27 results on '"Hollander, MR"'
Search Results
2. Preventie hart- en vaatziekten is los zand: gezamenlijke visie van alle betrokken partijen
- Author
-
Hollander, MR, Schellevis, FG, de Wit, Niek, Cardiology, General practice, and EMGO - Quality of care
- Abstract
De samenhang tussen de verschillende activiteiten ter preventie van hart- en vaatziekten is ver te zoeken. Dat moet anders, bepleiten drie betrokken huisarts-onderzoekers, en wel door eensgezinde actie van beleidsmakers, beroepsgroep, wetenschappers en zorgverzekeraars.
- Published
- 2016
3. 1050The reperfused myocardial infarct core shows extensive hemorrhage with loss of vascular integrity. A comparison of findings from cardiovascular magnetic resonance imaging with histology
- Author
-
Robbers, LFHJ, primary, Eerenberg, ES, additional, Teunissen, PFA, additional, Jansen, MF, additional, Hollander, MR, additional, Horrevoets, AJG, additional, Knaapen, P, additional, Nijveldt, R, additional, Levi, MM, additional, van Rossum, AC, additional, Niessen, HWM, additional, Marcu, CB, additional, Beek, AM, additional, and van Royen, N, additional
- Published
- 2013
- Full Text
- View/download PDF
4. Abstracts
- Author
-
Doulaptsis, C, Masci, PG, Goetschalckx, K, Janssens, S, Bogaert, J, Ferreira, VM, Piechnik, SK, DallArmellina, E, Karamitsos, TD, Francis, JM, Ntusi, N, Holloway, C, Choudhury, RP, Kardos, A, Robson, MD, Friedrich, MG, Neubauer, S, Miszalski-Jamka, T, Sokolowska, B, Szczeklik, W, Karwat, K, Miszalski-Jamka, K, Belzak, K, Malek, L, Mazur, W, Kereiakes, DJ, Jazwiec, P, Musial, J, Pedrotti, P, Masciocco, G, DAngelo, L, Milazzo, A, Quattrocchi, G, Zanotti, F, Frigerio, M, Roghi, A, Rimoldi, O, Kaasalainen, T, Kivistö, S, Holmström, M, Pakarinen, S, Hänninen, H, Sipilä, O, Lauerma, K, Banypersad, S.M, Fontana, M, Maestrini, V, Sado, D.M, Pinney, J, Wechalekar, A.D, Gillmore, J.D, Lachmann, H, Hawkins, P.N, Moon, J.C, Barone-Rochette, G, Pierard, S, Seldrum, S, de Ravensteen, CM, Melchior, J, Maes, F, Pouleur, A-C, Vancraeynest, D, Pasquet, A, Vanoverschelde, J-L, L Gerber, B, Captur, G, Muthurangu, V, Flett, AS, Wilson, R, Barison, A, Anderson, S, Cook, C, Sado, DM, McKenna, WJ, Mohun, TJ, Elliott, PM, Moon, JC, Pepe, A, Meloni, A, Gulino, L, Rossi, G, Paci, C, Spasisno, A, keilberg, P, Restaino, G, Resta, MC, Positano, V, lombardi, M, Reiter, U, Reiter, G, Kovacs, G, Schmidt, A, Olschewski, H, Fuchsjäger, M, Macmillan, A, Dabir, D, Rogers, T, Monaghan, M, Nagel, E, Puntmann, V, Semaan, E, Spottiswoode, B, Freed, B, Carr, M, Wasielewski, M, Fortney-Campione, K, Shah, S, Carr, J, Markl, M, Collins, J, Sung, YM, Hinojar, R, Ucar, EA, Dabir, D, Voigt, T, Gaddum, N, Schaeffter, T, Nagel, E, Puntmann, VO, Dabir, D, Rogers, T, Ucar, EA, Kidambi, A, Plein, S, Gebker, R, Schnackenburg, B, Voigt, T, Schaeffter, T, Nagel, E, Puntmann, VO, McAlindon, E, Bucciarelli-Ducci, C, Sado, D, Maestrini, V, Piechnik, S, Porter, J, Yamamura, J, Fischer, R, Moon, J, Symons, R, Doulaptsis, C, Masci, P.G, Goetschalckx, K, Dymarkowski, S, Janssens, S, Bogaert, J, Yalin, K, Golcuk, E, Ozer, CS, Buyukbayrak, H, Yilmaz, R, Dursun, M, Bilge, AK, Adalet, K, Reinstadler, SJ, Klug, G, Feistritzer, HJ, Mayr, A, Harrasser, B, Krauter, L, Mair, J, Schocke, MF, Pachinger, O, Metzler, B, Rigolli, M, To, A, Edwards, C, Ding, P, Christiansen, J, Rodríguez-Palomares, JF, Ortiz, JT, Bucciarelli, C, Lee, D, Wu, E, Bonow, RO, Karwat, K, Tomala, M, Miszalski-Jamka, K, Licholaj, S, Mazur, W, Kereiakes, DJ, Nessler, J, Zmudka, K, Jazwiec, P, Miszalski-Jamka, T, Peltonen, J, Kaasalainen, T, Kivistö, S, Holmström, M, Lauerma, K, Rutz, T, Meierhofer, C, Martinoff, S, Ewert, P, Hess, J, Stern, H, Fratz, S, Groarke, JD, Waller, AH, Blankstein, R, Kwong, RY, Steigner, M, Alizadeh, Z, Alizadeh, A, Khajali, Z, Mohammadzadeh, A, Kaykhavani, A, Heidarali, M, Singh, A, Bekele, S, Gunarathne, A, Khan, J, Nazir, SN, Steadman, CD, Kanagala, P, Horsfield, MA, McCann, GP, Duncan, RF, Dundon, BK, Nelson, AJ, Williams, K, Carbone, A, Worthley, MI, Zaman, A, Worthley, SG, Monney, P, Piccini, D, Rutz, T, Vincenti, G, Koestner, S, Stuber, M, Schwitter, J, Gripari, P, Maffessanti, F, Pontone, G, Andreini, D, Bertella, E, Mushtaq, S, Caiani, EG, Pepi, M, El ghannudi, S, Nghiem, A, Germain, P, Jeung, M-J, Roy, C, Gangi, A, Nucifora, G, Muser, D, Masci, PG, Barison, A, Piccoli, G, Rebellato, L, Puppato, M, Gasparini, D, Lombardi, M, Proclemer, A, Nucifora, G, Muser, D, Masci, PG, Barison, A, Piccoli, G, Rebellato, L, Puppato, M, Gasparini, D, Lombardi, M, Proclemer, A, Pöyhönen, P, Kivistö, S, Holmströn, M, Hänninen, H, Thorning, C, Bickelhaupt, S, Kampmann, C, Wentz, KU, Widmer, U, Juli, CF, Miszalski-Jamka, K, Klys, J, Glowacki, J, Kijas, M, Miszalski-Jamka, T, Adamczyk, T, Kwiecinski, R, Bogucka-Czapska, J, Ozaist, M, Mazur, W, Kluczewska, E, Kalarus, Z, Kukulski, T, Karakus, G, Marzluf, B, Bonderman, D, Tufaro, C, Pfaffenberger, S, Babyev, J, Maurer, G, Mascherbauer, J, Kockova, R, Tintera, J, Kautznerova, D, Cerna, D, Sedlacek, K, Kryze, L, El-Husseini, W, Sikula, V, Segetova, M, Kautzner, J, Vasconcelos, M, Lebreiro, A, Martins, E, Cardoso, JS, Madureira, AJ, Ramos, I, Maciel, MJ, Florian, A, Ludwig, A, Rösch, S, Sechtem, U, Yilmaz, A, Monmeneu, J.V, López-Lereu, M.P, Bonanad, C, Sanchis, J, Chaustre, F, Merlos, P, Valero, E, Bodí, V, Chorro, F.J, Yalin, K, Golcuk, E, Ozer, CS, Buyukbayrak, H, Yilmaz, R, Dursun, M, Bilge, AK, Adalet, K, Klug, G, Reinstadler, SJ, Feistritzer, HJ, Mayr, A, Riegler, N, Schocke, M, Esterhammer, R, Kremser, C, Pachinger, O, Metzler, B, Siddiqi, N, Cameron, D, Neil, C, Jagpal, B, Singh, S, Schwarz, K, Papadopoulou, S, Frenneaux, MP, Dawson, D, Robbers, LFHJ, Eerenberg, ES, Teunissen, PFA, Jansen, MF, Hollander, MR, Horrevoets, AJG, Knaapen, P, Nijveldt, R, Levi, MM, van Rossum, AC, Niessen, HWM, Marcu, CB, Beek, AM, van Royen, N, Everaars, H, Robbers, LFHJ, Nijveldt, R, Beek, AM, Teunissen, PFA, Hirsch, A, van Royen, N, Zijlstra, F, Piek, JJ, van Rossum, AC, Goitein, O, Grupper, A, Hamdan, A, Eshet, Y, Beigel, R, Medvedofsky, D, Herscovici, R, Konen, E, Hod, H, Matetzky, S, Cadenas, R, Iniesta, AM, Refoyo, E, Antorrena, I, Guzman, G, Cuesta, E, Salvador, O, López, T, Moreno, M, López-Sendon, JL, Alam, SR, Spath, N, Richards, J, Dweck, M, Shah, A, Lang, N, Semple, S, MacGillivray, T, Mckillop, G, Mirsadraee, S, Pessotto, R, Zamvar, V, Newby, DE, Henriksen, P, Reiter, G, Reiter, U, Kovacs, G, Olschewski, H, Fuchsjäger, M, Ahmad, S, Raza, U, Malik, A, Sun, JP, Eisner, R, Mazur, W, ODonnell, R, Positano, V, Meloni, A, Santarelli, MF, Landini, L, Tassi, C, Grimaldi, S, Gulino, L, De Marchi, D, Chiodi, E, Renne, S, Lombardi, M, Pepe, A, Wu, L, Germans, T, Güçlü, A, Allaart, CP, van Rossum, AC, Kalisz, K, Lehenbauer, K, Katz, D, Bi, X, Cordts, M, Guetter, C, Jolly, M-P, Freed, B, Shah, S, Markl, M, Flukiger, J, Carr, J, Collins, J, Osiak, A, Tyrankiewicz, U, Jablonska, M, Jasinski, K, Jochym, PT, Chlopicki), S, Skorka, T, Kalisz, K, Semaan, E, Katz, D, Bi, X, Cordts, M, Guetter, C, Jolly, MP, Freed, B, Flukiger, J, Lee, D, Kansal, P, Shah, S, Markl, M, Carr, J, Collins, J, Groarke, JD, Shah, RV, Waller, AH, Abbasi, SA, Kwong, RY, Blankstein, R, Steigner, M, Chin, CWL, Semple, S, Malley, T, White, A, Prasad, S, Newby, DE, Dweck, M, Pepe, A, Meloni, A, Lai, ME, Vaquer, S, Gulino, L, De