92 results on '"Hewitt LM"'
Search Results
2. Long-term effects of an early-life exposure of fathead minnows to sediments containing bitumen. Part II: Behaviour, reproduction, and gonad histopathology.
- Author
-
Vignet C, Frank RA, Yang C, Shires K, Bree M, Sullivan C, Norwood WP, Hewitt LM, McMaster ME, and Parrott JL
- Abstract
The oil sands area of northern Alberta has river sediments that contain natural bitumen. Eggs and fish in these rivers may be exposed to bitumen-related chemicals early in life. This paper assesses a short embryo-larval fish exposure to oil sands sediment and follows the fish behaviour as they mature in clean water and examines their breeding success as adults (5 months afterwards). The three different oil sands river sediments tested were: a sediment collected outside of the bitumen deposit (tested at 3 g/L, Reference sediment from upstream Steepbank River site), and two sediments collected within the deposit (each tested at low (1 g/L) and high (3 g/L) concentrations). The sediments within the bitumen deposit were from the Ells and Steepbank (Stp) Rivers, and both contained significant total PAHs (>170 ng/g wet weight sediment) and alkylated PAHs (>4480 ng/g). Fish were exposed to these sediments for 21 days (as eggs and larval fish), and then transferred permanently to clean water to mature and breed. There was a significant decrease in the number of egg clutches produced by fish exposed early in life to Stp downstream high sediment (compared to Reference sediment). There was also a decrease in overall cumulative egg production, with fish from Stp downstream high sediment producing just over 1000 eggs in total while fish exposed to Ref sediment produced nearly 6900 eggs. The fish with reduced egg production were also less social than expected as they matured, and they had a lower % of early vitellogenic eggs in their ovaries. Overall, the exposure shows that a single, brief exposure during early life stages to natural bitumen can affect fish in adulthood. Naturally occurring bitumen-derived PAHs can reduce fish reproductive output by complex mechanisms, measurable as lower ovary maturity and changes in social behaviour., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2024. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Assessing Receptor Activation in 2D and 3D Cultured Hepatocytes: Responses to a Single Compound and a Complex Mixture.
- Author
-
Jamshed L, Jamshed S, Frank RA, Hewitt LM, Thomas PJ, and Holloway AC
- Abstract
Responding to global standards and legislative updates in Canada, including Bill S-5 (2023), toxicity testing is shifting towards more ethical, in vitro methods. Traditional two-dimensional (2D) monolayer cell cultures, limited in replicating the complex in vivo environment, have prompted the development of more relevant three-dimensional (3D) spheroidal hepatocyte cultures. This study introduces the first 3D spheroid model for McA-RH7777 cells, assessing xenobiotic receptor activation, cellular signaling, and toxicity against dexamethasone and naphthenic acid (NA)-fraction components; NAFCs. Our findings reveal that 3D McA-RH7777 spheroids demonstrate enhanced sensitivity and more uniform dose-response patterns in gene expression related to xenobiotic metabolism (AhR and PPAR) for both single compounds and complex mixtures. Specifically, 3D cultures showed significant gene expression changes upon dexamethasone exposure and exhibited varying degrees of sensitivity and resistance to the apoptotic effects induced by NAFCs, in comparison to 2D cultures. The optimization of 3D culture conditions enhances the model's physiological relevance and enables the identification of genomic signatures under varied exposures. This study highlights the potential of 3D spheroid cultures in providing a more accurate representation of the liver's microenvironment and advancing our understanding of cellular mechanisms in toxicity testing.
- Published
- 2024
- Full Text
- View/download PDF
4. Chemical communication in wood frog (Rana sylvatica) tadpoles is influenced by early-life exposure to naphthenic acid fraction compounds.
- Author
-
Elvidge CK, Robinson CE, Caza RA, Hewitt LM, Frank RA, and Orihel DM
- Subjects
- Animals, Female, Larva, Ranidae, Water chemistry, Alberta, Communication, Oil and Gas Fields, Water Pollutants, Chemical toxicity
- Abstract
Environmental pollutants can disrupt chemical communication between aquatic organisms by interfering with the production, transmission, and/or detection of, as well as responses to, chemical cues. Here, we test the hypothesis that early-life exposure to naphthenic acid fraction compounds (NAFCs) from oil sands tailings disrupts antipredator-associated chemical communication in larval amphibians. Wild adult wood frogs (Rana sylvatica) captured during their natural breeding period were combined (1 female:2 males) in six replicate mesocosms filled with either uncontaminated lakewater or with NAFCs isolated from an active tailings pond in Alberta, Canada, at nominal 5 mg/L concentrations. Egg clutches were incubated and tadpoles maintained in their respective mesocosms for ∼40 days post-hatch. Tadpoles (Gosner stage 25-31) were then transferred individually to trial arenas filled with uncontaminated water and exposed to one of six chemical alarm cue (AC) stimuli solutions following a 3 × 2 × 2 design (3 AC types × 2 stimulus carriers × 2 rearing exposure groups). Relative to control tadpoles, NAFC-exposed tadpoles demonstrated higher baseline activity levels (line crosses and direction changes) when introduced to uncontaminated water. Antipredator responses differed in graded fashion with AC type, with control ACs eliciting the greatest latency to resume activity, water the least, and NAFC-exposed ACs intermediate. Pre- to post-stimulus difference scores were non-significant in control tadpoles, while NAFC-exposed tadpoles demonstrated significantly greater variation. While this suggests that exposure to NAFCs from fertilization through hatching may have interfered with AC production, it is unclear whether the quality or quantity of cues was affected. There was also no clear evidence that NAFC carrier water interfered with ACs or the alarm response in unexposed control tadpoles. These results emphasize the importance of understanding how behavioral and physiological effects of early-life NAFC exposure on critical antipredator responses may persist across life history stages., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. Naphthenic acid fraction compounds reduce the reproductive success of wood frogs (Rana sylvatica) by affecting offspring viability.
- Author
-
Robinson CE, Elvidge CK, Frank RA, Headley JV, Hewitt LM, Little AG, Robinson SA, Trudeau VL, Vander Meulen IJ, and Orihel DM
- Subjects
- Animals, Female, Male, Carboxylic Acids toxicity, Ranidae, Reproduction, Water, Oil and Gas Fields, Water Pollutants, Chemical toxicity, Water Pollutants, Chemical analysis
- Abstract
Understanding the toxicity of organic compounds in oil sands process-affected water (OSPW) is necessary to inform the development of environmental guidelines related to wastewater management in Canada's oil sands region. In the present study, we investigated the effects of naphthenic acid fraction compounds (NAFCs), one of the most toxic components of OSPW, on mating behaviour, fertility, and offspring viability in the wood frog (Rana sylvatica). Wild adult wood frogs were exposed separately from the opposite sex to 0, 5, or 10 mg/L of OSPW-derived NAFCs for 24 h and then combined in outdoor lake water mesocosms containing the same NAFC concentrations (n = 2 males and 1 female per mesocosm, n = 3 mesocosms per treatment). Mating events were recorded for 48 h and egg masses were measured to determine adult fertility. NAFC exposure had no significant effect on mating behaviour (probability of amplexus and oviposition, amplexus and oviposition latency, total duration of amplexus and number of amplectic events) or fertility (fertilization success and clutch size). Tadpoles (50 individuals per mesocosm at hatching, and 15 individuals per mesocosm from 42 d post-hatch) were reared in the same mesocosms under chronic NAFC exposure until metamorphic climax (61-85 d after hatching). Offspring exposed to 10 mg/L NAFCs during development were less likely to survive and complete metamorphosis, grew at a reduced rate, and displayed more frequent morphological abnormalities. These abnormalities included limb anomalies at metamorphosis, described for the first time after NAFC exposure. The results of this study suggest that NAFCs reduce wood frog reproductive success through declines in offspring viability and therefore raise the concern that exposure to NAFCs during reproduction and development may affect the recruitment of native amphibian populations in the oil sands region., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
6. Naphthenic acid fraction components from oil sands process-affected water from the Athabasca Oil Sands Region impair murine osteoblast differentiation and function.
- Author
-
Gutgesell RM, Jamshed L, Frank RA, Hewitt LM, Thomas PJ, and Holloway AC
- Subjects
- Animals, Mice, Osteogenesis, Carboxylic Acids chemistry, Water chemistry, Osteoblasts, Oil and Gas Fields, Water Pollutants, Chemical toxicity, Water Pollutants, Chemical analysis
- Abstract
The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife., (© 2022 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
7. The acute toxicity of bitumen-influenced groundwaters from the oil sands region to aquatic organisms.
- Author
-
Bauer AE, Hewitt LM, Roy JW, Parrott JL, Bartlett AJ, Gillis PL, Norwood WP, Rudy MD, Campbell SD, Rodrigues MR, Brown LR, Vanderveen R, Deeth LE, Holman EAM, Salerno J, Marentette JR, Lavalle C, Sullivan C, Shires K, Galicia M, Rubino J, Brown M, O'Neill A, Bickerton G, Dixon DG, and Frank RA
- Subjects
- Alberta, Animals, Aquatic Organisms, Hydrocarbons, Oil and Gas Fields, Water, Groundwater, Water Pollutants, Chemical analysis
- Abstract
The extraction of surface mined bitumen from oil sands deposits in northern Alberta, Canada produces large quantities of liquid tailings waste, termed oil sands process-affected water (OSPW), which are stored in large tailings ponds. OSPW-derived chemicals from several tailings ponds migrating past containment structures and through groundwater systems pose a concern for surface water contamination. The present study investigated the toxicity of groundwater from near-field sites adjacent to a tailings pond with OPSW influence and far-field sites with only natural oil sands bitumen influence. The acute toxicity of unfractionated groundwater and isolated organic fractions was assessed using a suite of aquatic organisms (Pimephales promelas, Oryzias latipes, Daphnia magna, Hyalella azteca, Lampsilis spp., Ceriodaphnia dubia, Hexagenia spp., and Vibrio fischeri). Assessment of unfractionated groundwater demonstrated toxicity towards all invertebrates in at least one far-field sample, with both near-field and far-field samples with bitumen influence toxic towards P. promelas, while no toxicity was observed for O. latipes. When assessing the unfractionated groundwater and isolated organic fractions from near-field and far-field groundwater sites, P. promelas and H. azteca were the most sensitive to organic components, while D. magna and L. cardium were most sensitive to the inorganic components. Groundwater containing appreciable amounts of dissolved organics exhibited similar toxicities to sensitive species regardless of an OSPW or natural bitumen source. The lack of a clear distinction in relative acute toxicities between near-field and far-field samples indicates that the water-soluble chemicals associated with bitumen are acutely toxic to several aquatic organisms. This result, combined with the similarities in chemical profiles between bitumen-influenced groundwater originating from OSPW and/or natural sources, suggests that the industrial bitumen extraction processes corresponding to the tailings pond in this study are not contributing unique toxic substances to groundwater, relative to natural bitumen compounds present in groundwater flow systems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2022. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
8. Fathead Minnows Exposed to Organic Compounds from Oil Sands Tailings as Embryos Have Reduced Survival, Impaired Development, and Altered Behaviors That Persist into Larval Stages.
