vlach P, Kaya C, Woo Jung S, Kim JY, Vermeersch XHC, Bonk M, Guiaşu R, Harlioğlu MM, Devlin J, Kurtul I, Błońska D, Boets P, Masigol H, Cabe PR, Jussila J, Vrålstad T, Beresford DV, Reid SM, Patoka J, Strand DA, Tarkan AS, Steen F, Abeel T, Harwood M, Auer S, Kelly S, Giantsis IA, Maciaszek R, Alvanou MV, Aksu Ö, Hayes DM, Kawai T, Tricarico E, Chakandinakira A, Barnett ZC, Kudor ŞG, Beda AE, Vîlcea L, Mizeranschi AE, Neagul M, Licz A, Cotoarbă AD, Petrusek A, Kouba A, Taylor CA, and Pârvulescu L
- Subjects
- Animals, Aphanomyces, Internet, Ecosystem, Databases, Factual, Astacoidea microbiology, Fresh Water
- Abstract
Freshwater crayfish are amongst the largest macroinvertebrates and play a keystone role in the ecosystems they occupy. Understanding the global distribution of these animals is often hindered due to a paucity of distributional data. Additionally, non-native crayfish introductions are becoming more frequent, which can cause severe environmental and economic impacts. Management decisions related to crayfish and their habitats require accurate, up-to-date distribution data and mapping tools. Such data are currently patchily distributed with limited accessibility and are rarely up-to-date. To address these challenges, we developed a versatile e -portal to host distributional data of freshwater crayfish and their pathogens (using Aphanomyces astaci , the causative agent of the crayfish plague, as the most prominent example). Populated with expert data and operating in near real-time, World of Crayfish ™ is a living, publicly available database providing worldwide distributional data sourced by experts in the field. The database offers open access to the data through specialized standard geospatial services (Web Map Service, Web Feature Service) enabling users to view, embed, and download customizable outputs for various applications. The platform is designed to support technical enhancements in the future, with the potential to eventually incorporate various additional features. This tool serves as a step forward towards a modern era of conservation planning and management of freshwater biodiversity., Competing Interests: The authors declare there are no competing interests., (©2024 Ion et al.)
- Published
- 2024
- Full Text
- View/download PDF
12. Divergent temporal responses of native macroinvertebrate communities to biological invasions.
- Author
-
Soto I, Macêdo RL, Carneiro L, Briski E, Kouba A, Cuthbert RN, and Haubrock PJ
- Subjects
- Animals, Europe, Ecosystem, Fresh Water, Population Dynamics, Time Factors, Introduced Species, Invertebrates physiology, Biodiversity
- Abstract
Biological invasions pose a major threat to biodiversity, ecosystem functioning, and human well-being. Non-native species can have severe ecological impacts that are transformative, affecting ecosystems across both short-term and long-term timescales. However, few studies have determined the temporal dynamics of impact between these scales, impeding future predictions as invasion rates continue to rise. Our study uses a meta-analytical approach to dissect the changing taxonomic and functional impacts of biological invasions on native macroinvertebrate populations and communities in freshwater ecosystems across Europe, using a recently collated European long-term time series spanning several decades. Our findings reveal a complex temporal pattern: while initial stages of invasions (i.e. five years after the first record of non-native species) often exhibited benign impacts on macroinvertebrate abundance, richness, or functional diversity, the long-term (i.e. the period following the early invasion) effects became predominantly negative. This pattern was consistent between taxonomic and functional metrics for impacts at both the population and species level, with taxonomic metrics initially positively affected by invasions and functional metrics being more stable before also declining. These results suggest that even initially benign or positively perceived impacts could be eventually superseded by negative consequences. Therefore, understanding the magnitude of invasion effects increasingly requires long-term studies spanning several years or decades to offer insights into effective conservation strategies prioritising immediate and future biodiversity protection efforts. These findings also highlight the importance of integrating multiple taxonomic, functional and temporal components to inform adaptive management approaches to mitigate the negative effects of current and future biological invasions., (© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
13. Advances in understanding Lepidoptera cold tolerance.
- Author
-
Izadi H, Cuthbert RN, Haubrock PJ, and Renault D
- Subjects
- Animals, Acclimatization, Cold Temperature, Climate Change, Lepidoptera classification, Lepidoptera physiology
- Abstract
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change., Competing Interests: Declaration of competing interest The authors declare no competing interest., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
14. Assessing the role of non-native species and artificial water bodies on the trophic and functional niche of Mediterranean freshwater fish communities.
- Author
-
Toutain M, Belouard N, Renault D, Haubrock PJ, Kurtul I, Aksu S, Emiroğlu Ö, Kouba A, Tarkan AS, and Balzani P
- Subjects
- Animals, Environmental Monitoring, Lakes, Fishes physiology, Introduced Species, Ecosystem, Food Chain, Fresh Water, Biodiversity
- Abstract
Habitat alterations and the introduction of non-native species have many ecological impacts, including the loss of biodiversity and a deterioration of ecosystem functioning. The effects of these combined stressors on the community trophic web and functional niche are, however, not completely clear. Here, we investigated how artificial ecosystems (i.e. reservoirs) and non-native species may influence the trophic and functional niche space of freshwater fish communities. To do so, we used carbon and nitrogen stable isotope and abundance data to compute a set of isotopic, trait, and functional metrics for 13 fish communities sampled from 12 distinct ecosystems in Türkiye. We show that in reservoirs, fish were more similar in their trophic niche compared to lakes, where the trophic niche was more variable, due to higher habitat complexity. However, there were no differences in the trait and functional metrics between the two ecosystem types, suggesting a higher prey diversity than assumed in reservoirs. We also found that the number of non-native species did not affect the trophic niche space, nor the trait or functional space occupied by the fish community. This indicates that non-native species tended to overlap their trophic niche with native species, while occupying empty functional niches in the recipient community functional space. Similarly, the proportion of non-native species did not affect any trophic, trait, or functional metric, suggesting that changes in community composition were not reflected in changes in the community niche space. Moreover, we found that trait richness, but not functional richness, was positively related to the isotopic niche width and diversity, indicating that a wider occupied trait niche space corresponded with a wider occupied trophic niche and lesser interspecific similarity. Our findings underscore the complexity of ecological relationships within freshwater ecosystems and highlight the need for comprehensive management strategies to mitigate the impacts of human activities and biological invasions., Competing Interests: Declaration of competing interest The authors have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. The neglect of nonnative orthopterans as potential invaders: A call for awareness.
- Author
-
Kulessa AK, Balzani P, Soto I, Kouba A, Renault D, Tarkan AS, and Haubrock PJ
- Subjects
- Animals, Europe, Conservation of Natural Resources, Introduced Species, Orthoptera physiology
- Abstract
Despite the potential ecological and economic impacts of invasive species, there is a dearth of data on the presence, impacts, and management implications of potentially invasive Orthoptera species. This lack of research and inconsistent data, including risk screenings and impact assessments, is especially evident in Europe. Consequently, assessing the status, distribution, and potential threats of nonnative Orthoptera in Europe remains challenging, impeding the development of effective management strategies. To address this gap, we call for increased efforts to collect and curate data on non-native and possibly invasive Orthoptera in Europe. Such efforts will improve our understanding of this order's invasion dynamics, facilitate the identification of priority areas for conservation, and support the development of effective management policies and preventive measures., (© 2023 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.)