Marchi, D, Cuccia, L, Midiri, M, Vallone, A, Positano, V, Lombardi, M, Pedrotti, P, Milazzo, A, Quattrocchi, G, Roghi, A, Rimoldi, O, Barison, A, De Marchi, D, Masci, P, Milanesi, M, Aquaro, GD, Keilberg, P, Positano, V, Lombardi, M, Positano, Vincenzo, Barison, Andrea, Pugliese, Nicola Riccardo, Masci, Piergiorgio, Del Franco, Annamaria, Aquaro, Giovanni Donato, Landini, Luigi, Lombardi, Massimo, Dieringer, MA, Deimling, M, Fuchs, K, Winter, L, Kraus, O, Knobelsdorff-Brenkenhoff, FV, Schulz-Menger, J, Niendorf, T, Hinojar, R, Ucar, EA, DCruz, D, Sangle, S, Dabir, D, Voigt, T, Gaddum, N, Schaeffter, T, Nagel, E, Puntmann, VO, Sung, YM, Pontone, G, Andreini, D, Bertella, E, Mushtaq, S, Gripari, P, Cortinovis, S, Loguercio, M, Baggiano, A, Conte, E, Pepi, M, El ghannudi, S, Hop, O, Germain, P, Jeung, M-J, De Cesare, A, Roy, C, Gangi, A, Barone-Rochette, G, Pierard, S, Seldrum, S, De Meester de Ravensteen, C, Melchior, J, Maes, F, Pouleur, A-C, Vancraeynest, D, Pasquet, A, Vanoverschelde, J-L, L Gerber, B, Bekele, S, Singh, A, Khan, JN, Nazir, SA, Kanagala, P, McCann, GP, Singh, A, Steadman, CD, Bekele, S, Khan, JN, Nazir, SA, Kanagala, P, McCann, GP, Paelinck, BP, Vandendriessche, T, De Bock, D, De Maeyer, C, Parizel, PM, Christiaan, J, Trauzeddel, RF, Gelsinger, C, Butter, C, Barker, A, Markl, M, Schulz-Menger, J, von Knobelsdorff, F, Florian, A, Schäufele, T, Ludwig, A, Rösch, S, Wenzelburger, I, Yilmaz, A, Sechtem, U, López-Lereu, M.P, Bonanad, C, Monmeneu, J.V, Sanchís, J, Estornell, J, Igual, B, Maceira, A, Chorro, F.J, Focardi, M, Cameli, M, Bennati, E, Massoni, A, Solari, M, Carbone, F, Banchi, B, Mondillo, S, Miia, H, Kirsi, L, Helena, H, Tiina, H, Jyri, L, Pauli, P, Sari, K, Schumm, J, Greulich, S, Grün, S, Ong, P, Klingel, K, Kandolf, R, Sechtem, U, Mahrholdt, H, Raimondi, F, Ou, P, Boudjemline, Y, Bajolle, F, Iserin, F, Bonnet, D, Collins, J, Kalisz, K, Benefield, B, Sarnari, R, Katz, D, Bi, X, Cordts, M, Guetter, C, Jolly, M-P, Freed, B, Flukiger, J, Kansal, P, Lee, D, Shah, S, Markl, M, Carr, J, Sokolowska, B, Miszalski-Jamka, T, Szczeklik, W, Karwat, K, Miszalski-Jamka, K, Belzak, K, Mazur, W, Kereiakes, DJ, Jazwiec, P, Musial, J, Silva, G, Almeida, AG, Resende, C, Marques, JS, Silva, D, David, C, Amaro, C, Costa, P, Silva, JAP, Diogo, AN, Tsokolov, AV, Senchilo, VG, Vertelkin, AV, Hoffmann, P, Mykjåland, G, Wangberg, H, Tønnessen, T, Sjaastad, I, Nordsletten, L, Hjørnholm, U, Løset, A, Rostrup, M, Meloni, A, Gulino, L, Keilberg, P, Palazzi, G, Maddaloni, D, Ascioti, C, Missere, M, Salvatori, C, Positano, V, Lombardi, M, Pepe, A, Meloni, A, Filosa, A, Gulino, L, Pulini, S, Salvatori, C, Chiodi, E, Ascioti, C, Keilberg, P, Positano, V, Lombardi, M, Pepe, A, Meloni, A, Gulino, L, Pietrapertosa, A, Izzi, G, De Marchi, D, Valeri, G, Preziosi, P, Positano, V, Lombardi, M, Pepe, A, Meloni, A, Ruffo, GB, Keilberg, P, Gulino, L, Gerardi, C, Sallustio, G, Tudisca, C, Positano, V, Lombardi, M, Pepe, A, Greulich, S, Backes, M, Schumm, J, Grün, S, Sechtem, U, Mahrholdt, H, Dorniak, K, MSc, AS, Szurowska, E, Fijalkowski, M, Rawicz-Zegrzda, D, Dudziak, M, Raczak, G, Hamdan, A, Baker, FA, Klein, M, Di Segni, E, Goitein, O, Fibisch, G, Konen, E, Müller-Bierl, B, Tanaka, K, Buls, N, Fierens, Y, van Cauteren, T, Willekens, I, van Laere, S, Luypaert, R, de Mey, J, Muzzarelli, S, Faragasso, E, Pedrazzini, G, Sürder, D, Pasotti, E, Moccetti, T, Faletra, F, Qayyum, AA, Hasbak, P, Larsson, HB, Mathiasen, AB, Vejlstrup, NG, Kjaer, A, Kastrup, J, Moschetti, K, Favre, D, Pinget, C, Pilz, G, Petersen, S, Wagner, A, Wasserfallen, JB, Schwitter, J, Ghosh Dastidar, A, Cengarle, M, McAlindon, E, Augustine, D, Nightingale, AK, Bucciarelli-Ducci, C, Dandekar, VK, Ertel, AW, Dickens, C, Gonzalez, RC, Farzaneh-Far, A, Ripley, DP, Higgins, D, McDiarmid, AK, Bainbridge, GJ, Uddin, A, Kidambi, A, Herzog, B, Greenwood, JP, Plein, S, Khanji, M, Newton, T, Westwood, M, Sekhri, N, and Petersen, SE