- Author
-
Reynolds JS, Jackson BL, Madison BN, Elvidge CK, Frank RA, Hasler CT, Headley JV, Hewitt LM, Peru KM, Yakimowski SB, and Orihel DM
- Subjects
- Animals, Larva, Oil and Gas Fields, Organic Chemicals, Water, Cyprinidae physiology, Water Pollutants, Chemical analysis, Water Pollutants, Chemical toxicity
- Abstract
Our study evaluated whether exposure to naphthenic acid fraction compounds (NAFCs) extracted from oil sands process-affected waters (OSPW) has adverse effects on fish embryos that persist into later life. We exposed fathead minnow (Pimephales promelas) embryos to concentrations of NAFCs found in OSPW (2.5-54 mg/L) for 7 days (1 day postfertilization to hatch), then raised surviving larvae in outdoor mesocosms of uncontaminated lake water for 1 month. Embryos exposed to NAFCs were more likely to exhibit malformations (by up to 8-fold) and had slower heart rates (by up to 24%) compared to controls. Fish raised in uncontaminated lake water following exposure to NAFCs as embryos, were 2.5-fold less likely to survive during the larval stage than control fish. These fish also showed up to a 45% decrease in swim activity and a 36% increase in swim burst events during behavioral tests relative to controls. We conclude that exposure to NAFCs during the embryonic stage can have lasting effects on fish survival, physiology, and behavior that persist at least through the larval stage. These findings of delayed mortalities and persistent sublethal effects of embryonic NAFC exposure are relevant to informing the development of regulations on treated OSPW releases from mining operations. Environ Toxicol Chem 2022;41:1319-1332. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC., (© 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.)
- Published
- 2022
- Full Text
- View/download PDF
9. The effects of oil sands process-affected water naphthenic acid fraction components on GDF15 secretion in extravillous trophoblast cells.
- Author
-
Jamshed L, Perono GA, Yacoub LR, Gutgesell RM, Frank RA, Hewitt LM, Thomas PJ, and Holloway AC
- Subjects
- Animals, Carboxylic Acids, Cyclooxygenase 2, Female, Growth Differentiation Factor 15 genetics, Humans, Inflammation, Mammals, Placenta, Pregnancy, Prostaglandins, Prostaglandins E pharmacology, Transcription Factors, Trophoblasts, Water, Oil and Gas Fields, Water Pollutants, Chemical
- Abstract
Exposure to compounds present in petroleum and wastewaters from oil and gas extraction sites in the Alberta Oil Sands Region can impair reproductive health. It has been established that acid extractable organics found in oil sands process-affected water (OSPW) such as naphthenic acids (NA-fraction components; NAFC) can adversely affect reproductive outcomes. We have shown that NAFC exposure results in a significant upregulation of GDF15 in placental trophoblasts, a cellular stress marker known to be involved in human embryonic development and necessary for the maintenance of pregnancy. However, little is known regarding the mechanism(s) underlying NAFC-induced increases in GDF15 production during early placentation. The goal of this study was to examine the effects of NAFC exposure on the regulation of critical transcription factors of GDF15 in extravillous trophoblast cells. Of these transcription factors, inflammatory mediators including prostaglandins have been reported to inhibit proliferation and migration of trophoblast cells in vitro. Hence, the secondary goal of this study was to determine whether inflammation mediated through prostaglandin production is critical to GDF15 secretion. HTR-8/SVneo cells were exposed to an NAFC for 6 and 24 h to assess the expression of key transcriptional regulators, GDF15 secretion, and prostaglandin (PGE
2 ) output. Treatment with NAFC (125 mg/L only) significantly increased GDF15 expression and secretion in association with upregulation of the transcription factors KLF4, EGR1, ATF3 and TP53. Similarly, PTGS2 (i.e. COX2) expression and PGE2 output were significantly increased at the same concentration. However, co-treatment with a COX2 selective antagonist (SC236) only partially blocked the NAFC-induced increase in PGE2 output and did not block GDF15 expression or secretion. These findings suggest that while NAFC may affect GDF15 production, it is not exclusively a result of prostaglandin-mediated inflammation. This study provides new insights into the mechanisms by which NAFC may adversely affect placental trophoblast cell function in mammals., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
10. Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments.
- Author
-
Marvin CH, Berthiaume A, Burniston DA, Chibwe L, Dove A, Evans M, Hewitt LM, Hodson PV, Muir DCG, Parrott J, Thomas PJ, and Tomy GT
- Subjects
- Alberta, Environmental Monitoring, Oil and Gas Fields, Polycyclic Aromatic Hydrocarbons analysis, Polycyclic Compounds
- Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings., (Crown Copyright © 2021. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
11. Sex-Related Embryotoxicity of Pulp Mill Effluent Extracts in Medaka (Oryzias latipes) Female Leucophore-free FLFII Strain.
- Author
-
Orrego R, Guchardi J, Beyger L, Barra R, Hewitt LM, and Holdway D
- Subjects
- Animals, Embryo, Nonmammalian, Estradiol toxicity, Female, Male, Plant Extracts pharmacology, Testosterone pharmacology, Oryzias physiology
- Abstract
The aim of the present study was to evaluate the effects of exposure to Chilean pulp mill effluent extracts on developing postfertilized medaka embryos before and after sex definition relative to sex steroids (testosterone and 17beta-estradiol) and a wood phytoestrogen (beta-sitosterol). Our study included 2 waterborne semichronic exposure experiments, using a 24-h post fertilization (hpf) unknown-sex FLFII (female leucophore free) group and a second 72-hpf FLFII phenotypic sex-identified group (male autofluorescence leucophore) strain of medaka embryos. Chronic exposure of both FLFII strain embryo groups showed similar delay in time to hatch and decreased hatchability. Teratogenic responses such as vertebral malformation (fusion, incomplete formation, and lack of vertebral formation process) and pericardial edema were observed in both experiments, with a high percentage related to FLFII fluorescent leucophore-identified males. In addition, high mortality associated with severe malformations was observed in male and female embryos exposed to testosterone. Our research has demonstrated that exposure to Chilean mill effluent extracts caused severe male medaka embryotoxicity (in postfertilized embryos) before and after sex definition and, irrespective of the experimental group and effluent treatment, suggests partial removal following secondary treatment. Furthermore, differences in the severity and type of teratogenic effects with previous experiments (d-rR medaka strain), are associated with the unique phenotypes of this medaka mutant strain. Environ Toxicol Chem 2021;40:2297-2305. © 2021 SETAC., (© 2021 SETAC.)
- Published
- 2021
- Full Text
- View/download PDF
12. Endocrine Disruptor Impacts on Fish From Chile: The Influence of Wastewaters.
- Author
-
Barra RO, Chiang G, Saavedra MF, Orrego R, Servos MR, Hewitt LM, McMaster ME, Bahamonde P, Tucca F, and Munkittrick KR
- Subjects
- Animals, Chile, Ecosystem, Endocrine System drug effects, Environmental Monitoring, Estrogens pharmacology, Humans, Reproduction drug effects, Rivers chemistry, Waste Disposal, Fluid, Water Pollutants, Chemical pharmacology, Endocrine Disruptors pharmacology, Fishes physiology, Wastewater chemistry, Wastewater toxicity
- Abstract
Industrial wastewaters and urban discharges contain complex mixtures of chemicals capable of impacting reproductive performance in freshwater fish, called endocrine-disrupting compounds (EDCs). In Chile, the issue was highlighted by our group beginning over 15 years ago, by analyzing the impacts of pulp and paper mill effluents (PPME) in the Biobio, Itata, and Cruces River basins. All of the rivers studied are important freshwater ecosystems located in the Mediterranean region of Central Chile, each with a unique fish biodiversity. Sequentially, we developed a strategy based on laboratory assays, semicontrolled-field experiments (e.g., caging) and wild fish population assessments to explore the issue of reproductive impacts on both introduced and native fish in Chile. The integration of watershed, field, and laboratory studies was effective at understanding the endocrine responses in Chilean freshwater systems. The studies demonstrated that regardless of the type of treatment, pulp mill effluents can contain compounds capable of impacting endocrine systems. Urban wastewater treatment plant effluents (WWTP) were also investigated using the same integrated strategy. Although not directly compared, PPME and WWTP effluent seem to cause similar estrogenic effects in fish after waterborne exposure, with differing intensities. This body of work underscores the urgent need for further studies on the basic biology of Chilean native fish species, and an improved understanding on reproductive development and variability across Chilean ecosystems. The lack of knowledge of the ontogeny of Chilean fish, especially maturation and sexual development, with an emphasis on associated habitats and landscapes, are impediment factors for their conservation and protection against the threat of EDCs. The assessment of effects on native species in the receiving environment is critical for supporting and designing protective regulations and remediation strategies, and for conserving the unique Chilean fish biodiversity., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Barra, Chiang, Saavedra, Orrego, Servos, Hewitt, McMaster, Bahamonde, Tucca and Munkittrick.)
- Published
- 2021
- Full Text
- View/download PDF
13. Non-target profiling of bitumen-influenced waters for the identification of tracers unique to oil sands processed-affected water (OSPW) in the Athabasca watershed of Alberta, Canada.
- Author
-
Milestone CB, Sun C, Martin JW, Bickerton G, Roy JW, Frank RA, and Hewitt LM
- Abstract
Rationale: The objective of this study was to identify unique chemical tracers of oil sands process-affected water (OSPW) to enable definitive discrimination of tailings pond seepage from natural bitumen-influenced waters from the Canadian Alberta McMurray formation., Methods: The approach involved comparing unknowns from an unprecedented sample set of OSPW (n = 4) and OSPW-affected groundwaters (n = 15) with natural bitumen-influenced groundwaters (n = 20), using high-performance liquid chromatography/electrospray ionisation high-resolution mass spectrometry (HPLC/ESI-HRMS) operated in both polarities., Results: Four unknown chemical entities were identified as potential tracers of OSPW seepage and subsequently subjected to structural elucidation. One potential tracer, tentatively identified as a thiophene-containing carboxylic acid [C
15 H23 O3 S]- , was only detected in OSPW and OSPW-affected samples, thereby showing the greatest diagnostic potential. The remaining three unknowns, postulated to be two thiochroman isomers [C17 H25 O3 S]+ and an ethyl-naphthalene isomer [C16 H21 ]+ , were detected in one and two background groundwaters, respectively., Conclusions: We advanced the state of knowledge for tracers of tailings seepage beyond heteroatomic classes, to identifying diagnostic substances, with structures postulated. Synthesis of the four proposed structures is recommended to enable structural confirmations. This research will guide and inform the Oil Sands Monitoring Program in its efforts to assess potential influences of oil sands development on the Athabasca River watershed., (© 2020 Her Majesty the Queen in Right of Canada. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.)- Published
- 2021
- Full Text
- View/download PDF
14. Development of a Reduced-Volume Acute Lethality Toxicity Test for Hyalella azteca.
- Author
-
Rodrigues MR, Frank RA, Schissler DM, Deeth LE, Brown LR, Hedges AM, Dixon DG, Hewitt LM, and Bartlett AJ
- Subjects
- Amphipoda physiology, Animals, Cadmium Chloride toxicity, Carboxylic Acids chemistry, Carboxylic Acids toxicity, Female, Fresh Water analysis, Lethal Dose 50, Potassium Chloride toxicity, Water Quality, Amphipoda drug effects, Toxicity Tests, Acute methods, Water Pollutants, Chemical toxicity
- Abstract
Effects-directed analysis (EDA) is used to identify the principal toxic components within a complex mixture using iterative steps of chemical fractionation guided by bioassay results. Bioassay selection can be limited in EDA because of the volume requirements for many standardized test methods, and therefore, a reduced-volume acute toxicity test that also provides whole-organism responses is beneficial. To address this need, a static, 7-d, water-only, reduced-volume method (50 mL, 10 organisms) was developed for Hyalella azteca that substantially decreases the volume requirements of standard-volume acute test exposures (200-500 mL of test solution, 15-20 organisms) while maintaining water quality and meeting control survival criteria. Standard- and reduced-volume methods were compared by conducting concurrent toxicity tests with 2 inorganic toxicants (KCl and CdCl
2 ) and 2 organic mixtures of naphthenic acid fraction components (NAFCs) to evaluate test performance. There was no difference between methods when comparing the median lethal concentrations (LC50s) for KCl and both NAFC mixtures (p > 0.05). The LC50s for CdCl2 were statistically different (p = 0.0002); however, this was not considered biologically meaningful because the difference between LC50s was <2-fold. In conclusion, the reduced-volume H. azteca test method generated results comparable to standard-volume test methods and is suitable for use in situations where limited testing material is available, such as when conducting EDA. Environ Toxicol Chem 2020;39:2221-2227. © Her Majesty the Queen in Right of Canada 2020. Reproduced with the permission of the Minister of Environment and Climate Change Canada., (© Her Majesty the Queen in Right of Canada 2020. Reproduced with the permission of the Minister of Environment and Climate Change Canada.)- Published
- 2020
- Full Text
- View/download PDF
15. Brown bullhead at the St. Lawrence River (Cornwall) Area of Concern: health and endocrine status in the context of tissue concentrations of PCBs and mercury.
- Author
-
Pinheiro MDO, Simmons DBD, Villella M, Tetreault GR, Muir DCG, McMaster ME, Hewitt LM, Parrott JL, Park BJ, Brown SB, and Sherry JP
- Subjects
- Animals, Environmental Monitoring, Female, Male, Ontario, Ictaluridae, Mercury, Polychlorinated Biphenyls, Water Pollutants, Chemical
- Abstract
The St. Lawrence River, at Cornwall Ontario, has accumulated sediment contaminants, mainly mercury (Hg) and polychlorinated biphenyls (PCBs), from industrial point sources over many years. Although those sources are past, the river at Cornwall remains an Area of Concern (AOC). Because of remediation and other changes in the AOC, improved knowledge of contaminants in wild-fish and their putative links to health effects could help decision makers to better assess the AOC's state. Thus, we compared tissue concentrations of Hg, PCBs, morphometric measures of health, and biomarkers of exposure, metabolic-, and reproductive health in native brown bullhead (Ameiurus nebulosus) from the AOC to those of upstream reference fish. Linear discriminant analysis separated the adult fish of both sexes among upstream and downstream sites without misclassification. Burdens of total-Hg (all sites) and PCB toxic equivalents (downstream sites) exceeded the guidance for the protection of wildlife consumers. There were subtle effects of site on physiological variables, particularly in female fish. Total-Hg in tissue correlated negatively to plasma testosterone and 17β-estradiol in female fish at Cornwall: moreover, concentrations of both hormones were lower within the AOC compared to reference site fish. A similar effect on vitellogenin, which was uncorrelated to E2/T at the downstream sites, indicated the potential for reproductive effects. Downstream fish also had altered thyroidal status (T
3 , TSH, and ratio of thyroid epithelial cell area to colloid area). Despite spatial and temporal variability of the endocrine-related responses, these subtle effects on fish health within the AOC warrant further study.- Published
- 2020
- Full Text
- View/download PDF
16. Diagnostic Ratio Analysis: A New Concept for the Tracking of Oil Sands Process-Affected Water Naphthenic Acids and Other Water-Soluble Organics in Surface Waters.
- Author
-
Brunswick P, Shang D, Frank RA, van Aggelen G, Kim M, and Hewitt LM
- Subjects
- Carboxylic Acids, Sand, Oil and Gas Fields, Water Pollutants, Chemical
- Abstract
A diagnostic ratio forensics tool, similar to that recognized internationally for oil spill source identification, is proposed for use in conjunction with existing LC/QToF quantitative methodology for bitumen-derived water-soluble organics (WSOs). The concept recognizes that bitumen WSOs bear a chemical skeletal relationship to stearane and hopane oil biomarkers. The method uses response ratios for 50 selected WSOs compared between samples by their relative percent difference and adopted acceptance criteria. Oil sands process-affected water (OSPW) samples from different locations within a single tailings pond were shown to match, while those from different industrial sites did not. Acid extractable organic samples collected over 3 weeks from the same location within a single tailings pond matched with each other; as did temporal OSPW samples a year apart. Blind quality assurance samples of OSPW diluted in surface waters were positively identified to their corresponding OSPW source. No interferences were observed from surface waters, and there was no match between bitumen-influenced groundwater and OSPW samples, as expected for different sources. Proof of concept for OSPW source identification using diagnostic ratios was demonstrated, with anticipated application in the tracking of OSPW plumes in surface receiving waters, together with the potential for confirmation of source.
- Published
- 2020
- Full Text
- View/download PDF
17. Advances in Distinguishing Groundwater Influenced by Oil Sands Process-Affected Water (OSPW) from Natural Bitumen-Influenced Groundwaters.
- Author
-
Hewitt LM, Roy JW, Rowland SJ, Bickerton G, DeSilva A, Headley JV, Milestone CB, Scarlett AG, Brown S, Spencer C, West CE, Peru KM, Grapentine L, Ahad JME, Pakdel H, and Frank RA
- Subjects
- Alberta, Carboxylic Acids, Hydrocarbons, Oil and Gas Fields, Sand, Groundwater, Water Pollutants, Chemical
- Abstract
The objective of this study was to advance analytical methods for detecting oil sands process-affected water (OSPW) seepage from mining containments and discriminating any such seepage from the natural bitumen background in groundwaters influenced by the Alberta McMurray formation. Improved sampling methods and quantitative analyses of two groups of monoaromatic acids were employed to analyze OSPW and bitumen-affected natural background groundwaters for source discrimination. Both groups of monoaromatic acids showed significant enrichment in OSPW, while ratios of O
2 /O4 containing heteroatomic ion classes of acid extractable organics (AEOs) did not exhibit diagnostic differences. Evaluating the monoaromatic acids to track a known plume of OSPW-affected groundwater confirmed their diagnostic abilities. A secondary objective was to assess anthropogenically derived artificial sweeteners and per- and polyfluoroalkyl substances (PFAS) as potential tracers for OSPW. Despite the discovery of acesulfame and PFAS in most OSPW samples, trace levels in groundwaters influenced by general anthropogenic activities preclude them as individual robust tracers. However, their inclusion with the other metrics employed in this study served to augment the tiered, weight of evidence methodology developed. This methodology was then used to confirm earlier findings of OSPW migrations into groundwater reaching the Athabasca River system adjacent to the reclaimed pond at Tar Island Dyke.- Published
- 2020
- Full Text
- View/download PDF
18. Development of environmental effects monitoring protocol in Brazil: a fish guide study of three river estuaries.
- Author
-
da Mata Pavione P, da Costa KG, Perônico C, McMaster ME, Parrott JL, Hewitt LM, Munkittrick KR, Barreto FCC, Basilo TH, Gomes MP, Reis Filho RW, and Furley TH
- Subjects
- Animals, Brazil, Invertebrates growth & development, Pilot Projects, Environmental Monitoring methods, Estuaries, Fishes growth & development, Rivers chemistry, Water Pollutants, Chemical analysis
- Abstract
In Brazil, there are no unified and effective environmental monitoring models for bodies of water. Thus, several methodologies are used that result in information that is often difficult to compare, especially for stakeholders involved in regional water management. Studies in some countries such as Australia, Chile, the USA, and Sweden use the monitoring model implemented in Canada that was developed in the early 1990s. This model was designed to evaluate whether the current environmental regulations are sufficiently protective for pulp and paper effluents and for metal mining effluents. In this study, the Canadian Environmental Effects Monitoring methodologies were applied to three different Brazilian river basins, with the goal of constructing a framework for monitoring environmental effects. Pilot studies were carried out in the estuarine regions of the Benevente, Jucu, and Santa Maria da Vitória river basins, which are important rivers in the state of Espírito Santo. Evaluations included fish health, bioaccumulation studies, benthic invertebrate survey, and physical-chemical analyses of water and sediment. The quality of the environments was evaluated by means of seasonal samplings and comparisons between discharge, upstream, and downstream areas. This study made it possible to identify appropriate fish species to be used in environmental effects monitoring and the environmental quality of the rivers themselves as well as knowledge and policy gaps to implement such monitoring programs in Brazil. The study raises questions about the adequacy of Brazilian environmental legislation concerning tidal rivers.