- Published
- 2024
- Full Text
- View/download PDF
16. Taming the terminological tempest in invasion science.
- Author
-
Soto I, Balzani P, Carneiro L, Cuthbert RN, Macêdo R, Serhan Tarkan A, Ahmed DA, Bang A, Bacela-Spychalska K, Bailey SA, Baudry T, Ballesteros-Mejia L, Bortolus A, Briski E, Britton JR, Buřič M, Camacho-Cervantes M, Cano-Barbacil C, Copilaș-Ciocianu D, Coughlan NE, Courtois P, Csabai Z, Dalu T, De Santis V, Dickey JWE, Dimarco RD, Falk-Andersson J, Fernandez RD, Florencio M, Franco ACS, García-Berthou E, Giannetto D, Glavendekic MM, Grabowski M, Heringer G, Herrera I, Huang W, Kamelamela KL, Kirichenko NI, Kouba A, Kourantidou M, Kurtul I, Laufer G, Lipták B, Liu C, López-López E, Lozano V, Mammola S, Marchini A, Meshkova V, Milardi M, Musolin DL, Nuñez MA, Oficialdegui FJ, Patoka J, Pattison Z, Pincheira-Donoso D, Piria M, Probert AF, Rasmussen JJ, Renault D, Ribeiro F, Rilov G, Robinson TB, Sanchez AE, Schwindt E, South J, Stoett P, Verreycken H, Vilizzi L, Wang YJ, Watari Y, Wehi PM, Weiperth A, Wiberg-Larsen P, Yapıcı S, Yoğurtçuoğlu B, Zenni RD, Galil BS, Dick JTA, Russell JC, Ricciardi A, Simberloff D, Bradshaw CJA, and Haubrock PJ
- Subjects
- Animals, Introduced Species, Terminology as Topic
- Abstract
Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species., (© 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
- Published
- 2024
- Full Text
- View/download PDF
17. The Plasticene era: Current uncertainties in estimates of the hazards posed by tiny plastic particles on soils and terrestrial invertebrates.
- Author
-
Renault D, Wiegand C, Balzani P, Richard CMC, Haubrock PJ, Colinet H, Davranche M, Pierson-Wickmann AC, and Derocles SAP
- Subjects
- Animals, Biodiversity, Ecosystem, Invertebrates, Plastics analysis, Soil Pollutants analysis, Environmental Monitoring, Soil chemistry
- Abstract
Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales., Competing Interests: Declaration of competing interest The authors declare that they have no conflict of interest., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
18. Exploring invasiveness and versatility of used microhabitats of the globally invasive Gambusia holbrooki.
- Author
-
Kurtul I, Tarkan AS, Sarı HM, Haubrock PJ, Soto I, Aksu S, and Britton JR
- Subjects
- Animals, Introduced Species, Rivers, Fresh Water, Ecosystem, Cyprinodontiformes
- Abstract
Non-native species can lead to severe impacts on invaded ecosystems, including the decline of ecosystem function through deleterious impacts on species diversity. The successful establishment of non-native species in new environments is the first barrier a species must overcome, ultimately depending on its ability to either cope with or adapt to local site-specific conditions. Despite the widespread distribution and ecological consequences of many freshwater invaders, site-specific and climatic preferences are often unknown. This is also the case of the Eastern mosquitofish Gambusia holbrooki, a global invader considered as a pervasive threat to endemic species. Here, we determined the ecological features and preferred site-specific conditions of G. holbrooki in Türkiye, which spans a wide range of diverse biogeographically distinct ecosystems by surveying populations from 130 localities in 2016 and 2017. Gambusia holbrooki were detected by hand-net in 48 of these sites (19 lotic, 29 lentic). It showed a preference for shallow waters with medium sized rocks, and abundances differed spatially across a latitudinal gradient and was influenced predominantly by variations in pH. The only other factors predicting its presence were low current velocities and gravel substrate, highlighting its ecological versatility in utilising a wide range of microhabitats. Bioclimatic models suggest that G. holbrooki is found in areas with a wide average annual temperature ranging from 10 to 20 °C, but with temperature not being a limiting factor to its invasion. Gambusia holbrooki shows a preference for xeric freshwater ecosystems and endorheic basins, as well as temperate coastal rivers, temperate upland rivers, temperate floodplain rivers and wetlands, and tropical and subtropical coastal rivers. These results, particularly the wide occurrence with only few limiting factors, emphasise the invasion potential of mosquitofish and should substantiate the need for localised invasive species management and conservation efforts, particularly in smaller or insular areas where mosquitofish and endemic fish species co-exist., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
19. Biological invasions are a population-level rather than a species-level phenomenon.
- Author
-
Haubrock PJ, Soto I, Ahmed DA, Ansari AR, Tarkan AS, Kurtul I, Macêdo RL, Lázaro-Lobo A, Toutain M, Parker B, Błońska D, Guareschi S, Cano-Barbacil C, Dominguez Almela V, Andreou D, Moyano J, Akalın S, Kaya C, Bayçelebi E, Yoğurtçuoğlu B, Briski E, Aksu S, Emiroğlu Ö, Mammola S, De Santis V, Kourantidou M, Pincheira-Donoso D, Britton JR, Kouba A, Dolan EJ, Kirichenko NI, García-Berthou E, Renault D, Fernandez RD, Yapıcı S, Giannetto D, Nuñez MA, Hudgins EJ, Pergl J, Milardi M, Musolin DL, and Cuthbert RN
- Subjects
- Animals, Europe, Ecosystem, Fresh Water, Introduced Species, Invertebrates physiology, Population Dynamics
- Abstract
Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies., (© 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
20. Economic costs of non-native species in Türkiye: A first national synthesis.
- Author
-
Tarkan AS, Bayçelebi E, Giannetto D, Özden ED, Yazlık A, Emiroğlu Ö, Aksu S, Uludağ A, Aksoy N, Baytaşoğlu H, Kaya C, Mutlu T, Kırankaya ŞG, Ergüden D, Per E, Üremiş İ, Candan O, Kekillioğlu A, Yoğurtçuoğlu B, Ekmekçi FG, Başak E, Özkan H, Kurtul I, Innal D, Killi N, Yapıcı S, Ayaz D, Çiçek K, Mol O, Çınar E, Yeğen V, Angulo E, Cuthbert RN, Soto I, Courchamp F, and Haubrock PJ
- Subjects
- Ecosystem, Conservation of Natural Resources economics, Agriculture economics, Animals, Fisheries economics, Introduced Species
- Abstract
Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
21. Assessing the potential phytosanitary threat of the house cricket Acheta domesticus.
- Author
-
Kulessa AK, Balzani P, Soto I, Toutain M, Haubrock PJ, and Kouba A
- Subjects
- Animals, Humans, Temperature, Food, Europe, Gryllidae
- Abstract
Phytosanitary threats can pose substantial risks to global agriculture and ecological systems, affecting biodiversity, human well-being, and food security. Meanwhile, global warming is projected to exacerbate these threats in the future. One in Europe already widely distributed potential phytosanitary threat that may benefit from global warming is the house cricket Acheta domesticus. This study explored the potential of A. domesticus as a relevant non-native phytosanitary threat under changing climatic conditions by conducting a series of functional response experiments across a temperature gradient (20, 25, and 30 °C). Acheta domesticus exhibited comparable patterns of seed consumption and functional responses. Seed type (millet seeds, wheat grains) and temperature increase influenced the damage inflicted on seeds, with softer and smaller seeds being more susceptible to damage, further amplified by warmer temperatures. The study's outcomes underline the phytosanitary threat that A. domesticus may pose. Considering the species' established presence and adaptable nature in urban environments exacerbates the potential for A. domesticus to transition to rural and agricultural areas. Its increasing production as a food item, paired with the here-identified potential to damage seeds, emphasizes the need for proactive and science-based strategies to address emerging phytosanitary threats driven by non-native species under changing climatic conditions. As global temperatures continue to rise, the assessment and management of potential pest species like A. domesticus will be crucial for safeguarding agriculture productivity and ecological balance., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