- Abstract
Background-Aims: Early post-infarction pericardial injury is a common finding but its diagnosis remains elusive. Though C-reactive protein (CRP) is considered a marker of myocardial damage, reflecting myocardial inflammation at the infarcted area, we sought to assess the relationship between CRP and pericardial injury depicted by cardiovascular magnetic resonance (CMR) imaging in patients with ST elevation myocardial infarction (MI). Methods and results: 181 MI patients (84% male) were studied with CMR in the first week and at 4 months post-infarction to assess infarct characteristics, left ventricular volumes/function and pericardial injury. The latter was defined as pericardial fluid >4mm and/or enhancement on late gadolinium enhancement CMR. The CRP-value at day 2 (according to previous literature) was used for correlation with CMR and clinical parameters. Pericardial injury was noted in 87 patients, i.e. effusion (n = 30), inflammation (n = 46), both (n = 11). Patients with pericardial injury had significantly higher peak values of cardiac biomarkers (p<0.001) and higher peak CRP-values than patients with normal pericardium (median 13 vs 43 mg/dl, p<0.001). A strong correlation was found between peak CRP-values and a) left venticular ejection fraction and infarct size both at 1 week and 4 months, b) myocardial hemorrhage, microvascular obstruction (MVO) and pericardial injury at 1 week, c) cardiac biomarkers values and time to PCI. However in a multiple regression model only pericardial injury (p = 0.003) and less importantly time to PCI (p = 0.022) were the independent predictors of CRP values. Conclusion: Pericardial damage described by cardiac MRI occurs often after acute ST elevation MI. CRP-values at the acute phase of MI reflect not only inflammation at the infarcted area but even more the inflammation of the surrounding pericardial tissue.
Table 1 Comparison of baseline clinical and biochemical parameters of patients with or without evidence of early post-infarct pericardial damage on CMR Normal Group (n = 94) Pericardial injury group (n = 87) p-value Agem, years 59±11 60±12 0.48 Male, n(%) 83 (88) 69 (79) 0.10 Diabets, n(%) 12 (13) 9 (10) 0.61 Smoker, n(%) 52 (55) 44 (51) 0.52 Hyperlipidemia, n(%) 56 (60) 55 (63) 0.62 BSA m2 2.0 ± 0.2 2.0 ± 0.2 0.20 Time to PCI, min 195 (155 − 274) 223 (160 − 335) 0.20 Troponin I, μ/l 44 (19 − 92) 90 (44 − 149) >0.001 CK-MB, U/L 128 (77 − 216) 250 (143 − 443) >0.001 CRP, mg/dL 13 (7 − 28) 43 (16 − 96) >0.001 Day of peak CRP 2 (1 − 3) 2 (1 − 3) 0.39 Table 2 Significant correlations between CRP Values and corresponding CMR measurements, cardic biomarkers and clinical related parameters Varibles Spearmanscorrelations r p-value CMR parameters 1 week LV EF −0.28 >0,001 Infractsize(%ofLV) 0.40 >0,001 Microvasular obstruction 0.27 >0,001 Hemorrhage 0.33 >0,001 Size of area atrisk 0.31 >0,001 Transmurality 0.30 >0,001 Pericaldial damage 0.43 >0,001 CMR parameters 4 months LVEF −0.43 >0,001 Infarctsize(%ofLV) 0.46 >0,001 Cardiac Biomarkers Peak TnI 0.34 >0,001 Peak CK-MB 0.32 >0,001 Other Time to PCI 0,182 0,007 - Published
- 2013
- Full Text
- View/download PDF
5. Consensus Statement on Ethical & Safety Practices for Conducting Digital Monitoring Studies with People at Risk of Suicide and Related Behaviors.