- Published
- 2019
- Full Text
- View/download PDF
19. Chronic toxicity of oil sands tailings pond sediments to early life stages of fathead minnow ( Pimephales promelas ).
- Author
-
Parrott JL, Raine JC, McMaster ME, and Hewitt LM
- Abstract
In this study fathead minnow ( Pimephales promelas ) embryo-larval stages were exposed to two oil sands tailings pond sediments which had previously been shown to decrease the survival of embryo-larval larval stages of walleye ( Sander vitreus ) and northern pike ( Esox lucius ). Fathead minnow are standard test species and we wanted to compare their sensitivity to the other two species. Fathead minnow larvae were exposed for 20 days (5 days in the egg stage and 15 days in the larval stage) with daily renewal of sediments and waters. Sediments contained polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs (APAHs). Results from an earlier study showed that Sediment 1 contained 173 μg/g total PAHs + APAHs (97 % alkylated), and sediment 2 contained 401 μg/g total PAHs + APAHs (95 % alkylated). Fathead minnow larvae exposed to oil sands tailings pond sediments had decreased survival, decreased weight, and increased deformities. Fathead minnow survival was unaffected at the embryo stage and at hatch. Most deaths occurred at the larval stages 1-8 days after hatching, showing the importance of exposing the fish for at least a week after hatch. Toxicity was seen at 0.2 g/L of sediment, which was equivalent to the addition of 35 and 80 μg total PAHs + APAHs to 1 L of overlying water for sediment 1 and 2, respectively. When compared to embryo-larval northern pike and walleye results from previous studies, all three species of fish responded more strongly to sediment 2 compared to sediment 1. For effects on lethality, fathead minnow were equally sensitive to pike, but walleye were 5-28 times more sensitive to the lethal effects of the sediments compared to both fathead minnow and pike. The study (and comparisons to our previous studies) shows the difference in sensitivity between a model laboratory species (fathead minnow) and some species of wild fish that are highly relevant to the oil sands area of Alberta., (© 2019 Published by Elsevier Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
20. Transcriptome Profiling in Larval Fathead Minnow Exposed to Commercial Naphthenic Acids and Extracts from Fresh and Aged Oil Sands Process-Affected Water.
- Author
-
Loughery JR, Marentette JR, Frank RA, Hewitt LM, Parrott JL, and Martyniuk CJ
- Subjects
- Animals, Carboxylic Acids, Gene Expression Profiling, Larva, Oil and Gas Fields, Plant Extracts, Water, Cyprinidae, Water Pollutants, Chemical
- Abstract
Surface mining and extraction of oil sands results in the generation of and need for storage of large volumes of oil sands process-affected water (OSPW). More structurally complex than classical naphthenic acids (NAs), naphthenic acid fraction components (NAFCs) are key toxic constituents of OSPW, and changes in the NAFC profile in OSPW over time have been linked to mitigation of OSPW toxicity. Molecular studies targeting individual genes have indicated that NAFC toxicity is likely mediated via oxidative stress, altered cell cycles, ontogenetic differentiation, endocrine disruption, and immunotoxicity. However, the individual-gene approach results in a limited picture of molecular responses. This study shows that NAFCs, from aged or fresh OSPW, have a unique effect on the larval fathead minnow transcriptome and provides initial data to construct adverse outcome pathways for skeletal deformities. All three types of processed NAs (fresh, aged, and commercial) affected the immunome of developing fish. These gene networks included immunity, inflammatory response, B-cell response, platelet adhesion, and T-helper lymphocyte activity. Larvae exposed to both NAFCs and commercial NA developed cardiovascular and bone deformities, and transcriptomic networks reflected these developmental abnormalities. Gene networks found only in NAFC-exposed fish suggest NAFCs may alter fish cardiovascular health through altered calcium ion regulation. This study improves understanding regarding the molecular perturbations underlying developmental deformities following exposure to NAFCs.
- Published
- 2019
- Full Text
- View/download PDF
21. Long-term effects of an early-life exposure of fathead minnows to sediments containing bitumen. Part I: Survival, deformities, and growth.
- Author
-
Vignet C, Frank RA, Yang C, Wang Z, Shires K, Bree M, Sullivan C, Norwood WP, Hewitt LM, McMaster ME, and Parrott JL
- Subjects
- Animals, Geologic Sediments, Larva drug effects, Oil and Gas Fields, Polycyclic Aromatic Hydrocarbons analysis, Rivers, Water Pollutants, Chemical analysis, Cyprinidae physiology, Hydrocarbons toxicity, Water Pollutants, Chemical toxicity
- Abstract
The aim of this study was to investigate the long-term effects of a short exposure to natural sediments within the Athabasca oil sand formation to critical stages of embryo-larval development in fathead minnows (Pimephales promelas). Three different sediments were used: Ref sediment from the upper Steepbank River tested at 3 g/L (containing 12.2 ng/g ∑PAHs), and two bitumen-rich sediments tested at 1 and 3 g/L; one from the Ells River (Ells downstream, 6480 ng/g ∑PAHs) and one from the Steepbank River (Stp downstream, 4660 ng/g ∑PAHs). Eggs and larvae were exposed to sediments for 21 days, then transferred to clean water for a 5-month grow-out and recovery period. Larval fish had significantly decreased survival after exposure to 3 g/L sediment from Stp downstream, and decreased growth (length and weight at 16 days post hatch) in Ells and Stp downstream sediments at both 1 and 3 g/L. Decreased tail length was a sensitive endpoint in larval fish exposed to Ells and Stp downstream sediments for 21 days compared to Ref sediment. After the grow-out in clean water, all growth effects from the bitumen-containing sediments recovered, but adult fish from Stp downstream 3 g/L sediment had significant increases in jaw deformities. The study shows the potential for fish to recover from the decreased growth effects caused by sediments containing oil sands-related compounds, but that some effects of the early-life sediment exposure occur later on in adult fish., (Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
22. A preparative method for the isolation and fractionation of dissolved organic acids from bitumen-influenced waters.
- Author
-
Bauer AE, Frank RA, Headley JV, Milestone CB, Batchelor S, Peru KM, Rudy MD, Barrett SE, Vanderveen R, Dixon DG, and Hewitt LM
- Abstract
The surface mining of oil sands north of Fort McMurray, Alberta produces considerable tailings waste that is stored in large tailings ponds on industrial lease sites. Viable strategies for the detoxification of oil sands process affected water (OSPW) are under investigation. In order to assess the toxic potential of the suite of dissolved organics in OSPW, a method for their extraction and fractionation was developed using solid phase extraction. The method successfully isolated organic compounds from 180 L of an aged OSPW source. Using acidic- or alkaline-conditioned non-polar ENV+ resin and soxhlet extraction with ethyl acetate and methanol, three fractions (F1-F3) were generated. Chemical characterization of the generated fractions included infusion to electrospray ionization ultrahigh-resolution mass spectrometry (ESI-UHRMS), liquid chromatography quadrupole time-of-flight mass spectrometry, gas chromatography triple quadrupole time-of-flight mass spectrometry, and synchronous fluorescence spectroscopy (SFS). Additionally, ESI-UHRMS class distribution data and SFS identified an increased degree of oxygenation and aromaticity, associated with increased polarity. Method validation, which included method and matrix spikes with surrogate and labelled organic mono carboxylic acid standards, confirmed separation according to acidity and polarity with generally good recoveries (average 76%). Because this method is capable of extracting large sample volumes, it is amenable to thorough chemical characterization and toxicological assessments with a suite of bioassays. As such, this protocol will facilitate effects-directed analysis of toxic components within bitumen-influenced waters from a variety of sources., (Crown Copyright © 2019. Published by Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
23. The toxicity of organic fractions from aged oil sands process-affected water to aquatic species.
- Author
-
Bauer AE, Hewitt LM, Parrott JL, Bartlett AJ, Gillis PL, Deeth LE, Rudy MD, Vanderveen R, Brown L, Campbell SD, Rodrigues MR, Farwell AJ, Dixon DG, and Frank RA
- Subjects
- Aliivibrio fischeri, Amphipoda, Animals, Aquatic Organisms physiology, Carboxylic Acids, Cladocera, Cyprinidae, Daphnia, Hydrocarbons, Mining, Oryzias, Toxicity Tests, Aquatic Organisms drug effects, Oil and Gas Fields, Organic Chemicals toxicity, Petroleum Pollution, Water Pollutants, Chemical toxicity
- Abstract
The process of surface mining and extracting bitumen from oil sand produces large quantities of tailings and oil sands process-affected water (OSPW). The industry is currently storing OSPW on-site while investigating strategies for their detoxification. One such strategy relies on the biodegradation of organic compounds by indigenous microbes, resulting in aged tailings waters with reduced toxicity. This study assessed the toxicity of OSPW aged statically for approximately 18 years. Dissolved organics in aged OSPW were fractionated using a preparative solid-phase extraction method that generated three organic fractions (F1-F3) of increasing polarity. Eight aquatic species from different trophic levels were exposed to whole OSPW (WW) and the derived OSPW organic fractions to assess toxicity: Pimephales promelas, Oryzias latipes, Vibrio fischeri, Daphnia magna, Lampsilis cardium, Hyalella azteca, Ceriodaphnia dubia, and Hexagenia spp. Broad comparisons revealed that P. promelas and H. azteca were most sensitive to dissolved organics within aged OSPW, while WW was most toxic to L. cardium and H. azteca. Three cases of possible contaminant interactions occurred within whole OSPW treatments, as toxicity was higher than organic fractions for H. azteca and L. cardium, and lower for P. promelas. As such, the drivers of toxicity appeared to be dependent on the species exposed. Of the organic fractions assessed, F3 (most polar) was the most toxic overall while F2 (intermediate polarity) displayed little toxicity to all species evaluated. This presents strong evidence that classical mono-carboxylic naphthenic acids, mostly present in F1 (least polar), are not primarily responsible for the toxicity in aged tailings. The current study indicates that although the aged tailings source (≥18 years) did not display acute toxicity to the majority of organisms assessed, inorganic components and polyoxygenated organics may pose a persistent concern to some aquatic organisms., (Crown Copyright © 2019. Published by Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
24. Assessing wild fish exposure to ligands for sex steroid receptors from pulp and paper mill effluents in the Biobio River Basin, Central Chile.