22. Economic impact disharmony in global biological invasions.
- Author
-
Cuthbert RN, Dick JTA, Haubrock PJ, Pincheira-Donoso D, Soto I, and Briski E
- Subjects
- Humans, Animals, Ecosystem, Introduced Species, Insecta, Biodiversity, Mammals, Ants, Isoptera
- Abstract
A dominant syndrome of the Anthropocene is the rapid worldwide spread of invasive species with devastating environmental and socio-economic impacts. However, the dynamics underlying the impacts of biological invasions remain contested. A hypothesis posits that the richness of impactful invasive species increases proportionally with the richness of non-native species more generally. A competing hypothesis suggests that certain species features disproportionately enhance the chances of non-native species becoming impactful, causing invasive species to arise disproportionately relative to the numbers of non-native species. We test whether invasive species with reported monetary costs reflect global numbers of established non-native species among phyla, classes, and families. Our results reveal that numbers of invasive species with economic costs largely reflect non-native species richness among taxa (i.e., in 96 % of families). However, a few costly taxa were over- and under-represented, and their composition differed among environments and regions. Chordates, nematodes, and pathogenic groups tended to be the most over-represented phyla with reported monetary costs, with mammals, insects, fungi, roundworms, and medically-important microorganisms being over-represented classes. Numbers of costly invasive species increased significantly with non-native richness per taxon, while monetary cost magnitudes at the family level were also significantly related to costly invasive species richness. Costs were biased towards a few 'hyper-costly' taxa (such as termites, mosquitoes, cats, weevils, rodents, ants, and asters). Ordination analysis revealed significant dissimilarity between non-native and costly invasive taxon assemblages. These results highlight taxonomic groups which harbour disproportionately high numbers of costly invasive species and monetary cost magnitudes. Collectively, our findings support prevention of arrival and containment of spread of non-native species as a whole through effective strategies for mitigation of the rapidly amplifying impacts of invasive species. Yet, the hyper- costly taxa identified here should receive greater focus from managers to reduce impacts of current invasive species., Competing Interests: Declaration of competing interest Ross Cuthbert reports financial support was provided by Leverhulme Trust., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
23. The wild cost of invasive feral animals worldwide.
- Author
-
Soto I, Balzani P, Oficialdegui FJ, Molinero C, Kouba A, Ahmed DA, Turbelin AJ, Hudgins EJ, Bodey TW, Gojery SA, Courchamp F, Cuthbert RN, and Haubrock PJ
- Subjects
- Humans, Animals, Agriculture, Animals, Domestic, North America, Animals, Wild, Introduced Species
- Abstract
Invasive non-native species are a growing burden to economies worldwide. While domesticated animals (i.e. livestock, beasts of burden or pets) have enabled our ways of life and provide sustenance for countless individuals, they may cause substantial impacts when they escape or are released (i.e. become feral) and then become invasive with impacts. We used the InvaCost database to evaluate monetary impacts from species in the Domestic Animal Diversity Information System database. We found a total cost of $141.95 billion from only 18 invasive feral species. Invasive feral livestock incurred the highest costs at $90.03 billion, with pets contributing $50.93 billion and beasts of burden having much lower costs at $0.98 billion. Agriculture was the most affected sector at $80.79 billion, followed by the Environment ($43.44 billion), and Authorities-Stakeholders sectors ($5.52 billion). Damage costs comprised the majority ($124.94 billion), with management and mixed damage-management costs making up the rest ($9.62 and $7.38 billion, respectively). These economic impacts were observed globally, where Oceania, North America and Europe were the most impacted regions. Islands recorded a higher economic burden than continental areas, with livestock species dominating costs more on islands than mainlands compared to other feral species. The costs of invasive feral animals were on average twice higher than those of wild species. The management of invasive feral populations requires higher investment, updated regulations, and comprehensive risk assessments. These are especially complex when considering the potential conflicts arising from interventions with species that have close ties to humans. Effective communication to raise public awareness of the impacts of feral populations and appropriate legislation to prevent or control such invasive feral populations will substantially contribute to minimizing their socioeconomic and environmental impacts., Competing Interests: Declaration of competing interest The authors have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
24. Widespread imprecision in estimates of the economic costs of invasive alien species worldwide.
- Author
-
Hulme PE, Ahmed DA, Haubrock PJ, Kaiser BA, Kourantidou M, Leroy B, and McDermott SM
- Subjects
- Reproducibility of Results, Databases, Factual, Introduced Species, Research Design
- Abstract
Several hundred studies have attempted to estimate the monetary cost arising from the management and/or impacts of invasive alien species. However, the diversity of methods used to estimate the monetary costs of invasive alien species, the types of costs that have been reported, and the spatial scales at which they have been assessed raise important questions as to the precision of these reported monetary costs. Benford's Law has been increasingly used as a diagnostic tool to assess the accuracy and reliability of estimates reported in financial accounts but has rarely been applied to audit data on environmental costs. Therefore, the distributions of first, second- and leading double-digits of the monetary costs arising from biological invasions, as reported in the InvaCost database, were compared with the null expectations under Benford's Law. There was strong evidence that the reported monetary costs of biological invasions departed considerably from Benford's Law and the departures were of a scale equal to that found in global macroeconomic data. The rounding upwards of costs appears to be widespread. Furthermore, numerical heaping, where values cluster around specific numbers was evident with only 901 unique cost values accounting for half of the 13,553 cost estimates within the InvaCost database. Irrespective of the currency, the value of 1,000,000 was the most common cost estimate. An investigation of anomalous data entries concluded that non-peer reviewed official government reports need to provide greater detail regarding how costs are estimated. Despite the undeniably high economic cost of biological invasions worldwide, individual records of costs were often found to be imprecise and possibly inflated and this emphasises the need for greater transparency and rigour when reporting the costs of biological invasions. Identifying whether the irregularities found for the costs of biological invasions are general for other types of environmental costs should be a research priority., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
25. The economic costs of invasive aquatic plants: A global perspective on ecology and management gaps.
- Author
-
Macêdo RL, Haubrock PJ, Klippel G, Fernandez RD, Leroy B, Angulo E, Carneiro L, Musseau CL, Rocha O, and Cuthbert RN
- Subjects
- Plants, Introduced Species, Fresh Water, Ecosystem, Ecology
- Abstract
Safeguarding aquatic ecosystems from invasive species requires a comprehensive understanding and quantification of their impacts, as this information is crucial for developing effective management strategies. In particular, aquatic invasive plants cause profound alterations to aquatic ecosystem composition, structure and productivity. Monetary cost assessments have, however, lacked at large scales for this group. Here, we synthesize the global economic impacts of aquatic and semi-aquatic invasive plants to describe the distributions of these costs across taxa, habitat types, environments, impacted sectors, cost typologies, and geographic regions. We also examine the development of recorded costs over time using linear and non-linear models and infer the geographical gaps of recorded costs by superimposing cost and species distribution data. Between 1975 and 2020, the total cost of aquatic and semi-aquatic invasive plants to the global economy exceeded US$ 32 billion, of which the majority of recorded costs (57 %) was attributable to multiple or unspecified taxa. Submerged plants had $8.4 billion (25.5 %) followed by floating plants $4.7 billion (14.5 %), emergent $684 million (2.1 %) and semi-aquatic $306 million (0.9 %). Recorded costs were disproportionately high towards freshwater ecosystems, which have received the greatest cost research effort compared to marine and brackish systems. Public and social welfare and fisheries were the sectors most affected, while agriculture and health were most underreported. Cost attributed to management (4.8 %; $1.6 billion) represented only a fraction of damages (85.8 %; $28.2 billion). While recorded costs are rising over time, reporting issues e.g., robustness of data, lack of higher taxonomic resolution and geographical gaps likely have led to a dampening of trajectories. In particular, invasive taxa currently occupy regions where monetary cost reports are lacking despite well-known impacts. More robust and timely cost estimates will enhance interpretation of current and future impacts of aquatic invasive plants, assisting the long-term sustainability of our aquatic ecosystems and associated economic activities., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
