443 results on '"Hegai, A."'
Search Results
2. Probing Majorana neutrinos with double-$\beta$ decay
- Author
-
GERDA collaboration, Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fomina, M., Gangapshev, A., Garfagnini, A., Giordano, M., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Sala, E., Salamida, F., Schmitt, C., Schneider, B., Schönert, S., Schütz, A. -K., Schulz, O., Schwingenheuer, B., Schwarz, M., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stukov, D., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
A discovery that neutrinos are not the usual Dirac but Majorana fermions, i.e. identical to their antiparticles, would be a manifestation of new physics with profound implications for particle physics and cosmology. Majorana neutrinos would generate neutrinoless double-$\beta$ ($0\nu\beta\beta$) decay, a matter-creating process without the balancing emission of antimatter. So far, 0$\nu\beta\beta$ decay has eluded detection. The GERDA collaboration searches for the $0\nu\beta\beta$ decay of $^{76}$Ge by operating bare germanium detectors in an active liquid argon shield. With a total exposure of 82.4 kg$\cdot$yr, we observe no signal and derive a lower half-life limit of T$_{1/2}$ > 0.9$\cdot$10$^{26}$ yr (90% C.L.). Our T$_{1/2}$ sensitivity assuming no signal is 1.1$\cdot$10$^{26}$ yr. Combining the latter with those from other $0{\nu}\beta\beta$ decay searches yields a sensitivity to the effective Majorana neutrino mass of 0.07 - 0.16 eV, with corresponding sensitivities to the absolute mass scale in $\beta$ decay of 0.15 - 0.44 eV, and to the cosmological relevant sum of neutrino masses of 0.46 - 1.3 eV., Comment: Authors' main+supplementary text: 13+28 pages, 3+12 figures, 1+7 tables. Definite version to be published in Science
- Published
- 2019
- Full Text
- View/download PDF
3. Characterization of 30 $^{76}$Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
GERDA collaboration, Agostini, M., Bakalyarov, A. M., Andreotti, E., Balata, M., Barabanov, I., Baudis, L., Barros, N., Bauer, C., Bellotti, E., Belogurov, S., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Freund, K., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lehnert, B., Liao, Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schütz, A-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Ur, C. A., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The GERmanium Detector Array (GERDA) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double beta decay of $^{76}$Ge into $^{76}$Se+2e$^-$. GERDA has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new Ge detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the HADES underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for GERDA Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the strength of pulse shape simulation codes., Comment: 29 pages, 18 figures
- Published
- 2019
- Full Text
- View/download PDF
4. Evaluation of the Effectiveness of Investments in the Real Sector of the Russian Economy
- Author
-
Sochneva, Elena Nikolaevna, Malakhova, Anna Andreevna, Hegai, Yurii Aleksandrovich, Kiyan, Tatiana Vasilievna, Plotnikova, Svetlana Petrovna, Rusakov, Aleksey Gennadevich, Zyablikov, Dmitry Valeryevitch, Starova, Olga Valeryevna, Kacprzyk, Janusz, Series Editor, Gomide, Fernando, Advisory Editor, Kaynak, Okyay, Advisory Editor, Liu, Derong, Advisory Editor, Pedrycz, Witold, Advisory Editor, Polycarpou, Marios M., Advisory Editor, Rudas, Imre J., Advisory Editor, Wang, Jun, Advisory Editor, and Silhavy, Radek, editor
- Published
- 2022
- Full Text
- View/download PDF
5. Improved limit on neutrinoless double beta decay of $^{76}$Ge from GERDA Phase II
- Author
-
Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Biernat, J., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pertoldi, L., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schmitt, C., Schneider, B., Schönert, S., Schütz, A-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The GERDA experiment searches for the lepton number violating neutrinoless double beta decay of $^{76}$Ge ($^{76}$Ge $\rightarrow$ $^{76}$Se + 2e$^-$) operating bare Ge diodes with an enriched $^{76}$Ge fraction in liquid argon. The exposure for BEGe-type detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of $1.0_{-0.4}^{+0.6}\cdot10^{-3}$ cts/(keV$\cdot$kg$\cdot$yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0$\nu\beta\beta$ experiment. No signal is observed and a new 90 \% C.L. lower limit for the half-life of $8.0\cdot10^{25}$ yr is placed when combining with our previous data. The median expected sensitivity assuming no signal is $5.8\cdot10^{25}$ yr., Comment: 5 pages, 2 figures
- Published
- 2018
- Full Text
- View/download PDF
6. Characterization of High Purity Germanium Point Contact Detectors with Low Net Impurity Concentration
- Author
-
Mertens, S., Hegai, A., Radford, D. C., Abgrall, N., Chan, Y. -D., Martin, R. D., Poon, A. W. P., and Schmitt, C.
- Subjects
Physics - Instrumentation and Detectors - Abstract
High Purity germanium point-contact detectors have low energy thresholds and excellent energy resolution over a wide energy range, and are thus widely used in nuclear and particle physics. In rare event searches, such as neutrinoless double beta decay, the point-contact geometry is of particular importance since it allows for pulse-shape discrimination, and therefore for a significant background reduction. In this paper we investigate the pulse-shape discrimination performance of ultra-high purity germanium point contact detectors. It is demonstrated that a minimal net impurity concentration is required to meet the pulse-shape performance requirements.
- Published
- 2018
- Full Text
- View/download PDF
7. Characterization of 30 76Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
Agostini, M, Bakalyarov, AM, Andreotti, E, Balata, M, Barabanov, I, Baudis, L, Barros, N, Bauer, C, Bellotti, E, Belogurov, S, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Freund, K, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lehnert, B, Liao, Y, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Marissens, G, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
GERDA Collaboration ,physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.