- Author
-
Orrego R, Hewitt LM, McMaster M, Chiang G, Quiroz M, Munkittrick K, Gavilán JF, and Barra R
- Subjects
- Animals, Bioreactors, Chile, Cytochrome P-450 CYP1A1 metabolism, Endocrine Disruptors analysis, Environmental Monitoring methods, Female, Fishes growth & development, Industrial Waste analysis, Industry, Ligands, Liver drug effects, Liver enzymology, Reproduction drug effects, Seasons, Water Pollutants, Chemical analysis, Water Purification methods, Endocrine Disruptors toxicity, Fishes metabolism, Industrial Waste adverse effects, Receptors, Androgen metabolism, Receptors, Estrogen metabolism, Rivers chemistry, Water Pollutants, Chemical toxicity
- Abstract
Bioactive substances in the Biobio River Basin in Chile were examined by deploying Semi Permeable Membrane Devices (SPMDs) upstream and downstream of 4 pulp mill effluent discharges. Androgenic and estrogenic activity of SPMD extracts were then evaluated using in vitro fish sex steroid receptor binding assays. The results indicated the occurrence of estrogenic type compounds associated with one of the mill discharges. A significant correlation among the presence of these compounds, an increase in gonadosomatic index GSI and induction of hepatic EROD activity of two native fish species was observed. However, no significant presence of mature oocytes in female gonads was detected. Although EROD induction was observed in sites impacted by mill effluents, an increase of its activity occurred towards the downstream areas, suggesting other non-mill sources. More research is needed to understand the environmental changes in context of the new technological improvements in treatment systems to MBBR (Moving Bed Biofilm Reactor) recently implemented by the pulp mill industries., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
25. Application of the Target Lipid Model and Passive Samplers to Characterize the Toxicity of Bioavailable Organics in Oil Sands Process-Affected Water.
- Author
-
Redman AD, Parkerton TF, Butler JD, Letinski DJ, Frank RA, Hewitt LM, Bartlett AJ, Gillis PL, Marentette JR, Parrott JL, Hughes SA, Guest R, Bekele A, Zhang K, Morandi G, Wiseman S, and Giesy JP
- Subjects
- Alberta, Carboxylic Acids, Lipids, Organic Chemicals, Oil and Gas Fields, Water Pollutants, Chemical
- Abstract
Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g., naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.
- Published
- 2018
- Full Text
- View/download PDF
26. Meltwater from snow contaminated by oil sands emissions is toxic to larval fish, but not spring river water.
- Author
-
Parrott JL, Marentette JR, Hewitt LM, McMaster ME, Gillis PL, Norwood WP, Kirk JL, Peru KM, Headley JV, Wang Z, Yang C, and Frank RA
- Subjects
- Alberta, Animals, Larva drug effects, Seasons, Toxicity Tests, Cyprinidae, Oil and Gas Fields, Rivers chemistry, Snow chemistry, Water Pollutants, Chemical toxicity
- Abstract
To assess the toxicity of winter-time atmospheric deposition in the oil sands mining area of Northern Alberta, embryo-larval fathead minnow (Pimephales promelas) were exposed to snowmelt samples. Snow was collected in 2011-2014 near (<7km) oil sands open pit mining operations in the Athabasca River watershed and at sites far from (>25km) oil sands mining. Snow was shipped frozen back to the laboratory, melted, and amended with essential ions prior to testing. Fertilized fathead minnow eggs were exposed (<24h post-fertilization to 7-16days post-hatch) to a range of 25%-100% snowmelt. Snow samples far from (25-277km away) surface mining operations and upgrading facilities did not affect larval fathead minnow survival at 100%. Snow samples from sites near surface mining and refining activities (<7km) showed reduced larval minnow survival. There was some variability in the potencies of snow year-to-year from 2011 to 2014, and there were increases in deformities in minnows exposed to snow from 1 site on the Steepbank River. Although exposure to snowmelt from sites near oil sands surface mining operations caused effects in larval fish, spring melt water from these same sites in late March-May of 2010, 2013 and 2014 showed no effects on larval survival when tested at 100%. Snow was analyzed for metals, total naphthenic acid concentrations, parent PAHs and alkylated PAHs. Naphthenic acid concentrations in snow were below those known to affect fish larvae. Concentrations of metals in ion-amended snow were below published water quality guideline concentrations. Compared to other sites, the snowmelt samples collected close to mining and upgrading activities had higher concentrations of PAHs and alkylated PAHs associated with airborne deposition of fugitive dusts from mining and coke piles, and in aerosols and particles from stack emissions., Capsule: Snow collected close to oil sands surface mining sites is toxic to larval fathead minnows in the lab; however spring melt water samples from the same sites do not reduce larval fish survival., (Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
27. Toxicity of naphthenic acids to invertebrates: Extracts from oil sands process-affected water versus commercial mixtures.
- Author
-
Bartlett AJ, Frank RA, Gillis PL, Parrott JL, Marentette JR, Brown LR, Hooey T, Vanderveen R, McInnis R, Brunswick P, Shang D, Headley JV, Peru KM, and Hewitt LM
- Subjects
- Aliivibrio fischeri, Amphipoda, Animals, Fresh Water, Hydrocarbons, Oil and Gas Fields, Petroleum Pollution, Water Pollutants, Chemical analysis, Carboxylic Acids toxicity, Invertebrates drug effects, Toxicity Tests, Water Pollutants, Chemical toxicity
- Abstract
The toxicity of oil sands process-affected water (OSPW) has been primarily attributed to polar organic constituents, including naphthenic acid fraction components (NAFCs). Our objective was to assess the toxicity of NAFCs derived from fresh and aged OSPW, as well as commercial naphthenic acid (NA) mixtures. Exposures were conducted with three aquatic species: Hyalella azteca (freshwater amphipod), Vibrio fischeri (marine bacterium, Microtox
® assay), and Lampsilis cardium (freshwater mussel larvae (glochidia)). Commercial NAs were more toxic than NAFCs, with differences of up to 30-, 4-, and 120-fold for H. azteca, V. fischeri, and L. cardium, respectively, demonstrating that commercial NAs are not reliable surrogates for assessing the toxicity of NAFCs. Differences in toxicity between species were striking for both commercial NAs and NAFCs. Overall, V. fischeri was the least sensitive and H. azteca was the most sensitive organism. Responses of V. fischeri and H. azteca to NAFC exposures were consistent (< 2-fold difference) regardless of source and age of OSPW; however, effects on L. cardium ranged 17-fold between NAFCs. NAFCs derived from fresh OSPW sources were similarly or less toxic to those from aged OSPW. Our results support the need to better characterize the complex mixtures associated with bitumen-influenced waters, both chemically and toxicologically., (Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
28. Evaluating the potential of effluent extracts from pulp and paper mills in Canada, Brazil, and New Zealand to affect fish reproduction: Estrogenic effects in fish.
- Author
-
Orrego R, Milestone CB, Hewitt LM, Guchardi J, Heid-Furley T, Slade A, MacLatchy DL, and Holdway D
- Subjects
- Animals, Brazil, Canada, Estrogens metabolism, New Zealand, Solid Phase Extraction, Vitellogenins metabolism, Industrial Waste analysis, Oncorhynchus mykiss metabolism, Paper, Reproduction drug effects, Water Pollutants, Chemical chemistry, Water Pollutants, Chemical toxicity
- Abstract
The authors examined the potential of pulp mill effluent from pulp-producing countries (Canada, Brazil, New Zealand) to affect fish reproduction. Specifically, the estrogenic effects in juvenile rainbow trout (Oncorhynchus mykiss) pulse-exposed to 11 different mill effluent extracts (intraperitoneal injections of solid-phase extraction-dichloromethane nonpolar fraction). The results indicated that effluent extracts were estrogenic in juvenile trout irrespective of the gender, as reflected by increasing level of plasma vitellogenin (VTG; Brazil > New Zealand > Canada). Despite the high variability observed among mills, differences in VTG levels were related to the type of mill process (kraft > elementary chlorine-free kraft > thermomechanical pulping). Moreover, effluent treatments did not appear to significantly decrease VTG induction. A consistent estrogenic effect was observed in those mills that process a combination of feedstocks (softwood and hardwood), with the highest increase in VTG related to eucalyptus feedstock. The results demonstrate significant estrogenic effects of pulp mill effluents on chronically exposed juvenile trout, suggesting that in vivo metabolic activation of precursors is necessary to cause the observed increases in VTG levels. This molecular estrogenic response provides a useful starting point for predicting population-level impacts through the adverse outcome pathway methodology. Environ Toxicol Chem 2017;36:1547-1555. © 2016 SETAC., (© 2016 SETAC.)
- Published
- 2017
- Full Text
- View/download PDF
29. The Relationship between Organic Loading and Effects on Fish Reproduction for Pulp Mill Effluents across Canada.
- Author
-
Martel PH, O'Connor BI, Kovacs TG, van den Heuvel MR, Parrott JL, McMaster ME, MacLatchy DL, Van Der Kraak GJ, and Hewitt LM
- Subjects
- Animals, Canada, Cyprinidae, Reproduction drug effects, Water Pollutants, Chemical, Industrial Waste, Paper
- Abstract
This study builds upon the work of a multiagency consortium tasked with determining cost-effective solutions for the effects of pulp mill effluents on fish reproduction. A laboratory fathead minnow egg production test and chemical characterization tools were used to benchmark 81 effluents from 20 mills across Canada, representing the major pulping, bleaching, and effluent treatment technologies. For Kraft and mechanical pulp mills, effluents containing less than 20 mg/L BOD
5 were found to have the greatest probability of having no effects. Organic loading, expressed as the total detected solvent-extractable components by gas chromatography/mass spectrometry (GC/MS), also correlated with decreased egg laying. Exceptions were found for specific Kraft, mechanical, and sulfite mills, suggesting yet unidentified causative agents are involved. Recycled fiber mill effluents, tested for the first time, were found to have little potential for reproductive effects despite large variations in BOD5 and GC/MS profiles. Effluent treatment systems across all production types were generally efficient, achieving a combined 82-98% BOD5 removal. Further reductions of final effluent organic loadings toward the target of less than 20 mg/L are recommended and can be realized through biotreatment optimization, the reduction of organic losses associated with production upsets and selecting best available technologies that reduce organic loadings to biotreatment.- Published
- 2017
- Full Text
- View/download PDF
30. A traceable reference for direct comparative assessment of total naphthenic acid concentrations in commercial and acid extractable organic mixtures derived from oil sands process water.