26. Tracking long-term shifts in non-native freshwater macroinvertebrates across three European countries.
- Author
-
Toutain M, Soto I, Rasmussen JJ, Csabai Z, Várbíró G, Murphy JF, Balzani P, Kouba A, Renault D, and Haubrock PJ
- Subjects
- Fresh Water, Europe, Hungary, Ecosystem, Biodiversity
- Abstract
Non-native species introductions have been acknowledged as one of the main drivers of freshwater biodiversity decline worldwide, compromising provided ecosystem services and functioning. Despite growing introduction numbers of non-native species, their impacts in conjunction with anthropogenic stressors remain poorly documented. To fill this gap, we studied temporal changes in α (local scale) and γ (regional scale), as well as β (ratio between γ and α) diversity of non-native freshwater macroinvertebrate species in three European countries (the Netherlands, England and Hungary) using long-term time series data of up to 17 years (2003-2019). We further calculated four ecological and four biological trait metrics to identify changes in trait occurrences over time. We found that α and γ diversities of non-native species were increasing across all countries whereas β diversity remained stable. We did not identify any significant changes in any trait metric over time, while the predictors tested (land use, climatic predictors, site-specific factor) were similar across countries (e.g., site characteristics or climatic predictors on non-native species trends). Additionally, we projected trends of α, β, and γ diversity and trait metrics until 2040, which indicated that non-native species will decline across all countries to lower levels except in England for γ diversity and the Netherlands for α diversity where an increase was observed. Thus, our findings indicate shifts in non-native freshwater macroinvertebrate diversity at both local and regional scales in response to the various growing anthropogenic pressures. Our findings underscore the continuous dynamics of non-native species distribution, with the diversity of individual communities and overall landscapes witnessing changes. However, the differentiation in species composition between communities remains unaltered. This could have profound implications for conservation strategies and ecological management in the face of continuously changing biodiversity patterns., Competing Interests: Declaration of competing interest The authors have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
27. Towards effective management of the marine-origin Prymnesium parvum (Haptophyta): A growing concern in freshwater reservoirs?
- Author
-
Macêdo RL, Haubrock PJ, and Rocha O
- Subjects
- Ecosystem, Harmful Algal Bloom physiology, North America, Fresh Water, Haptophyta genetics
- Abstract
Freshwater ecosystems are highly susceptible to harmful algal blooms (HABs), which are often caused by monospecific dense blooms. Effective preventive management strategies are urgently needed to avoid wide-ranging and severe impacts often resulting in costly damage to resources and unsustainable management options. In this study, we utilized SDM techniques focused on Prymnesium parvum, one of the most notorious HABs species worldwide. We first compare the climatic space occupied by P. parvum in North America, Europe and Australia. Additionally, we use MaxEnt algorithm to infer, for the first time, the potentially suitable freshwater environments in the aforementioned ranges. We also discuss the risks of invasion in reservoirs - prone habitats to persistent blooms of pests and invasive phytoplanktonic species. Our results show populations with distinctive niches suggesting ecophysiological tolerances, perhaps reflecting different strains. Our model projections revealed that the potential extent for P. parvum invasions is much broader than its current geographic distribution. The spatial configuration of reservoirs, if not sustaining dense blooms due to non-optimal conditions, favors colonization of multiple basins and ecoregions not yet occupied by P. parvum. Our models can provide valuable insights to decision-makers and monitoring programs while reducing the resources required to control the spread of P. parvum in disturbed habitats. Lastly, as impact magnitude is influenced by toxicity which in turn varies between different strains, we suggest future studies to incorporate intraspecific genetic information and fine-scale environmental variables to estimate potential distribution of P. parvum., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
28. Predicting the potential implications of perch (Perca fluviatilis) introductions to a biodiversity-rich lake using stable isotope analysis.
- Author
-
Tarkan AS, Haubrock PJ, Aksu S, Mol O, Balzani P, Emiroğlu Ö, Köse E, Kurtul I, Başkurt S, Çınar E, and Oztopcu-Vatan P
- Subjects
- Animals, Humans, Lakes, Ecosystem, Introduced Species, Nitrogen Isotopes, Predatory Behavior, Perches, Cyprinidae, Catfishes
- Abstract
Biological invasions, particularly of fish species, significantly threaten aquatic ecosystems. Among these invaders, the introduction of the European perch (Perca fluviatilis) can have particularly detrimental effects on native communities, affecting both ecosystem functioning and human well-being. In this study, carbon and nitrogen stable isotope analysis was employed, using perch originating from five different ecosystems, to model the effects of their hypothetical introduction into İznik Lake, an economically and ecologically important, biodiversity-rich lake in northern Turkey, to ultimately assess their potential predation impact and competition with native predators. The results revealed that if perch were introduced to the community, they would - considering gape size limitations - primarily prey upon Vimba vimba and Rutilus rutilus, indicating a significant feeding pressure on these species. Furthermore, the study identified a potential overlap and competition for resources between commonly mesopredator perch and the European catfish Silurus glanis, the current top predator in the ecosystem. Both species would occupy top predatory positions, emphasizing the potential disruption of predator-prey dynamics. Our findings underscore the potential ecological repercussions of perch invasions. The selective predation on V. vimba and R. rutilus, with the latter being consumed to a lesser extent by perch, could lead to cascading effects throughout the food web, altering the community structure, and ecosystem dynamics. Additionally, the competition between perch and S. glanis raises concerns about effects on the stability and functioning of the fish community. These results highlight the need for proactive management strategies to mitigate the risk of perch introductions. Strict regulations on the movement and introduction of invasive species, along with comprehensive monitoring, are crucial for preserving native communities and maintaining the ecological integrity of freshwater ecosystems. Our study demonstrates the potential predation impact of perch on vulnerable fish species and the competition with the established apex predator, emphasizing the importance of considering the ecological consequences of perch invasions and informing management decisions to ensure the conservation and sustainability of aquatic ecosystems., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
29. Recent advances in availability and synthesis of the economic costs of biological invasions.
- Author
-
Ahmed DA, Haubrock PJ, Cuthbert RN, Bang A, Soto I, Balzani P, Tarkan AS, Macêdo RL, Carneiro L, Bodey TW, Oficialdegui FJ, Courtois P, Kourantidou M, Angulo E, Heringer G, Renault D, Turbelin AJ, Hudgins EJ, Liu C, Gojery SA, Arbieu U, Diagne C, Leroy B, Briski E, Bradshaw CJA, and Courchamp F
- Abstract
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development., Competing Interests: All authors declare that they have no conflicts of interest., (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Institute of Biological Sciences.)