- Published
- 2019
8. Characterization of high purity germanium point contact detectors with low net impurity concentration
- Author
-
Mertens, S, Hegai, A, Radford, DC, Abgrall, N, Chan, YD, Martin, RD, Poon, AWP, and Schmitt, C
- Subjects
Rare event search ,Neutrinoless double beta decay ,Germanium detector ,physics.ins-det ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Other Physical Sciences ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
High Purity germanium point-contact detectors have low energy thresholds and excellent energy resolution over a wide energy range, and are thus widely used in nuclear and particle physics. In rare event searches, such as neutrinoless double beta decay, the point-contact geometry is of particular importance since it allows for pulse-shape discrimination, and therefore for a significant background reduction. In this paper we investigate the pulse-shape discrimination performance of ultra-high purity germanium point contact detectors. It is demonstrated that a minimal net impurity concentration is required to meet the pulse-shape performance requirements.
- Published
- 2019
9. Upgrade for Phase II of the GERDA Experiment
- Author
-
Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Ioannucci, L., Csathy, J. Janicsko, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneissl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Nisi, S., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The GERDA collaboration is performing a sensitive search for neutrinoless double beta decay of $^{76}$Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the GERDA experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. GERDA is thus the first experiment that will remain background-free up to its design exposure (100 kg yr). It will reach thereby a half-life sensitivity of more than 10$^{26}$ yr within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components., Comment: 31 pages, 34 figures
- Published
- 2017
- Full Text
- View/download PDF
10. Searching for neutrinoless double beta decay with GERDA
- Author
-
GERDA Collaboration, Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Bode, T., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schmitt, C., Schneider, B., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Schütz, A-K., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The GERmanium Detector Array (GERDA) experiment located at the INFN Gran Sasso Laboratory (Italy), is looking for the neutrinoless double beta decay of Ge76, by using high-purity germanium detectors made from isotopically enriched material. The combination of the novel experimental design, the careful material selection for radio-purity and the active/passive shielding techniques result in a very low residual background at the Q-value of the decay, about 1e-3 counts/(keV kg yr). This makes GERDA the first experiment in the field to be background-free for the complete design exposure of 100 kg yr. A search for neutrinoless double beta decay was performed with a total exposure of 47.7 kg yr: 23.2 kg yr come from the second phase (Phase II) of the experiment, in which the background is reduced by about a factor of ten with respect to the previous phase. The analysis presented in this paper includes 12.4 kg yr of new Phase II data. No evidence for a possible signal is found: the lower limit for the half-life of Ge76 is 8.0e25 yr at 90% CL. The experimental median sensitivity is 5.8e25 yr. The experiment is currently taking data. As it is running in a background-free regime, its sensitivity grows linearly with exposure and it is expected to surpass 1e26 yr within 2018., Comment: 8 pages, to appear in the proceedings of TAUP2017
- Published
- 2017
11. Background free search for neutrinoless double beta decay with GERDA Phase II
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., DiMarco, N., diVacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schulz, O., Schütz, A. -K., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Standard Model of particle physics cannot explain the dominance of matter over anti-matter in our Universe. In many model extensions this is a very natural consequence of neutrinos being their own anti-particles (Majorana particles) which implies that a lepton number violating radioactive decay named neutrinoless double beta ($0\nu\beta\beta$) decay should exist. The detection of this extremely rare hypothetical process requires utmost suppression of any kind of backgrounds. The GERDA collaboration searches for $0\nu\beta\beta$ decay of $^{76}$Ge ($^{76}\rm{Ge} \rightarrow\,^{76}\rm{Se} + 2e^-$) by operating bare detectors made from germanium with enriched $^{76}$Ge fraction in liquid argon. Here, we report on first data of GERDA Phase II. A background level of $\approx10^{-3}$ cts/(keV$\cdot$kg$\cdot$yr) has been achieved which is the world-best if weighted by the narrow energy-signal region of germanium detectors. Combining Phase I and II data we find no signal and deduce a new lower limit for the half-life of $5.3\cdot10^{25}$ yr at 90 % C.L. Our sensitivity of $4.0\cdot10^{25}$ yr is competitive with the one of experiments with significantly larger isotope mass. GERDA is the first $0\nu\beta\beta$ experiment that will be background-free up to its design exposure. This progress relies on a novel active veto system, the superior germanium detector energy resolution and the improved background recognition of our new detectors. The unique discovery potential of an essentially background-free search for $0\nu\beta\beta$ decay motivates a larger germanium experiment with higher sensitivity., Comment: 14 pages, 9 figures, 1 table; ; data, figures and images available at http://www.mpi-hd.mpg/gerda/public
- Published
- 2017
- Full Text
- View/download PDF
12. Upgrade for Phase II of the Gerda experiment
- Author
-
GERDA Collaboration, Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Vanhoefer, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,physics.ins-det ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
13. Upgrade for Phase II of the Gerda experiment
- Author
-
Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
14. Possible Short-Term Ionospheric Precursors of Strong Crustal Earthquakes
- Author
-
Korsunova, L. P., Legenka, A. D., Hegai, V. V., Bezaeva, Natalia S., Series Editor, Yanovskaya, Tatiana B., editor, Kosterov, Andrei, editor, Bobrov, Nikita Yu., editor, Divin, Andrey V., editor, Saraev, Alexander K., editor, and Zolotova, Nadezhda V., editor
- Published
- 2020
- Full Text
- View/download PDF