- Author
-
Brunswick P, Hewitt LM, Frank RA, Kim M, van Aggelen G, and Shang D
- Subjects
- Chromatography, Liquid, Humans, Limit of Detection, Mass Spectrometry, Reference Values, Carboxylic Acids toxicity, Industrial Waste, Oil and Gas Fields, Water Pollutants, Chemical toxicity
- Abstract
The advantage of using naphthenic acid (NA) mixtures for the determination of total NA lies in their chemical characteristics and identification of retention times distinct from isobaric interferences. However, the differing homolog profiles and unknown chemical structures of NA mixtures do not allow them to be considered a traceable reference material. The current study provides a new tool for the comparative assessment of different NA mixtures by direct reference to a single, well-defined and traceable compound, decanoic-d
19 acid. The method employed an established liquid chromatography time-of-flight mass spectrometry (LC/QToF) procedure that was applicable both to the classic O2 NA species dominating commercial mixtures and additionally to the O4 species known to be present in acid extractable organics (AEOs) derived from oil sands process water (OSPW). Four different commercial NA mixtures and one OSPW-derived AEOs mixture were comparatively assessed. Results showed significant difference among Merichem Technical, Aldrich, Acros, and Kodak commercial NA mixtures with respect to "equivalent to decanoic-d19 acid" concentration ratios to nominal. Furthermore, different lot numbers of single commercial NA mixtures were found to be inconsistent with respect to their homolog content by percent response. Differences in the observed homolog content varied significantly, particularly at the lower (n = 9-14) and higher (n = 20-23) carbon number ranges. Results highlighted the problem between using NA mixtures from different sources and different lot numbers but offered a solution to the problem from a concentration perspective. It is anticipated that this tool may be utilized in review of historical data in addition to future studies, such as the study of OSPW derived acid extractable organics (AEOs) and fractions employed during toxicological studies.- Published
- 2017
- Full Text
- View/download PDF
31. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources.
- Author
-
Brack W, Dulio V, Ågerstrand M, Allan I, Altenburger R, Brinkmann M, Bunke D, Burgess RM, Cousins I, Escher BI, Hernández FJ, Hewitt LM, Hilscherová K, Hollender J, Hollert H, Kase R, Klauer B, Lindim C, Herráez DL, Miège C, Munthe J, O'Toole S, Posthuma L, Rüdel H, Schäfer RB, Sengl M, Smedes F, van de Meent D, van den Brink PJ, van Gils J, van Wezel AP, Vethaak AD, Vermeirssen E, von der Ohe PC, and Vrana B
- Abstract
Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment., (Copyright © 2016. Published by Elsevier B.V.)
- Published
- 2017
- Full Text
- View/download PDF
32. Molecular responses of Walleye (Sander vitreus) embryos to naphthenic acid fraction components extracted from fresh oil sands process-affected water.
- Author
-
Marentette JR, Sarty K, Cowie AM, Frank RA, Hewitt LM, Parrott JL, and Martyniuk CJ
- Subjects
- Animals, Carboxylic Acids chemistry, Cytochrome P-450 CYP1A1 genetics, Fish Proteins genetics, Oxidative Stress drug effects, Oxidative Stress genetics, Oxidoreductases genetics, Real-Time Polymerase Chain Reaction, Water Pollutants, Chemical toxicity, Carboxylic Acids toxicity, Embryo, Nonmammalian drug effects, Gene Expression Regulation drug effects, Oil and Gas Fields chemistry, Perches physiology
- Abstract
Naphthenic acid fraction components (NAFCs) are constituents of oil sands process-affected water (OSPW), which is generated as a result of unconventional oil production via surface mining in the Athabasca oil sands region. NAFCs are often considered to be major drivers of OSPW toxicity to various taxa, including fishes. However, the molecular targets of these complex mixtures are not fully elucidated. Here we examined the effects in walleye (Sander vitreus) embryos after exposure to NAFCs extracted from fresh OSPW. Eleutheroembryos (exposed to 0, 4.2 or 8.3mg/L NAFCs from 1day post-fertilization to hatch) were subsampled, measured for growth and deformities, and molecular responses were assessed via real-time polymerase chain reaction (PCR). Fourteen genes were evaluated, with a focus on the aryl-hydrocarbon receptor (AhR) - cytochrome P450 pathway (arnt, cyp1a1), the oxidative stress axis (cat, gst, sod, gpx1b), apoptosis (e.g. casp3, bax and p53), growth factor signaling (e.g. insulin-like growth factors igf1, igf1b, and igf1bp), and tissue differentiation (vim). NAFC exposure was associated with an increase in the expression of cyp1a1, and a decrease in gpx1b and ribosomal protein rps40. These results indicate that NAFC effects on walleye early-life stages may be mediated through oxidative stress via pathways that include AhR., (Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
33. Assessing spatial and temporal variability of acid-extractable organics in oil sands process-affected waters.
- Author
-
Frank RA, Milestone CB, Rowland SJ, Headley JV, Kavanagh RJ, Lengger SK, Scarlett AG, West CE, Peru KM, and Hewitt LM
- Subjects
- Canada, Gas Chromatography-Mass Spectrometry, Ponds analysis, Spectrometry, Fluorescence, Carboxylic Acids analysis, Oil and Gas Fields, Organic Chemicals analysis, Ponds chemistry, Water Pollutants, Chemical analysis
- Abstract
The acid-extractable organic compounds (AEOs), including naphthenic acids (NAs), present within oil sands process-affected water (OSPW) receive great attention due to their known toxicity. While recent progress in advanced separation and analytical methodologies for AEOs has improved our understanding of the composition of these mixtures, little is known regarding any variability (i.e., spatial, temporal) inherent within, or between, tailings ponds. In this study, 5 samples were collected from the same location of one tailings pond over a 2-week period. In addition, 5 samples were collected simultaneously from different locations within a tailings pond from a different mine site, as well as its associated recycling pond. In both cases, the AEOs were analyzed using SFS, ESI-MS, HRMS, GC×GC-ToF/MS, and GC- & LC-QToF/MS (GC analyses following conversion to methyl esters). Principal component analysis of HRMS data was able to distinguish the ponds from each other, while data from GC×GC-ToF/MS, and LC- and GC-QToF/MS were used to differentiate samples from within the temporal and spatial sample sets, with the greater variability associated with the latter. Spatial differences could be attributed to pond dynamics, including differences in inputs of tailings and surface run-off. Application of novel chemometric data analyses of unknown compounds detected by LC- and GC-QToF/MS allowed further differentiation of samples both within and between data sets, providing an innovative approach for future fingerprinting studies., (Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
34. Assessing Risks of Shallow Riparian Groundwater Quality Near an Oil Sands Tailings Pond.
- Author
-
Roy JW, Bickerton G, Frank RA, Grapentine L, and Hewitt LM
- Subjects
- Canada, Ponds, Groundwater, Oil and Gas Fields, Water Pollutants, Chemical
- Abstract
The potential discharge of groundwater contaminated by oil sands process-affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For "pond-site" samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, "non-pond" samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond-site and non-pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na-Cl ratio, were noted between a small subset of samples from two pond-site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator-based screening suggests that OSPW-affected groundwater may be reaching Athabasca River sediments at a few locations., (© 2016 Her Majesty the Queen in Right of Canada. Groundwater © 2016, National Ground Water Association.)
- Published
- 2016
- Full Text
- View/download PDF
35. Sensitivity of walleye (Sander vitreus) and fathead minnow (Pimephales promelas) early-life stages to naphthenic acid fraction components extracted from fresh oil sands process-affected waters.
- Author
-
Marentette JR, Frank RA, Hewitt LM, Gillis PL, Bartlett AJ, Brunswick P, Shang D, and Parrott JL
- Subjects
- Alberta, Animals, Embryo, Nonmammalian drug effects, Carboxylic Acids chemistry, Cyprinidae, Industrial Waste adverse effects, Oil and Gas Fields, Perches, Water Pollutants, Chemical toxicity
- Abstract
Unconventional oil production in Alberta's oil sands generates oil sands process-affected water (OSPW), which contains toxic constituents such as naphthenic acid fraction components (NAFCs). There have been few studies examining effects of NAFC exposure over long periods of early-life stage development in fish. Here we examined the effects of NAFCs extracted from OSPW to embryo-larval fathead minnow, exposed for 21 days. We compared the sensitivity of fathead minnow to walleye reared to 7 days post-hatch (18-20 days total). EC50s for hatch success, including deformities, and total survival were lower for walleye (10-11 mg/L) than fathead minnow (22-25 mg/L), with little post-hatch mortality observed in either species. NAFC exposure affected larval growth at concentrations below the EC50 in fathead minnow (total mass IC10 14-17 mg/L). These data contribute to an understanding of the developmental stages targeted by oil sands NAFCs, as well as their toxicity in a greater range of relevant taxa., (Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
36. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.
- Author
-
Barrow MP, Peru KM, Fahlman B, Hewitt LM, Frank RA, and Headley JV
- Abstract
There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.
- Published
- 2015
- Full Text
- View/download PDF
37. Naphthenic Acid Mixtures from Oil Sands Process-Affected Water Enhance Differentiation of Mouse Embryonic Stem Cells and Affect Development of the Heart.