- Author
-
Nock MK, Kleiman EM, Abraham M, Bentley KH, Brent DA, Buonopane RJ, Castro-Ramirez F, Cha CB, Dempsey W, Draper J, Glenn CR, Harkavy-Friedman J, Hollander MR, Huffman JC, Lee HIS, Millner AJ, Mou D, Onnela JP, Picard RW, Quay HM, Rankin O, Sewards S, Torous J, Wheelis J, Whiteside U, Siegel G, Ordóñez AE, and Pearson JL
- Abstract
Objective: Digital monitoring technologies (e.g., smart-phones and wearable devices) provide unprecedented opportunities to study potentially harmful behaviors such as suicide, violence, and alcohol/substance use in real-time. The use of these new technologies has the potential to significantly advance the understanding, prediction, and prevention of these behaviors. However, such technologies also introduce myriad ethical and safety concerns, such as deciding when and how to intervene if a participant's responses indicate elevated risk during the study?, Methods: We used a modified Delphi process to develop a consensus among a diverse panel of experts on the ethical and safety practices for conducting digital monitoring studies with those at risk for suicide and related behaviors. Twenty-four experts including scientists, clinicians, ethicists, legal experts, and those with lived experience provided input into an iterative, multi-stage survey, and discussion process., Results: Consensus was reached on multiple aspects of such studies, including: inclusion criteria, informed consent elements, technical and safety procedures, data review practices during the study, responding to various levels of participant risk in real-time, and data and safety monitoring., Conclusions: This consensus statement provides guidance for researchers, funding agencies, and institutional review boards regarding expert views on current best practices for conducting digital monitoring studies with those at risk for suicide-with relevance to the study of a range of other potentially harmful behaviors (e.g., alcohol/substance use and violence). This statement also highlights areas in which more data are needed before consensus can be reached regarding best ethical and safety practices for digital monitoring studies.
- Published
- 2021
- Full Text
- View/download PDF
6. Coronary Collateral Flow Index Is Correlated With the Palmar Collateral Flow Index: Indicating Systemic Collateral Coherence in Individual Patients-Brief Report.
- Author
-
Hollander MR, Jansen MF, Schumacher SP, Stuijfzand WJ, van Leeuwen MAH, van de Ven PM, Horrevoets AJ, Nap A, Knaapen P, and van Royen N
- Subjects
- Aged, Blood Pressure Determination, Cardiac Catheterization, Chronic Disease, Coronary Occlusion diagnosis, Female, Humans, Male, Middle Aged, Regional Blood Flow, Collateral Circulation, Coronary Circulation, Coronary Occlusion physiopathology, Radial Artery physiopathology, Thumb blood supply
- Abstract
[Figure: see text].
- Published
- 2021
- Full Text
- View/download PDF
7. Downstream Influence of Coronary Stenoses on Microcirculatory Remodeling: A Histopathology Study.
- Author
-
de Waard GA, Hollander MR, Ruiter D, Ten Bokkel Huinink T, Meer R, van der Hoeven NW, Meinster E, Beliën JAM, Niessen HW, and van Royen N
- Subjects
- Aged, Autopsy, Coronary Stenosis physiopathology, Coronary Vessels physiopathology, Female, Humans, Male, Retrospective Studies, Coronary Circulation physiology, Coronary Stenosis pathology, Coronary Vessels pathology, Microcirculation physiology, Regional Blood Flow physiology, Vascular Remodeling physiology
- Abstract
Objective: Inducible myocardial ischemia is influenced by contributions of both the epicardial artery and the coronary microcirculation. Experimental studies have found adverse microcirculatory remodeling to occur downstream of severe coronary stenoses. Coronary physiology studies in patients contradict the experimental findings, as the minimal microvascular resistance is not modified by stenoses. The objective was to determine whether microcirculatory remodeling occurs downstream of coronary stenoses in the human coronary circulation. Approach and Results: Myocardium corresponding to 115 coronary arteries of 55 deceased patients was investigated. Histopathologic staining of the microcirculation was performed using antibodies against SMA-α (smooth muscle actin-α) and CD31, to stain arterioles and capillaries, respectively. The following parameters were analyzed: ratio between lumen and vesel area, ratio between lumen and vessel diameter (both ratios for arterioles of <40, 40-100, and 100-200 µm diameter), arteriolar density, and capillary density. From the 55 patients, 32 pairs of an unobstructed coronary artery and a coronary artery with a stenosis were formed. No statistically significant differences between any of the microcirculatory parameters were found. A confirmatory unpaired analysis compared 3 groups: (1) coronary arteries in patients without coronary artery disease (n=53), (2) unobstructed coronary arteries in patients with a stenosis in one of the other coronary arteries (n=23), and (3) coronary stenoses (n=39). No statistically significant differences were observed between the groups., Conclusions: The microcirculation distal to noncritical stenoses does not undergo structural remodeling in the human coronary circulation.
- Published
- 2020
- Full Text
- View/download PDF
8. Stimulation of Collateral Vessel Growth by Inhibition of Galectin 2 in Mice Using a Single-Domain Llama-Derived Antibody.