15. Limits on uranium and thorium bulk content in GERDA Phase I detectors
- Author
-
GERDA collaboration, Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hakemüller, J., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Csathy, J. Janicsko, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A. -K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
Internal contaminations of $^{238}$U, $^{235}$U and $^{232}$Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of $^{76}$Ge. The data from GERDA Phase~I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for $^{226}$Ra, $^{227}$Ac and $^{228}$Th, the long-lived daughter nuclides of $^{238}$U, $^{235}$U and $^{232}$Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from $^{226}$Ra and $^{228}$Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment., Comment: 2 figures, 7 pages
- Published
- 2016
- Full Text
- View/download PDF
16. Limit on the Radiative Neutrinoless Double Electron Capture of $^{36}$Ar from GERDA Phase I
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A. -K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wilsenach, H., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of $^{36}$Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of $^{36}$Ar was established: $T_{1/2} > $ 3.6 $\times$ 10$^{21}$ yr at 90 % C.I., Comment: 7 pages, 3 figures
- Published
- 2016
- Full Text
- View/download PDF
17. Flux Modulations seen by the Muon Veto of the GERDA Experiment
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Ioannucci, L., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Klimenko, A., Knapp, M., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Ritter, F., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A. -K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Strecker, H., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., vonSturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wilsenach, H., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two effects have been identified which are caused by secondary muons from the CNGS neutrino beam (2.2 %) and a temperature modulation of the atmosphere (1.4 %). A mean cosmic muon rate of $I^0_{\mu} = (3.477 \pm 0.002_{\textrm{stat}} \pm 0.067_{\textrm{sys}}) \times 10^{-4}$/(s$\cdot$m$^2$) was found in good agreement with other experiments at LNGS at a depth of 3500~meter water equivalent., Comment: 7 pages, 6 figures
- Published
- 2016
- Full Text
- View/download PDF
18. The Performance of the Muon Veto of the GERDA Experiment
- Author
-
Freund, K., Falkenstein, R., Grabmayr, P., Hegai, A., Jochum, J., Knapp, M., Lubsandorzhiev, B., Ritter, F., Schmitt, C., Schütz, A. -K., Jitnikov, I., Shevchik, E., Shirchenko, M., and Zinatulina, D.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
Low background experiments need a suppression of cosmogenically induced events. The GERDA experiment located at LNGS is searching for the neutrinless double beta decay of $^{76}$Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the watertank surrounding the GERDA cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of $\varepsilon_{\mu d}=(99.935\pm0.015)$ \% was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of $\varepsilon_{\mu r}=(99.2_{-0.4}^{+0.3})$ \% was found. Without veto condition the muons by themselves would cause a background index of $\textrm{BI}_{\mu}=(3.16 \pm 0.85)\times10^{-3}$ cts/(keV$\cdot$kg$\cdot$yr) at $Q_{\beta\beta}$., Comment: 11pages, 14 figures
- Published
- 2016
- Full Text
- View/download PDF
19. Evaluation of the Effectiveness of Investments in the Real Sector of the Russian Economy
- Author
-
Sochneva, Elena Nikolaevna, primary, Malakhova, Anna Andreevna, additional, Hegai, Yurii Aleksandrovich, additional, Kiyan, Tatiana Vasilievna, additional, Plotnikova, Svetlana Petrovna, additional, Rusakov, Aleksey Gennadevich, additional, Zyablikov, Dmitry Valeryevitch, additional, and Starova, Olga Valeryevna, additional
- Published
- 2022
- Full Text
- View/download PDF
20. First results from GERDA Phase II
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
Gerda is designed for a background-free search of 76Ge neutrinoless double-β decay, using bare Ge detectors in liquid Ar. The experiment was upgraded after the successful completion of Phase I to double the target mass and further reduce the background. Newly-designed Ge detectors were installed along with LAr scintillation sensors. Phase II of data-taking started in Dec 2015 with approximately 36 kg of Ge detectors and is currently ongoing. The first results based on 10.8 kg• yr of exposure are presented. The background goal of 10-3 cts/(keV• kg• yr) is achieved and a search for neutrinoless double-β decay is performed by combining Phase I and II data. No signal is found and a new limit is set at yr (90% C.L.).
- Published
- 2017
21. Study of the GERDA Phase II background spectrum
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
The Gerda experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy, searches for the neutrinoless double beta (0νββ) decay of 76Ge. Gerda Phase II is aiming to reach a sensitivity for the 0νββ half life of 1026 yr in ∼ 3 years of physics data taking with 100 kg•yr of exposure and a background index of ∼ 10-3 cts/(keV•kg•yr). After 6 months of acquisition a first data release with 10.8 kg•yr of exposure is performed, showing that the design background is achieved. In this work a study of the Phase II background spectrum, the main spectral structures and the background sources will be presented and discussed.
- Published
- 2017
22. Active background suppression with the liquid argon scintillation veto of GERDA Phase II
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ∼10-3 cts/(keV•ky•yr) has been confirmed.
- Published
- 2017
23. Limits on uranium and thorium bulk content in GERDA Phase I detectors
- Author
-
collaboration, G, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D'Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakemüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Stepaniuk, M
- Subjects
Germanium detectors ,Double beta decay ,Radiopurity ,Uranium and thorium bulk content ,physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.
- Published
- 2017
24. Limits on uranium and thorium bulk content in Gerda Phase I detectors
- Author
-
collaboration, GERDA, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakemüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Stepaniuk, M
- Subjects
Germanium detectors ,Double beta decay ,Radiopurity ,Uranium and thorium bulk content ,physics.ins-det ,nucl-ex ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.