- Author
-
Mohseni P, Hahn NA, Frank RA, Hewitt LM, Hajibabaei M, and Van Der Kraak G
- Subjects
- Animals, Biomarkers metabolism, Cell Death drug effects, Cell Lineage drug effects, Heart drug effects, Mice, Mouse Embryonic Stem Cells drug effects, Mouse Embryonic Stem Cells metabolism, Myocytes, Cardiac cytology, Myocytes, Cardiac drug effects, Myocytes, Cardiac metabolism, Neural Plate drug effects, Neural Plate metabolism, Signal Transduction drug effects, Up-Regulation drug effects, Carboxylic Acids toxicity, Cell Differentiation drug effects, Heart embryology, Mouse Embryonic Stem Cells cytology, Oil and Gas Fields, Water Pollutants, Chemical toxicity
- Abstract
Extraction of petrochemicals from the surface mining of oil sand deposits results in generation of large volumes of oil sands process-affected water (OSPW). Naphthenic acids (NA) are generally considered to be among the most toxic components of OSPW. Previous studies have shown that NAs are toxic to aquatic organisms, however knowledge of their effects on mammalian health and development is limited. In the present study, we evaluated the developmental effects of an NA extract prepared from fresh OSPW on differentiating mouse embryonic stem cells (ESC). We found that treatment of differentiating cells with the NA extract at noncytotoxic concentrations alters expression of various lineage specification markers and development of the heart. Notably, expression of cardiac specific markers such as Nkx2.5, Gata4, and Mef2c were significantly up-regulated. Moreover, exposure to the NA extract enhanced differentiation of embryoid bodies and resulted in the early appearance of spontaneously beating clusters. Interestingly, exposure of undifferentiated mouse ESCs to the NA extract did not change the expression level of pluripotency markers (i.e., Oct4, Nanog, and Sox2). Altogether, these data identify some of the molecular pathways affected by components within this NA extract during differentiation of mammalian cells.
- Published
- 2015
- Full Text
- View/download PDF
38. Use of the distributions of adamantane acids to profile short-term temporal and pond-scale spatial variations in the composition of oil sands process-affected waters.
- Author
-
Lengger SK, Scarlett AG, West CE, Frank RA, Hewitt LM, Milestone CB, and Rowland SJ
- Subjects
- Adamantane standards, Canada, Water Pollutants, Chemical standards, Adamantane analysis, Environmental Monitoring methods, Oil and Gas Fields, Ponds chemistry, Water Pollutants, Chemical analysis
- Abstract
Oil industry produced waters, such as the oils sands process-affected waters (OSPW) of Alberta, Canada, represent a challenge in terms of risk assessment and reclamation due to their extreme complexity, particularly of the organic chemical constituents, including the naphthenic acids (NA). The identification of numerous NA in single samples has raised promise for the use of NA distributions for profiling OSPW. However, monitoring of the success of containment is still difficult, due to the lack of knowledge of the homogeneity (or otherwise) of OSPW composition within, and between, different industry containments. Here we used GC×GC-MS to compare the NA of five OSPW samples from each of two different industries. Short-term temporal and pond-scale spatial variations in the distributions of known adamantane acids and diacids and other unknown tricyclic acids were examined and a statistical appraisal of the replicate data made. The presence/absence of individual acids easily distinguished the OSPW NA of one industry from those of the other. The proportions of tricyclic acids with different carbon numbers also varied significantly between the OSPW of the two industries. The pond-scale spatial variation in NA in OSPW samples was higher than the short-term (2 weeks) temporal variations. An OSPW sample from an aged pond was exceptionally high in the proportion of C15,16,17 compounds, possibly due to increased biotransformation. Such techniques could possibly also help to distinguish different sources of NA in the environment.
- Published
- 2015
- Full Text
- View/download PDF
39. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection.
- Author
-
Brunswick P, Shang D, van Aggelen G, Hindle R, Hewitt LM, Frank RA, Haberl M, and Kim M
- Subjects
- Chromatography, Liquid methods, Isomerism, Limit of Detection, Mining, Oil and Gas Fields, Tandem Mass Spectrometry methods, Carboxylic Acids administration & dosage, Groundwater chemistry, Water Pollutants, Chemical analysis
- Abstract
A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0μgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02μgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005μgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004μgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed and a quantitative assay of an adamantane carboxylic acid is reported., (Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
40. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos.
- Author
-
Marentette JR, Frank RA, Bartlett AJ, Gillis PL, Hewitt LM, Peru KM, Headley JV, Brunswick P, Shang D, and Parrott JL
- Subjects
- Alberta, Animals, Cardiovascular Abnormalities chemically induced, Heart Rate drug effects, Oil and Gas Fields chemistry, Water Pollutants, Chemical toxicity, Carboxylic Acids toxicity, Cyprinidae embryology, Embryo, Nonmammalian drug effects
- Abstract
Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited., (Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
41. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.
- Author
-
Bauer AE, Frank RA, Headley JV, Peru KM, Hewitt LM, and Dixon DG
- Subjects
- Alberta, Biodegradation, Environmental, Industrial Waste analysis, Methylation, Molecular Weight, Oxygen chemistry, Spectrometry, Fluorescence, Spectrometry, Mass, Electrospray Ionization, Structure-Activity Relationship, Water Pollutants, Chemical analysis, Oil and Gas Fields, Organic Chemicals analysis, Petroleum analysis
- Abstract
The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation., (© 2015 SETAC.)
- Published
- 2015
- Full Text
- View/download PDF
42. Effects of model aromatizable (17α-methyltestosterone) and non-aromatizable (5α-dihydrotestosterone) androgens on the adult mummichog (Fundulus heteroclitus) in a short-term reproductive endocrine bioassay.
- Author
-
Rutherford R, Lister A, Hewitt LM, and MacLatchy D
- Subjects
- Age Factors, Animals, Dose-Response Relationship, Drug, Female, Male, Reproduction physiology, Time Factors, Water Pollutants, Chemical toxicity, Androgens toxicity, Biological Assay methods, Dihydrotestosterone toxicity, Fundulidae blood, Methyltestosterone toxicity, Reproduction drug effects
- Abstract
Androgens originating from pulp mill processing, sewage treatment facilities and agricultural activities have the potential for discharge into aquatic receiving environments. To assess androgen effects on reproductive endocrine status in fish in estuarine environments, male and female adult northern mummichog (Fundulus heteroclitus macrolepidotus) were exposed to an aromatizable androgen (17α-methyltestosterone; MT) and a non-aromatizable androgen (5α-dihydrotestosterone; DHT) in a short-term reproductive endocrine bioassay. Fish were nominally exposed to 10 μg/L or 100 μg/L DHT, or 0.1 μg/L or 1 μg/L MT for 14 days during gonadal recrudescence. Actual concentrations of androgens, as measured by enzyme immunoassay (EIA), were 10-49% of nominal MT 0.1, 3-6% of nominal MT 1, 5-10% of nominal DHT 10 and 3-25% of nominal DHT 100. Female mummichog were impacted to a greater degree by androgen exposure, with increased plasma testosterone (T) at 100 μg/L DHT, depressed plasma 17β-estradiol (E2) at both DHT concentrations and at 1 μg/L MT, as well as depressed in vitro E2 at both MT concentrations and 100 μg/L DHT. Males had depressed plasma T in the 10 μg/L DHT treatment and depressed in vitro 11-ketotestosterone production for both MT concentrations and 10 μg/L DHT. Ovarian aromatase gene expression was induced in females exposed to 1 μg/L MT. DHT at 100 μg/L increased hepatic vitellogenin-1 (VTG1) expression in males and depressed VTG1 expression in females. The range of responses between sexes and among species provides evidence for modes of actions and potential impacts of androgens in aquatic receiving environments., (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
43. Bicyclic naphthenic acids in oil sands process water: identification by comprehensive multidimensional gas chromatography-mass spectrometry.
- Author
-
Wilde MJ, West CE, Scarlett AG, Jones D, Frank RA, Hewitt LM, and Rowland SJ
- Subjects
- Alkanes analysis, Carboxylic Acids isolation & purification, Esters analysis, Petroleum analysis, Carboxylic Acids analysis, Gas Chromatography-Mass Spectrometry, Oil and Gas Fields chemistry, Water Pollutants, Chemical analysis
- Abstract
Although bicyclic acids have been reported to be the major naphthenic acids in oil sands process-affected water (OSPW) and a well-accepted screening assay indicated that some bicyclics were the most acutely toxic acids tested, none have yet been identified. Here we show by comprehensive multidimensional gas chromatography-mass spectrometry (GC×GC-MS), that >100 C8-15 bicyclic acids are typically present in OSPW. Synthesis or purchase allowed us to establish the GC×GC retention times of methyl esters of numerous of these and the mass spectra and published spectra of some additional types, allowed us to identify bicyclo[2.2.1]heptane, bicyclo[3.2.1]octane, bicyclo[4.3.0]nonane, bicyclo[3.3.1]nonane and bicyclo[4.4.0]decane acids in OSPW and a bicyclo[2.2.2]octane acid in a commercial acid mixture. The retention positions of authentic bicyclo[3.3.0]octane and bicyclo[4.2.0]octane carboxylic acid methyl esters and published retention indices, showed these were also possibilities, as were bicyclo[3.1.1]heptane acids. Bicyclo[5.3.0]decane and cyclopentylcyclopentane carboxylic acids were ruled out in the samples analysed, on the basis that the corresponding alkanes eluted well after bicyclo[4.4.0]decane (latest eluting acids). Bicyclo[4.2.1]nonane, bicyclo[3.2.2]nonane, bicyclo[3.3.2]decane, bicyclo[4.2.2]decane and spiro[4.5]decane carboxylic acids could not be ruled out or in, as no authentic compounds or literature data were available. Mass spectra of the methyl esters of the higher bicyclic C12-15 acids suggested that many were simply analogues of the acids identified above, with longer alkanoate chains and/or alkyl substituents. Our hypothesis is that these acids represent the biotransformation products of the initially somewhat more bio-resistant bicyclanes of petroleum. Although remediation studies suggest that many bicyclic acids can be relatively quickly removed from suitably treated OSPW, examination by GC×GC-MS may show which isomers are affected most. Knowledge of the structures will allow the toxicity of any residual isomers to be calculated and measured., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