- Author
-
Hollander MR, Jansen MF, Hopman LHGA, Dolk E, van de Ven PM, Knaapen P, Horrevoets AJ, Lutgens E, and van Royen N
- Subjects
- Animals, Atherosclerosis pathology, Atherosclerosis physiopathology, Disease Models, Animal, Female, Femoral Artery physiopathology, Galectin 2 metabolism, Humans, Macrophages metabolism, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Signal Transduction, Antibodies pharmacology, Atherosclerosis metabolism, Collateral Circulation physiology, Femoral Artery metabolism, Galectin 2 antagonists & inhibitors, Hindlimb blood supply
- Abstract
Background In the presence of arterial stenosis, collateral artery growth (arteriogenesis) can alleviate ischemia and preserve tissue function. In patients with poorly developed collateral arteries, Gal-2 (galectin 2) expression is increased. In vivo administration of Gal-2 inhibits arteriogenesis. Blocking of Gal-2 potentially stimulates arteriogenesis. This study aims to investigate the effect of Gal-2 inhibition on arteriogenesis and macrophage polarization using specific single-domain antibodies. Methods and Results Llamas were immunized with Gal-2 to develop anti-Gal-2 antibodies. Binding of Gal-2 to monocytes and binding inhibition of antibodies were quantified. To test arteriogenesis in vivo, Western diet-fed LDLR.(low-density lipoprotein receptor)-null Leiden mice underwent femoral artery ligation and received treatment with llama antibodies 2H8 or 2C10 or with vehicle. Perfusion restoration was measured with laser Doppler imaging. In the hind limb, arterioles and macrophage subtypes were characterized by histology, together with aortic atherosclerosis. Llama-derived antibodies 2H8 and 2C10 strongly inhibited the binding of Gal-2 to monocytes (93% and 99%, respectively). Treatment with these antibodies significantly increased perfusion restoration at 14 days (relative to sham, vehicle: 41.3±2.7%; 2H8: 53.1±3.4%, P =0.016; 2C10: 52.0±3.8%, P =0.049). In mice treated with 2H8 or 2C10, the mean arteriolar diameter was larger compared with control (vehicle: 17.25±4.97 μm; 2H8: 17.71±5.01 μm; 2C10: 17.84±4.98 μm; P <0.001). Perivascular macrophages showed a higher fraction of the M2 phenotype in both antibody-treated animals (vehicle: 0.49±0.24; 2H8: 0.73±0.15, P =0.007; 2C10: 0.75±0.18, P =0.006). In vitro antibody treatment decreased the expression of M1-associated cytokines compared with control ( P <0.05 for each). Atherosclerotic lesion size was comparable between groups (overall P =0.59). Conclusions Inhibition of Gal-2 induces a proarteriogenic M2 phenotype in macrophages, improves collateral artery growth, and increases perfusion restoration in a murine hind limb model.
- Published
- 2019
- Full Text
- View/download PDF
9. ACRA Perfusion Study.
- Author
-
van Leeuwen MAH, van der Heijden DJ, Hollander MR, Mulder MJ, van de Ven PM, Ritt MJPF, Kiemeneij F, van Mieghem NM, and van Royen N
- Subjects
- Aged, Blood Flow Velocity, Collateral Circulation, Disability Evaluation, Female, Humans, Ischemia diagnostic imaging, Ischemia physiopathology, Laser-Doppler Flowmetry, Male, Middle Aged, Perfusion Imaging, Prospective Studies, Punctures, Radial Artery diagnostic imaging, Recovery of Function, Regional Blood Flow, Surveys and Questionnaires, Time Factors, Catheterization, Peripheral adverse effects, Fingers blood supply, Ischemia etiology, Radial Artery physiopathology
- Abstract
Background: Transradial intervention (TRI) may impair digital perfusion with hand dysfunction as a result. However, the effect of TRI on digital perfusion has never been investigated, including the influence of variations of the collateral arterial network and the effect on hand dysfunction., Methods and Results: We investigated the effect of TRI on digital perfusion by laser Doppler perfusion imaging. Laser Doppler perfusion imaging was performed at baseline, during radial access, TR band application, and at discharge. We compared tissue perfusion of the homolateral thumb (access site) with the contralateral thumb (comparator) during radial access as primary outcome. The hand circulation was assessed with angiography. Upper extremity function was evaluated with the validated QuickDASH questionnaire at baseline and follow-up. A significant reduction of tissue perfusion was observed during radial access and TR band application in the homolateral thumb (-32%, -32%, respectively) and contralateral thumb (-34%, -21%, respectively). We detected no perfusion difference between the homolateral and contralateral thumb during radial access (217; interquartile range, 112-364 versus 209; interquartile range, 99-369 arbitrary flux units; P=0.59). Reduced perfusion of the thumb during radial access was not associated with incompleteness of the superficial palmar arch ( P=0.13). Digital perfusion improved at discharge, though it remained below baseline levels (homolateral -11% and contralateral -14%). Hand dysfunction at 18 months was not associated with TRI-induced perfusion reduction ( P=0.54)., Conclusions: TRI is safe. Digital perfusion is reduced in both hands during radial access and TR band application but is not associated with future loss of hand function and variations of the arterial hand supply.
- Published
- 2019
- Full Text
- View/download PDF
10. The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction: implications for non-contrast-enhanced infarct assessment.