- Published
- 2017
25. First results of GERDA Phase II and consistency with background models
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Subjects
Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Physical sciences - Abstract
The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg•yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for . To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process yr (90% C.L., sensitivity 4.0•1025 yr). First results of GERDA Phase II will be presented.
- Published
- 2017
26. Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA Phase I
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shirchenko, M, Simgen, H, Smolnikov, A, and Stanco, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,nucl-ex ,hep-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36Ar was established: T1 / 2> 3.6 × 1021 years at 90% CI.
- Published
- 2016
27. Limit on the radiative neutrinoless double electron capture of 36 Ar from GERDA Phase I
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, JJ, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shirchenko, M, Simgen, H, Smolnikov, A, and Stanco, L
- Subjects
nucl-ex ,hep-ex ,Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of 36Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36Ar was established: T1 / 2> 3.6 × 1021 years at 90% CI.
- Published
- 2016
28. $2\nu\beta\beta$ decay of $^{76}$Ge into excited states with GERDA Phase I
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Mi, Y., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schneider, B., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Schütz, A-K., Selivanenko, O., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Ur, C. A., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wilsenach, H., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
Two neutrino double beta decay of $^{76}$Ge to excited states of $^{76}$Se has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in $^{76}$Ge was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation $\gamma$ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90\,\% C.L. bounds for three transitions: ${0^+_{\rm g.s.}-2^+_1}$: $T^{2\nu}_{1/2}>$1.6$\cdot10^{23}$ yr, ${0^+_{\rm g.s.}-0^+_1}$: $T^{2\nu}_{1/2}>$3.7$\cdot10^{23}$ yr and ${0^+_{\rm g.s.}-2^+_2}$: $T^{2\nu}_{1/2}>$2.3$\cdot10^{23}$ yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90\,\% credibility bounds were extracted and used to exclude several models for the ${0^+_{\rm g.s.}-0^+_1}$ transition.
- Published
- 2015
- Full Text
- View/download PDF
29. Improvement of the Energy Resolution via an Optimized Digital Signal Processing in GERDA Phase I
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A. -K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Ur, C. A., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wilsenach, H., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
An optimized digital shaping filter has been developed for the GERDA experiment which searches for neutrinoless double beta decay in 76Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) at the 76Ge Q value for 0\nu\beta\beta decay is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping fillter., Comment: 12 pages, 16 figures
- Published
- 2015
30. The Majorana Parts Tracking Database
- Author
-
The Majorana Collaboration, Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Brudanin, V., Busch, M., Byram, D., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Cuesta, C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Elliott, S. R., Esterline, J., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J. Diaz, Leviner, L. E., Loach, J. C., MacMullin, J., Martin, R. D., Meijer, S. J., Mertens, S., Miller, M. L., Mizouni, L., Nomachi, M., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Petersburg, R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rager, J., Rielage, K., Robertson, R. G. H., Romero-Romero, E., Ronquest, M. C., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Soin, A., Suriano, A. M., Tedeschi, D., Thompson, J., Timkin, V., Tornow, W., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Young, A. R., Yu, C. -H., Yumatov, V., and Zhitnikov, I.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.
- Published
- 2015
- Full Text
- View/download PDF
31. Results on $\beta\beta$ decay with emission of two neutrinos or Majorons in $^{76}$Ge from GERDA Phase I
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., di Vacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Selivanenko, O., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Stepaniuk, M., Ur, C. A., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wilsenach, H., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
A search for neutrinoless $\beta\beta$ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 10$^{23}$ yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with $^{76}$Ge. A new result for the half-life of the neutrino-accompanied $\beta\beta$ decay of $^{76}$Ge with significantly reduced uncertainties is also given, resulting in $T^{2\nu}_{1/2} = (1.926 \pm 0.095)\cdot10^{21}$ yr., Comment: 3 Figures
- Published
- 2015
- Full Text
- View/download PDF
32. Seismogenic Field in the Ionosphere before Two Powerful Earthquakes: Possible Magnitude and Observed Ionospheric Effects (Case Study)
- Author
-
Valery Hegai, Zhima Zeren, and Sergey Pulinets
- Subjects
earthquake ,ionosphere ,magnetosphere ,seismogenic electric field ,earthquake precursors ,plasmaspheric duct ,Meteorology. Climatology ,QC851-999 - Abstract
A retrospective analysis of complex geophysical data around the time of the two most powerful earthquakes that occurred in Alaska and had magnitudes M = 8.2 (29 July 2021) and M = 9.2 (28 March 1964), respectively, is carried out. The aim of the research is to assess the maximum possible magnitude of the electric field of a seismogenic nature that penetrated the ionosphere/plasmasphere, which could cause the ionospheric effects observed experimentally. Theoretical calculations have shown that under the geophysical conditions that existed before these earthquakes (favorable for the penetration of the seismogenic field into the ionosphere), the maximum value of a quasi-static electric seismogenic field in the ionosphere, perpendicular to geomagnetic field lines (tens of hours/units of days before the earthquake) for earthquakes with magnitudes M = 8–9 could reach 1–2 mV/m. Such values are sufficient for the formation of a plasmaspheric ULF-ELF-VLF-duct, which is formed in the vicinity of the geomagnetic field-line passing through the epicenter of the earthquake under the influence of a seismogenic electric field that penetrated into the ionosphere/plasmasphere. This leads to an anomalous amplification of the captured ULF-ELF-VLF waves, ULF (DC-16 Hz), ELF (6 Hz–2.2 kHz), VLF (1.8–20 kHz), not only above the epicenter of the future earthquake, but also at the point magnetically conjugated with the epicenter of the earthquake, testifying to the formation of such a duct, stretched along the geomagnetic field from one hemisphere to another, and formed on closed L-shells shortly before the earthquake. This result is confirmed by the measurements of the mission of the CSES satellite (China-Seismo-Electromagnetic Satellite) for the 29 July 2021 earthquake with magnitude M = 8.2.
