1. Absence of far-red emission band in aggregated core antenna complexes
- Author
-
Anjue Mane Ara, Wahadoszamen, Sandrine D'Haene, Rienk van Grondelle, Henny van Roon, Mohammad Kawsar Ahmed, Cristian Ilioaia, Biophysics Photosynthesis/Energy, Physics and Astronomy, and LaserLaB - Energy
- Subjects
Chlorophyll ,0303 health sciences ,Conformational change ,Materials science ,Photosystem II ,Light-Harvesting Protein Complexes ,Biophysics ,Photosystem II Protein Complex ,Far-red ,Articles ,Dissipation ,Carotenoids ,Molecular physics ,Fluorescence spectroscopy ,03 medical and health sciences ,Spectrometry, Fluorescence ,0302 clinical medicine ,Energy Transfer ,Yield (chemistry) ,Antenna (radio) ,SDG 6 - Clean Water and Sanitation ,030217 neurology & neurosurgery ,030304 developmental biology ,Common emitter - Abstract
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.
- Published
- 2021