44. Mass spectral characterisation of a polar, esterified fraction of an organic extract of an oil sands process water.
- Author
-
Rowland SJ, Pereira AS, Martin JW, Scarlett AG, West CE, Lengger SK, Wilde MJ, Pureveen J, Tegelaar EW, Frank RA, and Hewitt LM
- Subjects
- Chromatography, High Pressure Liquid, Esters chemistry, Solid Phase Extraction, Oil and Gas Fields chemistry, Organic Chemicals chemistry, Spectrometry, Mass, Electrospray Ionization methods, Sulfur Compounds chemistry
- Abstract
Rationale: Characterising complex mixtures of organic compounds in polar fractions of heavy petroleum is challenging, but is important for pollution studies and for exploration and production geochemistry. Oil sands process-affected water (OSPW) stored in large tailings ponds by Canadian oil sands industries contains such mixtures., Methods: A polar OSPW fraction was obtained by silver ion solid-phase extraction with methanol elution. This was examined by numerous methods, including electrospray ionisation (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) and ultra-high-pressure liquid chromatography (uHPLC)/Orbitrap MS, in multiple ionisation and MS/MS modes. Compounds were also synthesised for comparison., Results: The major ESI ionisable compounds detected (+ion mode) were C15-28 SO3 species with 3-7 double bond equivalents (DBE) and C27-28 SO5 species with 5 DBE. ESI-MS/MS collision-induced losses were due to water, methanol, water plus methanol and water plus methyl formate, typical of methyl esters of hydroxy acids. Once the fraction was re-saponified, species originally detected by positive ion MS, could be detected only by negative ion MS, consistent with their assignment as sulphur-containing hydroxy carboxylic acids. The free acid of a keto dibenzothiophene alkanoic acid was added to an unesterified acid extract of OSPW in known concentrations as a putative internal standard, but attempted quantification in this way proved unreliable., Conclusions: The results suggest the more polar acidic organic SO3 constituents of OSPW include C15-28 S-containing, alicyclic and aromatic hydroxy carboxylic acids. SO5 species are possibly sulphone analogues of these. The origin of such compounds is probably via further biotransformation (hydroxylation) of the related S-containing carboxylic acids identified previously in a less polar OSPW fraction. The environmental risks, corrosivity and oil flow assurance effects should be easier to assess, given that partial structures are now known, although further identification is still needed., (Copyright © 2014 John Wiley & Sons, Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
45. Response to Comment on "Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification".
- Author
-
Frank RA, Roy JW, Bickerton G, Rowland SJ, Headley JV, Scarlett AG, West CE, Peru KM, Parrott JL, Conly FM, and Hewitt LM
- Subjects
- Environmental Monitoring, Groundwater analysis, Industrial Waste analysis, Oil and Gas Fields chemistry, Petroleum Pollution analysis, Water Pollutants, Chemical analysis
- Published
- 2014
- Full Text
- View/download PDF
46. Wild fish from the Bay of Quinte Area of Concern contain elevated tissue concentrations of PCBs and exhibit evidence of endocrine-related health effects.
- Author
-
Simmons DB, McMaster ME, Reiner EJ, Hewitt LM, Parrott JL, Park BJ, Brown SB, and Sherry JP
- Subjects
- Animals, Bays, Biomarkers analysis, Canada, Endocrine Disruptors analysis, Endocrine Disruptors toxicity, Female, Fishes metabolism, Liver chemistry, Liver drug effects, Male, Thyroid Gland drug effects, Water Pollutants, Chemical analysis, Water Pollutants, Chemical toxicity, Endocrine System drug effects, Environmental Monitoring, Fishes physiology, Polychlorinated Biphenyls analysis, Polychlorinated Biphenyls toxicity, Thyroid Gland chemistry
- Abstract
The Bay of Quinte (BOQ) is an Area of Concern listed under the Great Lakes Water Quality Agreement. The presence of dioxins and dioxin-like PCBs in fish in the BOQ AOC has led to restrictions on fish consumption by humans, which is a beneficial use impairment. Adult yellow perch (Perca flavescens) and brown bullhead (Ameiurus nebulosus) were sampled from Trenton, Belleville, and Deseronto (reference site) in the BOQ. A suite of hormone assays and various measures of exposure and/or sublethal health effects were used to assess the health status of fish of both species and sex. Condition factor, hepatosomatic index, ethoxyresorufin-O-deethylase activity, circulating steroid and thyroid hormones, thyroid activation, oocyte size distribution, spermatogenic cell stages, and plasma vitellogenin were among the endpoints that were significantly (p < 0.05) affected by location. Many of those effects corresponded with significantly (p < 0.05) greater tissue concentrations of polychlorinated biphenyls (PCBs) at Belleville and Trenton. Hepatic extracts from brown bullhead sampled from Trenton had significantly (p < 0.05) greater binding activity to the androgen receptor and sex steroid binding protein. Taken together, these data and preliminary data from a concomitant study suggest that PCBs are likely being hydroxylated in vivo, resulting in enhanced bioactivity at endocrine receptors and measurable health responses. The present study supports the growing body of evidence that PCBs and their metabolites can affect fish thyroid and steroid hormone systems., (Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
47. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.
- Author
-
Wang Z, Yang C, Parrott JL, Frank RA, Yang Z, Brown CE, Hollebone BP, Landriault M, Fieldhouse B, Liu Y, Zhang G, and Hewitt LM
- Subjects
- Alberta, Environmental Monitoring, Fresh Water analysis, Fuel Oils, Geologic Sediments analysis, Industrial Waste, Mining, Snow chemistry, Environmental Pollutants analysis, Hydrocarbons analysis, Oil and Gas Fields
- Abstract
To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles)., (Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
48. Canadian boreal pulp and paper feedstocks contain neuroactive substances that interact in vitro with GABA and dopaminergic systems in the brain.
- Author
-
Waye A, Annal M, Tang A, Picard G, Harnois F, Guerrero-Analco JA, Saleem A, Hewitt LM, Milestone CB, MacLatchy DL, Trudeau VL, and Arnason JT
- Subjects
- Analysis of Variance, Animals, Canada, Glutamate Decarboxylase antagonists & inhibitors, Glutamate Decarboxylase metabolism, Goldfish, Monoamine Oxidase metabolism, Rats, Scintillation Counting, Brain metabolism, Dopaminergic Neurons metabolism, Neurosecretory Systems drug effects, Paper, Plant Extracts pharmacology, Tracheophyta chemistry, gamma-Aminobutyric Acid metabolism
- Abstract
Pulp and paper wood feedstocks have been previously implicated as a source of chemicals with the ability to interact with or disrupt key neuroendocrine endpoints important in the control of reproduction. We tested nine Canadian conifers commonly used in pulp and paper production as well as 16 phytochemicals that have been observed in various pulp and paper mill effluent streams for their ability to interact in vitro with the enzymes monoamine oxidase (MAO), glutamic acid decarboxylase (GAD), and GABA-transaminase (GABA-T), and bind to the benzodiazepine-binding site of the GABA(A) receptor (GABA(A)-BZD). These neuroendocrine endpoints are also important targets for treatment of neurological disorders such as anxiety, epilepsy, or depression. MAO and GAD were inhibited by various conifer extracts of different polarities, including major feedstocks such as balsam fir, black spruce, and white spruce. MAO was selectively stimulated or inhibited by many of the tested phytochemicals, with inhibition observed by a group of phenylpropenes (e.g. isoeugenol and vanillin). Selective GAD inhibition was also observed, with all of the resin acids tested being inhibitory. GABA(A)-BZD ligand displacement was also observed. We compiled a table identifying which of these phytochemicals have been described in each of the species tested here. Given the diversity of conifer species and plant chemicals with these specific neuroactivities, it is reasonable to propose that MAO and GAD inhibition reported in effluents is phytochemical in origin. We propose disruption of these neuroendocrine endpoints as a possible mechanism of reproductive inhibition, and also identify an avenue for potential research and sourcing of conifer-derived neuroactive natural products., (© 2013.)
- Published
- 2014
- Full Text
- View/download PDF
49. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.
- Author
-
Frank RA, Roy JW, Bickerton G, Rowland SJ, Headley JV, Scarlett AG, West CE, Peru KM, Parrott JL, Conly FM, and Hewitt LM
- Subjects
- Alberta, Gas Chromatography-Mass Spectrometry, Silicon Dioxide analysis, Spectrometry, Fluorescence, Spectrometry, Mass, Electrospray Ionization, Environmental Monitoring, Groundwater analysis, Industrial Waste analysis, Oil and Gas Fields chemistry, Petroleum Pollution analysis, Water Pollutants, Chemical analysis
- Abstract
The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.
- Published
- 2014
- Full Text
- View/download PDF
50. Understanding the chronic impacts of oil refinery wastewater requires consideration of sediment contributions to toxicity.
- Author
-
Loughery JR, Arciszewski TJ, Kidd KA, Mercer A, Hewitt LM, Maclatchy DL, and Munkittrick KR
- Subjects
- Animals, Biological Assay, Fishes physiology, New Brunswick, Petroleum, Polycyclic Aromatic Hydrocarbons analysis, Polycyclic Aromatic Hydrocarbons toxicity, Rivers chemistry, Wastewater statistics & numerical data, Wastewater toxicity, Water Pollutants, Chemical analysis, Environmental Monitoring, Geologic Sediments chemistry, Wastewater analysis, Water Pollutants, Chemical toxicity
- Abstract
Previous studies at an oil refinery in Saint John, New Brunswick, Canada, found a diminished fish community downstream of the effluent outfall that appeared to be associated with periodic low dissolved oxygen concentrations due to episodic discharges of contaminated transport vessel ballast water. This study was initiated after the ballast water was removed from the effluent to further investigate the potential causes of residual effects in the study stream, Little River. We used field caging of fish, laboratory bioassays, and chemical analysis of effluents and sediments from the field site to determine if the effluent or contaminated sediments were affecting the recovery of the fish community in Little River. The field studies suggested that exposed, caged fish were affected, displaying >40 % increases in liver sizes and increased liver detoxification enzyme activity (cytochrome P450 1A, CYP1A); however, similar responses were absent in laboratory exposures that used effluent only. Adding sediments collected from the vicinity of the refinery's outfall to the laboratory bioassays reproduced some of the field responses. Chemical analyses showed high concentrations of PAHs in sediments but low concentrations in the effluent, suggesting that the PAHs in the sediment were contributing more to the impacts than the effluent. Application of effects-based monitoring is suggested as beneficial to identify impacts to fisheries where refinery effluents of this type are involved.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.