- Published
- 2023
- Full Text
- View/download PDF
33. Flux modulations seen by the muon veto of the Gerda experiment
- Author
-
collaboration, GERDA, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Cs’athy, J Janicsk’o, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knapp, M, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Ritter, F, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Stepaniuk, M, and Strecker, H
- Subjects
Water cherenkov detector ,Underground experiment ,Cosmic rays ,Muon interaction ,physics.ins-det ,hep-ex ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66 PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two causes have been identified: (i) secondary muons from the CNGS neutrino beam (2.2%) and (ii) a temperature modulation of the atmosphere (1.4%). A mean cosmic muon rate of Iμ0=(3.477±0.002stat±0.067sys)×10−4/(s · m2) was found in good agreement with other experiments at LNGS. Combining the present result with those from previous experiments at LNGS the effective temperature coefficient αT,Lngs is determined to 0.93 ± 0.03. A fit of the temperature coefficients measured at various underground sites yields a kaon to pion ratio rK/π of 0.10 ± 0.03.
- Published
- 2016
34. Search of Neutrinoless Double Beta Decay with the GERDA Experiment
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D'Andrea, V, Demidova, EV, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Gotti, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hampel, W, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hoffmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Csáthy, J Janicksó, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Marissens, G, Medinaceli, E, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pessina, G, Pullia, A, Reissfelder, M, Riboldi, S, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schneider, B, Schreiner, J, Schulz, O, Schwingenheuer, B, Schönert, S, Seitz, H, Selivalenko, O, Shevchik, E, Shirchenko, M, and Simgen, H
- Subjects
neutrinoless double beta decay ,T-1/2(0 nu) ,Ge-76 ,enriched Ge detectors - Abstract
The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). In the first phase of the experiment, a 90% confidence level (C.L.) sensitivity of 2.4·1025 yr on the 0νββ decay half-life was achieved with a 21.6 kg·yr exposure and an unprecedented background index in the region of interest of 10-2 counts/(keV·kg·yr). No excess of signal events was found, and an experimental lower limit on the half-life of 2.1 · 1025 yr (90% C.L.) was established. Correspondingly, the limit on the effective Majorana neutrino mass is mee
- Published
- 2016
35. Search for neutrinoless double beta decay with the Gerda experiment: Phase II
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D'Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, AK, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Abstract
The GERmanium Detector Array (Gerda) experiment, located at the Gran Sasso underground laboratory in Italy, is built for the search of 0vββ decay in 76Ge. Gerda operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase I of the experiment was completed reaching an exposure of about 21 kg.yr with a background level of 10-2 cts/(keV.kg.yr). Gerda Phase I set a limit on the 0vββ decay of 76Ge of T1/20v > 2.1.1025 yr. In Phase II 35 kg of germanium detectors enriched in 76Ge are operated to reach an exposure of 100 kg.yr. The design goal is to reduce the background by one order of magnitude to reach the sensitivity for T1/20v = (1026) yr. The Phase II setup comprises thirty newly produced Broad Energy Germanium (BEGe) detectors. They contribute to the background reduction with better energy resolution and enhanced pulse shape discrimination. To achieve the necessary background reduction, the setup was complemented with LAr veto. The hardware upgrade for Phase II was finished and all detectors were deployed in December 2015. We present the first results of Phase II with 10.8 kg.yr exposure reached in June 2016.
- Published
- 2016
36. First results of GERDA Phase II
- Author
-
Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D'Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hofmann, W, Hult, M, Inzhechik, LV, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schulz, O, Schütz, AK, Schwingenheuer, B, Selivanenko, O, Shevzik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, Vasenko, AA, and Veresnikova, A
- Abstract
The GErmanium Detector Array (Gerda) experiment, located at the Laboratori Nazionali del Gran Sass15, searches for the 0νββ decay of 76Ge. Gerda Phase II was started in December 2015, aiming to reach a sensitivity on the 0νββ decay half-life larger than 1026 yr in three yr of data taking with about 100 kg·yr exposure with background index of about 10-3 cts/(keV·kg·yr). The major upgrade of Phase II is the deployment of thirty newly produced Broad Energy Germanium detectors. They contribute to the background reduction with better energy resolution and enhanced pulse shape discrimination. To achieve the necessary background reduction, the setup was complemented with LAr veto. After 6 months of operation a first data release with 10.8 kg·yr exposure was performed, showing that the background goal has been achieved. A new lower limit on the 0νββ decay half life of 76Ge of 5.3·1025 yr (90% C.L.) has been set.