- Author
-
Robbers LFHJ, Nijveldt R, Beek AM, Teunissen PFA, Hollander MR, Biesbroek PS, Everaars H, van de Ven PM, Hofman MBM, van Royen N, and van Rossum AC
- Subjects
- Contrast Media, Coronary Vessels pathology, Female, Gadolinium, Hemorrhage pathology, Humans, Male, Microcirculation, Middle Aged, Myocardial Infarction pathology, Myocardium pathology, Coronary Vessels diagnostic imaging, Hemorrhage diagnostic imaging, Magnetic Resonance Imaging, Myocardial Infarction diagnostic imaging
- Abstract
Objectives: Native T1 mapping and late gadolinium enhancement (LGE) imaging offer detailed characterisation of the myocardium after acute myocardial infarction (AMI). We evaluated the effects of microvascular injury (MVI) and intramyocardial haemorrhage on local T1 and T2* values in patients with a reperfused AMI., Methods: Forty-three patients after reperfused AMI underwent cardiovascular magnetic resonance imaging (CMR) at 4 [3-5] days, including native MOLLI T1 and T2* mapping, STIR, cine imaging and LGE. T1 and T2* values were determined in LGE-defined regions of interest: the MI core incorporating MVI when present, the core-adjacent MI border zone (without any areas of MVI), and remote myocardium., Results: Average T1 in the MI core was higher than in the MI border zone and remote myocardium. However, in the 20 (47%) patients with MVI, MI core T1 was lower than in patients without MVI (MVI 1048±78ms, no MVI 1111±89ms, p=0.02). MI core T2* was significantly lower in patients with MVI than in those without (MVI 20 [18-23]ms, no MVI 31 [26-39]ms, p<0.001)., Conclusion: The presence of MVI profoundly affects MOLLI-measured native T1 values. T2* mapping suggested that this may be the result of intramyocardial haemorrhage. These findings have important implications for the interpretation of native T1 values shortly after AMI., Key Points: • Microvascular injury after acute myocardial infarction affects local T1 and T2* values. • Infarct zone T1 values are lower if microvascular injury is present. • T2* mapping suggests that low infarct T1 values are likely haemorrhage. • T1 and T2* values are complimentary for correctly assessing post-infarct myocardium.
- Published
- 2018
- Full Text
- View/download PDF
11. Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary Microvascular Dysfunction in Patients With Acute Myocardial Infarction or Stable Angina Pectoris.
- Author
-
Williams RP, de Waard GA, De Silva K, Lumley M, Asrress K, Arri S, Ellis H, Mir A, Clapp B, Chiribiri A, Plein S, Teunissen PF, Hollander MR, Marber M, Redwood S, van Royen N, and Perera D
- Subjects
- Aged, Blood Flow Velocity physiology, Cardiac Catheterization, Cardiac Output physiology, Coronary Circulation physiology, Female, Humans, Hyperemia diagnostic imaging, Hyperemia etiology, Hyperemia physiopathology, Male, Microcirculation physiology, Middle Aged, Sensitivity and Specificity, Thermodilution, Angina, Stable diagnostic imaging, Angina, Stable physiopathology, Echocardiography, Doppler, Myocardial Infarction diagnostic imaging, Myocardial Infarction physiopathology, Vascular Resistance physiology
- Abstract
Coronary microvascular resistance is increasingly measured as a predictor of clinical outcomes, but there is no accepted gold-standard measurement. We compared the diagnostic accuracy of 2 invasive indices of microvascular resistance, Doppler-derived hyperemic microvascular resistance (hMR) and thermodilution-derived index of microcirculatory resistance (IMR), at predicting microvascular dysfunction. A total of 54 patients (61 ± 10 years) who underwent cardiac catheterization for stable coronary artery disease (n = 10) or acute myocardial infarction (n = 44) had simultaneous intracoronary pressure, Doppler flow velocity and thermodilution flow data acquired from 74 unobstructed vessels, at rest and during hyperemia. Three independent measurements of microvascular function were assessed, using predefined dichotomous thresholds: (1) coronary flow reserve (CFR), the average value of Doppler- and thermodilution-derived CFR; (2) cardiovascular magnetic resonance (CMR) derived myocardial perfusion reserve index; and (3) CMR-derived microvascular obstruction. hMR correlated with IMR (rho = 0.41, p <0.0001). hMR had better diagnostic accuracy than IMR to predict CFR (area under curve [AUC] 0.82 vs 0.58, p <0.001, sensitivity and specificity 77% and 77% vs 51% and 71%) and myocardial perfusion reserve index (AUC 0.85 vs 0.72, p = 0.19, sensitivity and specificity 82% and 80% vs 64% and 75%). In patients with acute myocardial infarction, the AUCs of hMR and IMR at predicting extensive microvascular obstruction were 0.83 and 0.72, respectively (p = 0.22, sensitivity and specificity 78% and 74% vs 44% and 91%). We conclude that these 2 invasive indices of coronary microvascular resistance only correlate modestly and so cannot be considered equivalent. In our study, the correlation between independent invasive and noninvasive measurements of microvascular function was better with hMR than with IMR., (Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
12. The ACRA Anatomy Study (Assessment of Disability After Coronary Procedures Using Radial Access): A Comprehensive Anatomic and Functional Assessment of the Vasculature of the Hand and Relation to Outcome After Transradial Catheterization.