- Published
- 2023
- Full Text
- View/download PDF
30. Long-term trends in abundances of non-native species across biomes, realms, and taxonomic groups in Europe.
- Author
-
Haubrock PJ, Pilotto F, Soto I, Kühn I, Verreycken H, Seebens H, Cuthbert RN, and Haase P
- Subjects
- Animals, Temperature, Fresh Water, Europe, Biodiversity, Introduced Species, Ecosystem
- Abstract
Rates of biological invasion have increased over recent centuries and are expected to increase in the future. Whereas increasing rates of non-native species incursions across realms, taxonomic groups, and regions are well-reported, trends in abundances within these contexts have lacked analysis due to a paucity of long-term data at large spatiotemporal scales. These knowledge gaps impede prioritisation of realms, regions, and taxonomic groups for management. We analysed 180 biological time series (median 15 ± 12.8 sampling years) mainly from Long-Term Ecological Research (LTER) sites comprising abundances of marine, freshwater, and terrestrial non-native species in Europe. A high number (150; 83,3 %) of these time series were invaded by at least one non-native species. We tested whether (i) local long-term abundance trends of non-native species are consistent among environmental realms, taxonomic groups, and regions, and (ii) if any detected trend can be explained by climatic conditions. Our results indicate that abundance trends at local scales are highly variable, with evidence of declines in marine and freshwater long-term monitoring sites, despite non-native species reports increasing rapidly since the late 1970s. These declines were driven mostly by abundance trends in non-native fish, birds, and invertebrate species in three biogeographic regions (Continental, Atlantic, and the North Sea). Temperature and precipitation were important predictors of observed abundance trends across Europe. Yet, the response was larger for species with already declining trends and differed among taxa. Our results indicate that trends in biological invasions, especially across different taxonomic groups, are context-dependent and require robust local data to understand long-term trends across contexts at large scales. While the process of biological invasion is spatiotemporally broad, economic or ecological impacts are generally realised on the local level. Accordingly, we urge proactive and coordinated management actions from local to large scales, as invasion impacts are substantial and dynamics are prone to change., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
31. Multidecadal data indicate increase of aquatic insects in Central European streams.
- Author
-
Haubrock PJ, Pilotto F, and Haase P
- Subjects
- Animals, Invertebrates, Biodiversity, Insecta, Ecosystem, Rivers
- Abstract
In recent years, declining insect biodiversity has sparked interest among scientists and drawn the attention of society and politicians. However, our understanding of the extent of this decline is incomplete, particularly for freshwater insects that provide a key trophic link between aquatic and terrestrial ecosystems, but that are also especially vulnerable to climate change. To investigate the response of freshwater insects to climate change, we quantified shifts in insect abundance and diversity across 7264 samples covering Central Europe during 1990-2018 and related these changes to annual data on temperature and precipitation. We observed both increases in richness (10.6 %) and abundance (9.5 %) of freshwater insects over the past three decades. These changes were related to increases in summer temperature and summer precipitation, which had negative effects on species richness, and to increases in winter temperature and precipitation, which had positive effects. Further we found that increased temperature was generally related to increased abundance, whereas increased precipitation was associated with declines, thus highlighting the particularly varying impacts on differing insect orders. Given that freshwater insects have been more severely affected by global change than marine and terrestrial species, the observed increases are a positive sign, but the overall situation of freshwater invertebrates is still critical., Competing Interests: Declaration of competing interest The authors have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
32. Long-term trends and drivers of biological invasion in Central European streams.
- Author
-
Haubrock PJ, Cuthbert RN, and Haase P
- Subjects
- Animals, Biodiversity, Invertebrates, Fresh Water, Ecosystem, Rivers
- Abstract
Rates of biological invasion continue to accelerate and threaten the structure and function of ecosystems worldwide. High habitat connectivity, multiple pathways, and inadequate monitoring have rendered aquatic ecosystems vulnerable to species introductions. Past riverine invasion dynamics were largely restricted to large rivers, leaving out smaller rivers that commonly harbour high freshwater biodiversity. Moreover, biodiversity time series have rarely been used to investigate invasions across larger spatial-temporal scales, limiting our understanding of aquatic invasion dynamics. Here, we used 6067 benthic invertebrate samples from streams and small rivers from the EU Water Framework Directive monitoring program collected across Central Europe between 2000 and 2018 to assess temporal changes to benthic invertebrate communities as well as non-native species. We assessed invasion rates according to temperature, precipitation, elevation, latitude, longitude, and stream type. Overall, average daily temperatures significantly increased by 0.02 °C per annum (0.34 °C in total) while annual precipitation significantly decreased by 0.01 mm per annum (-67.8 mm over the study period), paralleled with significant increases in overall species richness (12.3 %) and abundance (14.9 %); water quality was relatively stable. Non-native species richness increased 5-fold and abundance 40-fold, indicating an ongoing community shift from native to non-native species. The observed increase in invasions was stronger in low mountain rivers compared to low mountain streams, with the share of non-native species abundance and richness declining with increasing elevation and latitude but increasing with temperature. We found thermophilic non-native species invasion success was greatest in larger sized streams, at lower latitudes, lower elevations and higher temperatures. These results indicate that widespread environmental characteristics (i.e., temperature) could heighten invasion success and confer refuge effects (i.e., elevation and latitude) in higher sites. High altitude and latitude environments should be prioritised for prevention efforts, while biosecurity and management should be improved in lowland areas subject to greater anthropogenic pressure, where non-native introductions are more likely., Competing Interests: Declaration of competing interest The author have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
33. Underexplored and growing economic costs of invasive alien trees.
- Author
-
Fernandez RD, Haubrock PJ, Cuthbert RN, Heringer G, Kourantidou M, Hudgins EJ, Angulo E, Diagne CA, Courchamp F, and Nuñez MA
- Subjects
- Agriculture, Introduced Species, Trees, Environment
- Abstract
The high ecological impacts of many invasive alien trees have been well documented. However, to date, we lacked synthesis of their economic impacts, hampering management actions. Here, we summarize the cost records of invasive trees to (I) identify invasive trees with cost information and their geographic locations, (II) investigate the types of costs recorded and sectors impacted by invasive trees and (III) analyze the relationships between categories of uses of invasive trees and the invasion costs attributed to these uses. We found reliable cost records only for 72 invasive trees, accumulating a reported total cost of $19.2 billion between 1960 and 2020. Agriculture was the sector with the highest cost records due to invasive trees. Most costs were incurred as resource damages and losses ($3.5 billion). Close attention to the ornamental sector is important for reducing the economic impact of invasive trees, since most invasive trees with cost records were introduced for that use. Despite massive reported costs of invasive trees, there remain large knowledge gaps on most invasive trees, sectors, and geographic scales, indicating that the real cost is severely underestimated. This highlights the need for further concerted and widely-distributed research efforts regarding the economic impact of invasive trees., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