- Published
- 2016
37. Production, characterization and operation of $^{76}$Ge enriched BEGe detectors in GERDA
- Author
-
Agostini, M., Allardt, M., Andreotti, E., Bakalyarov, A. M., Balata, M., Barabanov, I., Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjas, D., Caldwel, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Domula, A., Egorov, V., Falkenstein, R., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gotti, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hampel, W., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L. V., Ioannucci, L., Csathy, J. Janicsko, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Misiaszek, M., Nemchenok, I., Nisi, S., O'Shaughnessy, C., Palioselitis, D., Pandola, L., Pelczar, K., Pessina, G., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Strecker, H., Ur, C. A., Vanhoefer, L., Vasenko, A. A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wilsenach, H., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0{\nu}{\beta}{\beta}) of $^{76}$Ge. Germanium detectors made of material with an enriched $^{76}$Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new $^{76}$Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the $^{76}$Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase~II., Comment: 23 pages, 21 figures
- Published
- 2014
- Full Text
- View/download PDF
38. A Dark Matter Search with MALBEK
- Author
-
Giovanetti, G. K., Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Byram, D., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Cuesta, C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Elliott, S. R., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, J., MacMullin, S., Martin, R. D., Meijer, S., Mertens, S., Nomachi, M., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rager, J., Rielage, K., Robertson, R. G. H., Romero-Romero, E., Ronquest, M. C., Schubert, A. G., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Suriano, A. M., Thompson, J., Timkin, V., Tornow, W., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Young, A. R., Yu, C. -H., and Yumatov, V.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The MAJORANA DEMONSTRATOR is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76-Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the MAJORANA research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal., Comment: To appear in the Proceedings of the 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013 (F. Avignone & W. Haxton, editors, Physics Procedia, Elsevier)
- Published
- 2014
39. Background Model for the Majorana Demonstrator
- Author
-
Cuesta, C., Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Byram, D., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Elliott, S. R., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, J., MacMullin, S., Martin, R. D., Meijer, S., Mertens, S., Nomachi, M., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rager, J., Rielage, K., Robertson, R. G. H., Romero-Romero, E., Ronquest, M. C., Schubert, A. G., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Suriano, A. M., Thompson, J., Timkin, V., Tornow, W., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Young, A. R., Yu, C. H., and Yumatov, V.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements., Comment: To appear in the Proceedings of the 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013 (F. Avignone & W. Haxton, editors, Physics Procedia, Elsevier)
- Published
- 2014
40. Testing the Ge detectors for the MAJORANA DEMONSTRATOR
- Author
-
Xu, W., Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Byram, D., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Cuesta, C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Elliott, S. R., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, J., MacMullin, S., Martin, R. D., Meijer, S., Mertens, S., Nomachi, M., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rager, J., Rielage, K., Robertson, R. G. H., Romero-Romero, E., Ronquest, M. C., Schubert, A. G., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Suriano, A. M., Thompson, J., Timkin, V., Tornow, W., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Yakushev, E., Young, A. R., Yu, C. H., and Yumatov, V.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this paper, we will present our measurements that characterize the HPGe crystals. We will also discuss our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons., Comment: To appear in the Proceedings of the 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013 (F. Avignone & W. Haxton, editors, Physics Procedia, Elsevier)
- Published
- 2014
41. A search for bremsstrahlung solar axions using the Majorana low-background BEGe detector at Kimballton (MALBEK)
- Author
-
Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Cooper, R. J., Creswick, R. J., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Elliott, S. R., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Knecht, A., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, J., MacMullin, S., Marino, M. G., Martin, R. D., Mertens, S., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rielage, K., Robertson, R. G. H., Ronquest, M. C., Schubert, A. G., Shanks, B., Shirchenko, M., Snavely, K. J., Snyder, N., Steele, D., Suriano, A. M., Thompson, J., Timkin, V., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Xu, W., Yakushev, E., Young, A. R., Yu, C. H., and Yumatov, V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
A low-background, high-purity germanium detector has been used to search for evidence of low-energy, bremsstrahlung-generated solar axions. An upper bound of $1.36\times 10^{-11}$ $(95% CL)$ is placed on the direct coupling of DFSZ model axions to electrons. The prospects for the sensitivity of the Majorana Demonstrator array of point-contact germanium detectors to solar axions are discussed in the context of the model-independent annual modulation due to the seasonal variation of the earth-sun distance., Comment: This paper has been withdrawn by the authors. Recent results we were not aware of should be taken into account
- Published
- 2014
42. The level model of network interaction primary school students in classroom activities
- Author
-
E. G. Potupchik and L. B. Hegai
- Subjects
network interaction ,network joint activity ,generation z ,elementary school students ,methodological support of network interaction in elementary school ,Special aspects of education ,LC8-6691 - Abstract
The article considers the problem of organization and methodological support of the process of formation of skills of network joint activities in primary school students. The relevance of this research problem is due to the following contradictions:between the need for a practice-oriented and controlled focus on the process of forming in young schoolchildren the skills of safe and ethical interaction in the network, as a requirement of a modern digital society and the lack of pedagogical conditions for its implementation in educational institutions;between the high potential of network interaction in the formation of digital literacy elements of elementary schoolchildren and insufficient practical and theoretical research in this area;between the didactic opportunities of joint network activities in the process of training and education in elementary school and the insufficient development of pedagogical conditions for its implementation.The purpose of the study: the development and experimental testing of the level model of network interaction of primary school children in a distributed information and educational environment. This model is based on the principle of a phased increase in the degree of activity, independence and responsibility of subjects of joint network activities, which is implemented through specially designed educational and methodological support. The problem is highlighted due to the lack of research and the lack of specialized methodological support in the field of networking in elementary school.Materials and methods. The theoretical basis of the study is the analysis of research works in the field of Internet security for schoolchildren and the psychology of primary school children, a generalization of pedagogical experience in the use of distance and network technologies in classroom activities, an analysis of the regulatory documents of primary general education.Results. The approbation of the level model of network interaction of primary schoolchildren was carried out during the 2016–2017, 2017– 2018, 2018–2019 academic years on the basis of MAOU Gymnasium No. 9 of Krasnoyarsk and secondary school No. 11 of Abakan. The study covered 105 primary school students. A complete set of educational and methodological support for the network interaction of elementary schoolchildren in computer science lessons in a distributed information and educational environment has been developed and fully tested.Conclusion. The level model of network interaction of elementary schoolchildren described in the article can be used both in the classroom and in extracurricular activities in various subject areas in elementary school. This model includes four levels of network interaction formation: interaction independently from each other without feedback, interaction independently from each other with the need for mutual control, consistent interaction with observance of the order and correctness of the task, non-linear interaction. In accordance with the developed model of network interaction, a distributed informational and educational environment of elementary school was formed and filled up on the example of the subject field “informatics”, which ensures the implementation of various types of elementary school students network interaction in classroom activities. Research materials can be replicated in general education organizations at the initial stage, and also used to improve the skills of primary school teachers and computer scientists.
