1. Nuclear Level Density and $\gamma$-ray Strength Function of $^{67}\mathrm{Ni}$ and the impact on the i-process
- Author
-
Ingeberg, V. W., Siem, S., Wiedeking, M., Choplin, A., Goriely, S., Siess, L., Abrahams, K. J., Arnswald, K., Garrote, F. Bello, Bleuel, D. L., Cederkäll, J., Christoffersen, T. L., Cox, D. M., De Witte, H., Gaffney, L. P., Görgen, A., Henrich, C., Illana, A., Jones, P., Kheswa, B. V., Kröll, T., Majola, S. N. T., Malatji, K. L., Ojala, J., Pakarinen, J., Rainovski, G., Reiter, P., von Schmid, M., Seidlitz, M., Tveten, G. M., Warr, N., and Zeiser, F.
- Subjects
Nuclear Experiment ,Astrophysics - Solar and Stellar Astrophysics ,Nuclear Theory - Abstract
Proton-$\gamma$ coincidences from $(\mathrm{d},\mathrm{p})$ reactions between a $^{66}\mathrm{Ni}$ beam and a deuterated polyethylene target have been analyzed with the inverse-Oslo method to find the nuclear level density (NLD) and $\gamma$-ray strength function ($\gamma$SF) of $^{67}\mathrm{Ni}$. The $^{66}\mathrm{Ni}(n,\gamma)$ capture cross section has been calculated using the Hauser-Feshbach model in TALYS using the measured NLD and $\gamma$SF as constraints. The results confirm that the $^{66}\mathrm{Ni}(n,\gamma)$ reaction acts as a bottleneck when relying on one-zone nucleosynthesis calculations. However, the impact of this reaction is strongly dampened in multi-zone models of low-metallicity AGB stars experiencing i-process nucleosynthesis., Comment: Submitted to Phys. Rev. C
- Published
- 2023