34. Sigmoidal curves reflect impacts and dynamics of aquatic invasive species.
- Author
-
Soto I, Ahmed DA, Balzani P, Cuthbert RN, and Haubrock PJ
- Subjects
- Animals, Introduced Species, Ecosystem, Population Dynamics, Amphipoda, Gastropoda
- Abstract
Identifying general patterns and trends underlying the impacts and dynamics of biological invasions has proven elusive for scientists. Recently, the impact curve was proposed as a means to predict temporal impacts of invasive alien species, characterised by a sigmoidal growth pattern with an initial exponential increase, followed by a subsequent rate of decline and approaching a saturation level in the long-term where impact is maximised. While the impact curve has been empirically demonstrated with monitoring data of a single invasive alien species (the New Zealand mud snail, Potamopyrgus antipodarum), broadscale applicability remains to be tested for other taxa. Here, we examined whether the impact curve can adequately describe the invasion dynamics of 13 other aquatic species (within Amphipoda, Bivalvia, Gastropoda, Hirudinea, Isopoda, Mysida, and Platyhelminthes) at the European level, employing multi-decadal time series of macroinvertebrate cumulative abundances from regular benthic monitoring efforts. For all except one tested species (the killer shrimp, Dikerogammarus villosus), the sigmoidal impact curve was strongly supported (R
2 > 0.95) on a sufficiently long time-scale. For D. villosus, the impact had not yet reached saturation, likely reflecting the ongoing European invasion. The impact curve facilitated estimation of introduction years and lag phases, as well as parameterisation of growth rates and carrying capacities, providing strong support for the boom-bust dynamics typically observed in several invader populations. These findings suggest that impact can grow rapidly before saturating at a high level, with timely monitoring often lacking for the detection of invasive alien species post-introduction. We further confirm the applicability of the impact curve to determine trends in invasion stages, population dynamics, and impacts of pertinent invaders, ultimately helping inform the timing of management interventions. We hence call for improved monitoring and reporting of invasive alien species over broad spatio-temporal scales to permit further testing of large-scale impact consistencies across various habitat types., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
35. Long-term trends in crayfish invasions across European rivers.
- Author
-
Soto I, Ahmed DA, Beidas A, Oficialdegui FJ, Tricarico E, Angeler DG, Amatulli G, Briski E, Datry T, Dohet A, Domisch S, England J, Feio MJ, Forcellini M, Johnson RK, Jones JI, Larrañaga A, L'Hoste L, Murphy JF, Schäfer RB, Shen LQ, Kouba A, and Haubrock PJ
- Subjects
- Animals, Introduced Species, Biodiversity, Rivers, Astacoidea, Ecosystem
- Abstract
Europe has experienced a substantial increase in non-indigenous crayfish species (NICS) since the mid-20th century due to their extensive use in fisheries, aquaculture and, more recently, pet trade. Despite relatively long invasion histories of some NICS and negative impacts on biodiversity and ecosystem functioning, large spatio-temporal analyses of their occurrences are lacking. Here, we used a large freshwater macroinvertebrate database to evaluate what information on NICS can be obtained from widely applied biomonitoring approaches and how usable such data is for descriptions of trends in identified NICS species. We found 160 time-series containing NICS between 1983 and 2019, to infer temporal patterns and environmental drivers of species and region-specific trends. Using a combination of meta-regression and generalized linear models, we found no significant temporal trend for the abundance of any species (Procambarus clarkii, Pacifastacus leniusculus or Faxonius limosus) at the European scale, but identified species-specific predictors of abundances. While analysis of the spatial range expansion of NICS was positive (i.e. increasing spread) in England and negative (significant retreat) in northern Spain, no trend was detected in Hungary and the Dutch-German-Luxembourg region. The average invasion velocity varied among countries, ranging from 30 km/year in England to 90 km/year in Hungary. The average invasion velocity gradually decreased over time in the long term, with declines being fastest in the Dutch-German-Luxembourg region, and much slower in England. Considering that NICS pose a substantial threat to aquatic biodiversity across Europe, our study highlights the utility and importance of collecting high resolution (i.e. annual) biomonitoring data using a sampling protocol that is able to estimate crayfish abundance, enabling a more profound understanding of NICS impacts on biodiversity., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
36. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years.
- Author
-
Le Hen G, Balzani P, Haase P, Kouba A, Liu C, Nagelkerke LAJ, Theissen N, Renault D, Soto I, and Haubrock PJ
- Subjects
- Animals, Climate Change, Rivers, Germany, Fishes, Biodiversity, Introduced Species, Ecosystem
- Abstract
Alien fish substantially impact aquatic communities. However, their effects on trait composition remain poorly understood, especially at large spatiotemporal scales. Here, we used long-term biomonitoring data (1984-2018) from 31 fish communities of the Rhine river in Germany to investigate compositional and functional changes over time. Average total community richness increased by 49 %: it was stable until 2004, then declined until 2010, before increasing until 2018. Average abundance decreased by 9 %. Starting from 198 individuals/m
2 in 1984 abundance largely declined to 23 individuals/m2 in 2010 (-88 %), and then consequently increased by 678 % up to 180 individuals/m2 until 2018. Increases in abundance and richness starting around 2010 were mainly driven by the establishment of alien species: while alien species represented 5 % of all species and 0.1 % of total individuals in 1993, it increased to 30 % (7 species) and 32 % of individuals in 2018. Concomitant to the increase in alien species, average native species richness and abundance declined by 26 % and 50 % respectively. We identified increases in temperature, precipitation, abundance and richness of alien fish driving compositional changes after 2010. To get more insights on the impacts of alien species on fish communities, we used 12 biological and 13 ecological traits to compute four trait metrics each. Ecological trait dispersion increased before 2010, probably due to diminishing ecologically similar native species. No changes in trait metrics were measured after 2010, albeit relative shares of expressed trait modalities significantly changing. The observed shift in trait modalities suggested the introduction of new species carrying similar and novel trait modalities. Our results revealed significant changes in taxonomic and trait compositions following alien fish introductions and climatic change. To conclude, our analyses show taxonomic and functional changes in the Rhine river over 35 years, likely indicative of future changes in ecosystem services., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
37. Strong temporal variation of consumer δ 13 C value in an oligotrophic reservoir is related to water level fluctuation.
- Author
-
Veselý L, Ercoli F, Ruokonen TJ, Bláha M, Duras J, Haubrock PJ, Kainz M, Hämäläinen H, Buřič M, and Kouba A
- Subjects
- Animals, Bayes Theorem, Carbon, Nitrogen Isotopes, Seafood, Ecosystem, Astacoidea
- Abstract
Using stable carbon and nitrogen isotope analysis (δ
13 C and δ15 N) to assess trophic interactions in freshwater ecosystems is a well established method, providing insight into ecosystem functioning. However, the spatial and temporal variability of isotope values, driven by environmental fluctuation is poorly understood and can complicate interpretations. We investigated how the temporal variation of stable isotopes in consumers (fish, crayfish and macrozoobenthos) of a canyon-shaped oligotrophic reservoir is associated with environmental factors such as water temperature, transparency, flooded area, and water quality measures. Consumers and their putative food sources were sampled and analyzed for carbon and nitrogen stable isotopes annually, and environmental parameters were measured monthly from 2014 to 2016. Results revealed significant differences in δ13 C and δ15 N values in each consumer among studied years. Over the years, fish and crayfish expressed differences in δ13 C between 3 and 5‰, whereas in zoobenthos differences were 12‰. Variability in δ15 N was similar across all consumers (2-4‰). Moreover, results suggest that the flooded area of the reservoir was a major driver of δ13 C stable isotope values variation in consumers, while variation in δ15 N was not linked to any of the studied environmental factors. Bayesian mixing models further showed significant changes in the origin of detritivorous zoobenthos carbon sources (reversal shift from terrestrial detritus to algae origin) between years with low water level to years with the standard water level. Other species showed only slight differences in food source utilization among years. Our study highlights the importance of environmental factors as sources of variation in consumer's stable isotope values which should be considered especially when studied ecosystem strongly fluctuate in some environmental factor., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
38. Unveiling the hidden economic toll of biological invasions in the European Union.
- Author
-
Henry M, Leung B, Cuthbert RN, Bodey TW, Ahmed DA, Angulo E, Balzani P, Briski E, Courchamp F, Hulme PE, Kouba A, Kourantidou M, Liu C, Macêdo RL, Oficialdegui FJ, Renault D, Soto I, Tarkan AS, Turbelin AJ, Bradshaw CJA, and Haubrock PJ
- Abstract
Background: Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated., Results: We used the latest available cost data in InvaCost (v4.1)-the most comprehensive database on the costs of biological invasions-to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states., Conclusions: Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally., Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-023-00750-3., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