- Published
- 2019
- Full Text
- View/download PDF
43. Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I: GERDA Collaboration
- Author
-
GERDA Collaboration, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, di Vacri, A, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, JJ, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Stepaniuk, M, Ur, CA, Vanhoefer, L, and Vasenko, AA
- Subjects
nucl-ex ,physics.ins-det ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics - Abstract
A search for neutrinoless ββ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 1023 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with 76Ge. A new result for the half-life of the neutrino-accompanied ββ decay of 76Ge with significantly reduced uncertainties is also given, resulting in (Formula presented.) yr.
- Published
- 2015
44. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I
- Author
-
GERDA Collaboration, Agostini, M, Allardt, M, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Vacri, AD, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Fedorova, O, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Misiaszek, M, Moseev, P, Nemchenok, I, Palioselitis, D, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Stepaniuk, M, Ur, CA, Vanhoefer, L, and Vasenko, AA
- Subjects
physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics - Abstract
An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in $$^{76}$$76Ge. The Gerda Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10 % at the $$Q$$Q value for $$0\nu \beta \beta $$0νββ decay in $$^{76}$$76Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter.
- Published
- 2015
45. The Majorana Parts Tracking Database
- Author
-
Collaboration, The Majorana, Abgrall, N, Aguayo, E, III, FT Avignone, Barabash, AS, Bertrand, FE, Brudanin, V, Busch, M, Byram, D, Caldwell, AS, Chan, Y-D, Christofferson, CD, Combs, DC, Cuesta, C, Detwiler, JA, Doe, PJ, Efremenko, Yu, Egorov, V, Ejiri, H, Elliott, SR, Esterline, J, Fast, JE, Finnerty, P, Fraenkle, FM, Galindo-Uribarri, A, Giovanetti, GK, Goett, J, Green, MP, Gruszko, J, Guiseppe, VE, Gusev, K, Hallin, AL, Hazama, R, Hegai, A, Henning, R, Hoppe, EW, Howard, S, Howe, MA, Keeter, KJ, Kidd, MF, Kochetov, O, Konovalov, SI, Kouzes, RT, LaFerriere, BD, Leon, J Diaz, Leviner, LE, Loach, JC, MacMullin, J, Martin, RD, Meijer, SJ, Mertens, S, Miller, ML, Mizouni, L, Nomachi, M, Orrell, JL, O'Shaughnessy, C, Overman, NR, Petersburg, R, II, DG Phillips, Poon, AWP, Pushkin, K, Radford, DC, Rager, J, Rielage, K, Robertson, RGH, Romero-Romero, E, Ronquest, MC, Shanks, B, Shima, T, Shirchenko, M, Snavely, KJ, Snyder, N, Soin, A, Suriano, AM, Tedeschi, D, Thompson, J, Timkin, V, Tornow, W, Trimble, JE, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Young, AR, Yu, C-H, Yumatov, V, and Zhitnikov, I
- Subjects
physics.ins-det ,nucl-ex - Abstract
The Majorana Demonstrator is an ultra-low background physics experimentsearching for the neutrinoless double beta decay of $^{76}$Ge. The MajoranaParts Tracking Database is used to record the history of components used in theconstruction of the Demonstrator. The tracking implementation takes a novelapproach based on the schema-free database technology CouchDB. Transportation,storage, and processes undergone by parts such as machining or cleaning arelinked to part records. Tracking parts provides a great logistics benefit andan important quality assurance reference during construction. In addition, thelocation history of parts provides an estimate of their exposure to cosmicradiation. A web application for data entry and a radiation exposure calculatorhave been developed as tools for achieving the extreme radio-purity requiredfor this rare decay search.
- Published
- 2015
46. Production, characterization and operation of 76Ge enriched BEGe detectors in GERDA
- Author
-
Agostini, M, Allardt, M, Andreotti, E, Bakalyarov, AM, Balata, M, Barabanov, I, Barros, N, Baudis, L, Bauer, C, Becerici-Schmidt, N, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Domula, A, Egorov, V, Falkenstein, R, Freund, K, Frodyma, N, Gangapshev, A, Garfagnini, A, Gotti, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hegai, A, Heisel, M, Hemmer, S, Heusser, G, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kihm, T, Kirpichnikov, IV, Kirsch, A, Klimenko, A, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Liao, HY, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Misiaszek, M, Nemchenok, I, Nisi, S, O’Shaughnessy, C, Palioselitis, D, Pandola, L, Pelczar, K, Pessina, G, Pullia, A, Riboldi, S, Rumyantseva, N, Sada, C, Salathe, M, Schmitt, C, Schreiner, J, Schulz, O, Schütz, A-K, Schwingenheuer, B, Schönert, S, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Strecker, H, Ur, CA, Vanhoefer, L, Vasenko, AA, von Sturm, K, and Wagner, V
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Synchrotrons and Accelerators ,Physical Sciences ,physics.ins-det ,hep-ex ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of 76Ge. Germanium detectors made of material with an enriched 76Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new 76Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the 76Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.
