1. Mapping quantitative trait loci for biomass yield and yield-related traits in lowland switchgrass (Panicum virgatum L.) multiple populations
- Author
-
Surya L Shrestha, Christian M Tobias, Hem S Bhandari, Jennifer Bragg, Santosh Nayak, Ken Goddard, and Fred Allen
- Subjects
Genetics ,QH426-470 - Abstract
AbstractSwitchgrass can be used as an alternative source for bioenergy production. Many breeding programs focus on the genetic improvement of switchgrass for increasing biomass yield. Quantitative trait loci (QTL) mapping can help to discover marker-trait associations and accelerate the breeding process through marker-assisted selection. To identify significant QTL, this study mapped 7 hybrid populations and one combined of 2 hybrid populations (30–96 F1s) derived from Alamo and Kanlow genotypes. The populations were evaluated for biomass yield, plant height, and crown size in a simulated-sward plot with 2 replications at 2 locations in Tennessee from 2019 to 2021. The populations showed significant genetic variation for the evaluated traits and exhibited transgressive segregation. The 17,251 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) were used to construct a linkage map using a fast algorithm for multiple outbred families. The linkage map spanned 1,941 cM with an average interval of 0.11 cM between SNPs. The QTL analysis was performed on evaluated traits for each and across environments (year and location) that identified 5 QTL for biomass yield (logarithm of the odds, LOD 3.12–4.34), 4 QTL for plant height (LOD 3.01–5.64), and 7 QTL for crown size (LOD 3.0–4.46) (P
- Published
- 2023
- Full Text
- View/download PDF