39. The economic costs, management and regulation of biological invasions in the Nordic countries.
- Author
-
Kourantidou M, Verbrugge LNH, Haubrock PJ, Cuthbert RN, Angulo E, Ahonen I, Cleary M, Falk-Andersson J, Granhag L, Gíslason S, Kaiser B, Kosenius AK, Lange H, Lehtiniemi M, Magnussen K, Navrud S, Nummi P, Oficialdegui FJ, Ramula S, Ryttäri T, von Schmalensee M, Stefansson RA, Diagne C, and Courchamp F
- Subjects
- Scandinavian and Nordic Countries, Norway, Iceland, Finland, Sweden
- Abstract
A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at $8.35 billion (in 2017 US$ values) with damage costs significantly outweighing management costs. Norway incurred the highest costs ($3.23 billion), followed by Denmark ($2.20 billion), Sweden ($1.45 billion), Finland ($1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
40. The magnitude, diversity, and distribution of the economic costs of invasive terrestrial invertebrates worldwide.
- Author
-
Renault D, Angulo E, Cuthbert RN, Haubrock PJ, Capinha C, Bang A, Kramer AM, and Courchamp F
- Subjects
- Animals, Biodiversity, Invertebrates, Reproducibility of Results, Ecosystem, Introduced Species
- Abstract
Invasive alien species (IAS) are a major driver of global biodiversity loss, hampering conservation efforts and disrupting ecosystem functions and services. While accumulating evidence documented ecological impacts of IAS across major geographic regions, habitat types and taxonomic groups, appraisals for economic costs remained relatively sparse. This has hindered effective cost-benefit analyses that inform expenditure on management interventions to prevent, control, and eradicate IAS. Terrestrial invertebrates are a particularly pervasive and damaging group of invaders, with many species compromising primary economic sectors such as forestry, agriculture and health. The present study provides synthesised quantifications of economic costs caused by invasive terrestrial invertebrates on the global scale and across a range of descriptors, using the InvaCost database. Invasive terrestrial invertebrates cost the global economy US$ 712.44 billion over the investigated period (up to 2020), considering only high-reliability source reports. Overall, costs were not equally distributed geographically, with North America (73%) reporting the greatest costs, with far lower costs reported in Europe (7%), Oceania (6%), Africa (5%), Asia (3%), and South America (< 1%). These costs were mostly due to invasive insects (88%) and mostly resulted from direct resource damages and losses (75%), particularly in agriculture and forestry; relatively little (8%) was invested in management. A minority of monetary costs was directly observed (17%). Economic costs displayed an increasing trend with time, with an average annual cost of US$ 11.40 billion since 1960, but as much as US$ 165.01 billion in 2020, but reporting lags reduced costs in recent years. The massive global economic costs of invasive terrestrial invertebrates require urgent consideration and investment by policymakers and managers, in order to prevent and remediate the economic and ecological impacts of these and other IAS groups., Competing Interests: Declaration of competing interest The authors declare that there are no conflicting or competing interests., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
41. Building a synthesis of economic costs of biological invasions in New Zealand.
- Author
-
Bodey TW, Carter ZT, Haubrock PJ, Cuthbert RN, Welsh MJ, Diagne C, and Courchamp F
- Subjects
- Animals, New Zealand, Health Expenditures, Plants, Ecosystem, Introduced Species
- Abstract
Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. There have been recent syntheses of costs for a number of countries using the newly compiled InvaCost database, but New Zealand-a country renowned for its approach to invasive species management-has so far not been examined. Here we analyse reported economic damage and management costs incurred by biological invasions in New Zealand from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ∼50-year period, with approximately US$9 billion of this considered highly reliable, observed ( c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages principally borne by primary industries such as agriculture and forestry. Management costs are more often associated with interventions by authorities and stakeholders. Relative to other countries present in the InvaCost database, New Zealand was found to spend considerably more than expected from its Gross Domestic Product on pre- and post-invasion management costs. However, some known ecologically ( c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors., Competing Interests: The authors declare there are no competing interests., (©2022 Bodey et al.)
- Published
- 2022
- Full Text
- View/download PDF
42. Invasion impacts and dynamics of a European-wide introduced species.
- Author
-
Haubrock PJ, Ahmed DA, Cuthbert RN, Stubbington R, Domisch S, Marquez JRG, Beidas A, Amatulli G, Kiesel J, Shen LQ, Soto I, Angeler DG, Bonada N, Cañedo-Argüelles M, Csabai Z, Datry T, de Eyto E, Dohet A, Drohan E, England J, Feio MJ, Forio MAE, Goethals P, Graf W, Heino J, Hudgins EJ, Jähnig SC, Johnson RK, Larrañaga A, Leitner P, L'Hoste L, Lizee MH, Maire A, Rasmussen JJ, Schäfer RB, Schmidt-Kloiber A, Vannevel R, Várbíró G, Wiberg-Larsen P, and Haase P
- Subjects
- Animals, Europe, New Zealand, Snails, Ecosystem, Introduced Species
- Abstract
Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies., (© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
43. Global economic costs of herpetofauna invasions.
- Author
-
Soto I, Cuthbert RN, Kouba A, Capinha C, Turbelin A, Hudgins EJ, Diagne C, Courchamp F, and Haubrock PJ
- Subjects
- Animals, Humans, Introduced Species, North America, Amphibians, Ecosystem, Reptiles
- Abstract
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
44. Biological invasion costs reveal insufficient proactive management worldwide.
- Author
-
Cuthbert RN, Diagne C, Hudgins EJ, Turbelin A, Ahmed DA, Albert C, Bodey TW, Briski E, Essl F, Haubrock PJ, Gozlan RE, Kirichenko N, Kourantidou M, Kramer AM, and Courchamp F
- Subjects
- Animals, Invertebrates, North America, Ecosystem, Introduced Species
- Abstract
The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs - 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1-2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management - particularly pre-invasion - and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
45. Geographic and taxonomic trends of rising biological invasion costs.
- Author
-
Haubrock PJ, Cuthbert RN, Hudgins EJ, Crystal-Ornelas R, Kourantidou M, Moodley D, Liu C, Turbelin AJ, Leroy B, and Courchamp F
- Subjects
- Animals, Europe, North America, Plants, Ecosystem, Introduced Species
- Abstract
Invasive alien species (IAS) are a growing global ecological problem. Reports on the socio-economic impacts of biological invasions are accumulating, but our understanding of temporal trends across regions and taxa remains scarce. Accordingly, we investigated temporal trends in the economic cost of IAS and cost-reporting literature using the InvaCost database and meta-regression modelling approaches. Overall, we found that both the cost reporting literature and monetary costs increased significantly over time at the global scale, but costs increased faster than reports. Differences in global trends suggest that cost literature has accumulated most rapidly in North America and Oceania, while monetary costs have exhibited the steepest increase in Oceania, followed by Europe, Africa and North America. Moreover, the costs for certain taxonomic groups were more prominent than others and the distribution also differed spatially, reflecting a potential lack of generality in cost-causing taxa and disparate patterns of cost reporting. With regard to global trends within the Animalia and Plantae kingdoms, costs for flatworms, mammals, flowering and vascular plants significantly increased. Our results highlight significantly increasing research interest and monetary impacts of biological invasions globally, but uncover key regional differences driven by variability in reporting of costs across countries and taxa. Our findings also suggest that regions which previously had lower research effort (e.g., Africa) exhibit rapidly increasing costs, comparable to regions historically at the forefront of invasion research. While these increases may be driven by specific countries within regions, we illustrate that even after accounting for research effort (cost reporting), costs of biological invasions are rising., Competing Interests: Declaration of competing interest The authors have no financial/personal interest or belief that could affect their objectivity to declare., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