- Published
- 2015
47. Status of the MAJORANA DEMONSTRATOR experiment
- Author
-
MAJORANA Collaboration, Martin, R. D., Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Elliott, S. R., Esterline, J., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, J., MacMullin, S., Mertens, S., Mizouni, L., Nomachi, M., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rielage, K., Robertson, R. G. H., Romero-Romero, E., Ronquest, M. C., Schubert, A. G., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Soin, A., Suriano, A. M., Thompson, J., Timkin, V., Tornow, W., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Xu, W., Yakushev, E., Young, A. R., Yu, C. -H., and Yumatov, V.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given., Comment: 8 pages, proceeding from VII International Conference on Interconnections between Particle Physics and Cosmology (PPC 2013), submitted to AIP proceedings
- Published
- 2013
48. The {\sc Majorana Demonstrator} Neutrinoless Double-Beta Decay Experiment
- Author
-
Majorana Collaboration, Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Elliott, S. R., Esterline, J., Fast, J. E., Finnerty, P., Fraenkle, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusey, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Knecht, A., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, S., Martin, R. D., Mertens, S., Mizouni, L., Nomachi, M., Orrell, J. L., O'Shaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rielage, K., Robertson, R. G. H., Ronquest, M. C., Schubert, A. G., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Steele, D., Strain, J., Suriano, A. M., Thompson, J., Timkin, V., Tornow, W., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Xu, W., Yakushev, E., Young, A. R., Yu, C-H., and Yumatov, V.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The {\sc Majorana Demonstrator will search for the neutrinoless double-beta decay of the isotope Ge-76 with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The {\sc Demonstrator} is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the {\sc Demonstrator} and the details of its design., Comment: accepted for publication in Advances in High Energy Physics
- Published
- 2013
49. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76
- Author
-
MAJORANA Collaboration, Elliott, S. R., Abgrall, N., Aguayo, E., Avignone III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Brudanin, V., Busch, M., Caldwell, A. S., Chan, Y-D., Christofferson, C. D., Combs, D. C., Detwiler, J. A., Doe, P. J., Efremenko, Yu., Egorov, V., Ejiri, H., Esterline, J., Fast, J. E., Finnerty, P., Fraenkleo, F. M., Galindo-Uribarri, A., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guiseppe, V. E., Gusev, K., Hallin, A. L., Hazama, R., Hegai, A., Henning, R., Hoppe, E. W., Howard, S., Howe, M. A., Keeter, K. J., Kidd, M. F., Kochetov, O., Konovalov, S. I., Kouzes, R. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., MacMullin, S., Martin, R. D., Mertens, S., Mizouni, L., Nomachi, M., Orrell, J. L., OShaughnessy, C., Overman, N. R., Phillips II, D. G., Poon, A. W. P., Pushkin, K., Radford, D. C., Rielage, K., Robertson, R. G. H., Ronquest, M. C., Schubert, A. G., Shanks, B., Shima, T., Shirchenko, M., Snavely, K. J., Snyder, N., Soin, A., Strain, J., Suriano, A. M., Timkin, V., Tornow, W., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Xu, W., Yakushev, E., Young, A. R., Yu, C. -H., and Yumatov, V.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The {\sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, $15 - 50$ meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of $\sim$1 count/t-y or lower in the region of the signal. The {\sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which $\sim$30 kg will be enriched to 87% in $^{76}$Ge. The {\sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {\sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability., Comment: Proceedings for the MEDEX 2013 Conference
- Published
- 2013
50. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I
- Author
-
Agostini, M., Allardt, M., Andreotti, E., Bakalyarov, A. M., Balata, M., Barabanov, I., Heider, M. Barnabé, Barros, N., Baudis, L., Bauer, C., Becerici-Schmidt, N., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., Cossavella, F., Demidova, E. V., Domula, A., Egorov, V., Falkenstein, R., Ferella, A., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gotti, C., Grabmayr, P., Gurentsov, V., Gusev, K., Guthikonda, K. K., Hampel, W., Hegai, A., Heisel, M., Hemmer, S., Heusser, G., Hofmann, W., Hult, M., Inzhechik, L. V., Ioannucci, L., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Liu, X., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Machado, A. A., Majorovits, B., Maneschg, W., Misiaszek, M., Nemchenok, I., Nisi, S., O'Shaughnessy, C., Pandola, L., Pelczar, K., Pessina, G., Potenza, %F., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salathe, M., Schmitt, C., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Strecker, H., Tarka, M., Ur, C. A., Vasenko, A. A., Volynets, O., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wojcik, M., Yanovich, E., Zavarise, P., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the Standard Model of particle physics. This Letter reports the results from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope 76Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kgyr. A blind analysis is performed. The background index is about 1.10^{-2} cts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of 76Ge, T_1/2 > 2.1 10^{25} yr (90% C.L.). The combination with the results from the previous experiments with 76Ge yields T_1/2 > 3.0 10^{25} yr (90% C.L.)., Comment: 6 pages, 2 figures
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.