46. Metal accumulation in relation to size and body condition in an all-alien species community.
- Author
-
Balzani P, Kouba A, Tricarico E, Kourantidou M, and Haubrock PJ
- Subjects
- Animals, Ecosystem, Environmental Monitoring methods, Introduced Species, Catfishes, Mercury, Metals, Heavy analysis, Water Pollutants, Chemical analysis
- Abstract
Metal pollution is one of the main environmental threats in freshwater ecosystems. Aquatic animals can accumulate these substances and transfer them across the food web, posing risks for both predators and humans. Accumulation patterns strongly vary depending on the location, species, and size (which in fish and crayfish is related to age) of individuals. Moreover, high metal concentrations can negatively affect animals' health. To assess the intraspecific relationship between metal accumulation and size and health (proxied by the body condition) of individuals, the concentration of 14 metals (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Zn) was analyzed in six alien species from the highly anthropogenically altered Arno River (Central Italy): five fish (Alburnus alburnus, Pseudorasbora parva, Lepomis gibbosus, Ictalurus punctatus, and Silurus glanis) and one crayfish (Procambarus clarkii). We found that in P. clarkii, Cu was negatively related to size, as well as Al in L. gibbosus and Mg for adult I. punctatus. Positive size-dependent relationships were found for Hg in L. gibbosus, Fe in S. glanis, and Cr in juvenile I. punctatus. Only Co and Mg in S. glanis were found to negatively correlate with individual health. Since metal concentrations in animal tissue depend on trade-offs between uptake and excretion, the few significant results suggest different types of trade-offs across different species and age classes. However, only predatory fish species (L. gibbosus, I. punctatus, and S. glanis) presented significant relationships, suggesting that feeding habits are one of the primary drivers of metal accumulation., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
47. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans.
- Author
-
Kouba A, Oficialdegui FJ, Cuthbert RN, Kourantidou M, South J, Tricarico E, Gozlan RE, Courchamp F, and Haubrock PJ
- Subjects
- Animals, Astacoidea, Europe, Introduced Species, Decapoda, Ecosystem
- Abstract
Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans - crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
48. Decline in niche specialization and trait β-diversity in benthic invertebrate communities of Central European low-mountain streams over 25 years.
- Author
-
Pilotto F, Haubrock PJ, Sundermann A, Lorenz AW, and Haase P
- Subjects
- Animals, Ecosystem, Phenotype, Temperature, Biodiversity, Invertebrates
- Abstract
Biotic homogenization is one of the key aspects of the current biodiversity crisis. Here we analyzed the trends of three facets of niche homogenization, i.e. niche specialization, trait α-diversity and spatial β-diversity, over a period of 25 years (1990-2014) using a large dataset of 3782 stream benthic invertebrate samples collected from central European low-mountain streams. We studied a set of traits describing the ecological niche of species and their functions: body size, feeding groups, substrate preferences, flow preferences, stream zonation preferences and saprobity. Trait composition changed significantly during the study period, and we identified an overall increase in niche homogenization. Specifically, community niche specialization significantly decreased by 20.3% over the 25-year period, with declines ranging from -16.0 to -40.9% for zonation-, flow-, substrate-preferences, body size and feeding traits. Trait diversity did not change significantly, although we recorded significant decreases by -14.2% and -10.2% for flow- and substrate-preference and increases by 5.8% and 22.6% for feeding traits and zonation preference over the study period. Trait spatial β-diversity significantly decreased by -53.0%, with substrate-preference, feeding groups and flow-preference traits declining from -61.9% to -75.3% over the study period. This increased niche homogenization is likely driven by the increase of down-stream typical taxa, which are favored by warming temperatures. Further, it is in apparent contradiction with the recorded increase in abundance (+35.9%) and taxonomic richness (+39.2%) over the same period. Even such increases do not safeguard communities from undergoing niche homogenization, indicating that recovery processes may differ with regard to community taxonomic composition and traits. Our results emphasize the complexity of community responses to global change and warrant caution when founding conclusions based solely on single community metrics., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
49. Economic costs of biological invasions in the United States.
- Author
-
Fantle-Lepczyk JE, Haubrock PJ, Kramer AM, Cuthbert RN, Turbelin AJ, Crystal-Ornelas R, Diagne C, and Courchamp F
- Subjects
- Agriculture, Animals, Cost of Illness, Health Care Costs, Insecta, United States, Ecosystem, Introduced Species
- Abstract
The United States has thousands of invasive species, representing a sizable, but unknown burden to the national economy. Given the potential economic repercussions of invasive species, quantifying these costs is of paramount importance both for national economies and invasion management. Here, we used a novel global database of invasion costs (InvaCost) to quantify the overall costs of invasive species in the United States across spatiotemporal, taxonomic, and socioeconomic scales. From 1960 to 2020, reported invasion costs totaled $4.52 trillion (USD 2017). Considering only observed, highly reliable costs, this total cost reached $1.22 trillion with an average annual cost of $19.94 billion/year. These costs increased from $2.00 billion annually between 1960 and 1969 to $21.08 billion annually between 2010 and 2020. Most costs (73%) were related to resource damages and losses ($896.22 billion), as opposed to management expenditures ($46.54 billion). Moreover, the majority of costs were reported from invaders from terrestrial habitats ($643.51 billion, 53%) and agriculture was the most impacted sector ($509.55 billion). From a taxonomic perspective, mammals ($234.71 billion) and insects ($126.42 billion) were the taxonomic groups responsible for the greatest costs. Considering the apparent rising costs of invasions, coupled with increasing numbers of invasive species and the current lack of cost information for most known invaders, our findings provide critical information for policymakers and managers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
50. Knowledge gaps in economic costs of invasive alien fish worldwide.
- Author
-
Haubrock PJ, Bernery C, Cuthbert RN, Liu C, Kourantidou M, Leroy B, Turbelin AJ, Kramer AM, Verbrugge LNH, Diagne C, Courchamp F, and Gozlan RE
- Subjects
- Animals, Europe, Fisheries, Fishes, Humans, Ecosystem, Introduced Species
- Abstract
Invasive alien fishes have had pernicious ecological and economic impacts on both aquatic ecosystems and human societies. However, a comprehensive and collective assessment of their monetary costs is still lacking. In this study, we collected and reviewed reported data on the economic impacts of invasive alien fishes using InvaCost, the most comprehensive global database of invasion costs. We analysed how total (i.e. both observed and potential/predicted) and observed (i.e. empirically incurred only) costs of fish invasions are distributed geographically and temporally and assessed which socioeconomic sectors are most affected. Fish invasions have potentially caused the economic loss of at least US$37.08 billion (US2017 value) globally, from just 27 reported species. North America reported the highest costs (>85% of the total economic loss), followed by Europe, Oceania and Asia, with no costs yet reported from Africa or South America. Only 6.6% of the total reported costs were from invasive alien marine fish. The costs that were observed amounted to US$2.28 billion (6.1% of total costs), indicating that the costs of damage caused by invasive alien fishes are often extrapolated and/or difficult to quantify. Most of the observed costs were related to damage and resource losses (89%). Observed costs mainly affected public and social welfare (63%), with the remainder borne by fisheries, authorities and stakeholders through management actions, environmental, and mixed sectors. Total costs related to fish invasions have increased significantly over time, from
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.