- Author
-
van Leeuwen MAH, Hollander MR, van der Heijden DJ, van de Ven PM, Opmeer KHM, Taverne YJHJ, Ritt MJPF, Kiemeneij F, van Mieghem NM, and van Royen N
- Subjects
- Activities of Daily Living, Aged, Angiography, Cardiac Catheterization adverse effects, Catheterization, Peripheral adverse effects, Female, Humans, Ischemia diagnosis, Ischemia etiology, Ischemia physiopathology, Male, Middle Aged, Percutaneous Coronary Intervention adverse effects, Punctures, Regional Blood Flow, Risk Factors, Time Factors, Treatment Outcome, Vascular Patency, Cardiac Catheterization methods, Catheterization, Peripheral methods, Disability Evaluation, Fingers blood supply, Percutaneous Coronary Intervention methods, Radial Artery diagnostic imaging, Radial Artery physiopathology
- Abstract
Background: The palmar arches serve as the most important conduits for digital blood supply, and incompleteness may lead to digital ischemia when the radial artery becomes obstructed after cardiac catheterization. The rate of palmar arch incompleteness and the clinical consequences after transradial access are currently unknown., Methods and Results: The vascular anatomy of the hand was documented by angiography in 234 patients undergoing transradial cardiac catheterization. In all patients, a preprocedural modified Allen test and Barbeau test were performed. Upper-extremity function was assessed at baseline and 2-year follow-up by the QuickDASH. Incompleteness of the superficial palmar arch (SPA) was present in 46%, the deep palmar arch was complete in all patients. Modified Allen test and Barbeau test results were associated with incompleteness of the SPA ( P =0.001 and P =0.001). The modified Allen test had a 33% sensitivity and 86% specificity for SPA incompleteness with a cutoff value of >10 seconds and a 59% sensitivity and 60% specificity with a cutoff value of >5 seconds. The Barbeau test had a 7% sensitivity and 98% specificity for type D and a 21% sensitivity and 93% specificity for types C and D combined. Upper-extremity dysfunction was not associated with SPA incompleteness ( P =0.77)., Conclusions: Although incompleteness of the SPA is common, digital blood supply is always preserved by a complete deep palmar arch. Preprocedural patency tests have thus no added benefit to prevent ischemic complications of the hand. Finally, incompleteness of the SPA is not associated with a loss of upper-extremity function after transradial catheterization., (© 2017 American Heart Association, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
13. Prevalence of ischaemia in patients with a chronic total occlusion and preserved left ventricular ejection fraction.
- Author
-
Stuijfzand WJ, Driessen RS, Raijmakers PG, Rijnierse MT, Maeremans J, Hollander MR, Lammertsma AA, van Rossum AC, Dens J, Nap A, van Royen N, and Knaapen P
- Subjects
- Aged, Chronic Disease, Cohort Studies, Collateral Circulation, Computed Tomography Angiography methods, Coronary Angiography methods, Coronary Circulation physiology, Coronary Occlusion mortality, Coronary Occlusion therapy, Female, Humans, Male, Middle Aged, Myocardial Ischemia diagnostic imaging, Myocardial Ischemia therapy, Positron-Emission Tomography methods, Prevalence, Prognosis, Prospective Studies, Risk Assessment, Severity of Illness Index, Survival Analysis, Coronary Occlusion diagnostic imaging, Multimodal Imaging methods, Myocardial Ischemia epidemiology, Myocardial Revascularization methods, Stroke Volume
- Abstract
Aims: Previous studies on invasive assessment of collateral function in patients with a chronic total occlusion (CTO) have displayed only a limited increase in collateral flow and high occurrence of coronary steal during pharmacological stress. This could question the necessity for ischaemia testing prior to revascularization of CTOs in the presence of myocardial viability. The purpose of the present study was to determine the prevalence of perfusion impairments in patients with a CTO as assessed by [15O]H2O positron emission tomography (PET)., Methods and Results: Seventy-six consecutive patients (60 men, 62 ± 10 years) with a documented CTO and preserved left ventricular ejection fraction (LVEF) were included. All patients underwent PET to assess (hyperaemic) myocardial blood flow (MBF) and coronary flow reserve (CFR). Collateral connection score was 0 in 7 (9%), 1 in 13 (17%), and 2 in 56 (74%) of the cases, with predominantly a high Rentrop grade (96% ≥2). MBF of the target area during hyperaemia was significantly lower when compared with the remote area (1.37 ± 0.37 vs. 2.63 ± 0.71 mL min-1 g-1, P < 0.001). Target to remote ratio during hyperaemia was on average 0.54 ± 0.13, and 73 (96%) patients demonstrated a significantly impaired target to remote ratio (≤0.75). Only 7 (9%) patients displayed a preserved CFR of ≥2.50, whereas coronary steal (CFR <1.0) was observed in 10 (13%) patients., Conclusions: Even in the presence of angiographically well-developed collateral arteries, the vast majority of CTO patients with a preserved LVEF showed significantly impaired perfusion. These results suggest that collateral function during increased blood flow demand in viable myocardium is predominantly insufficient., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
14. Non-invasive assessment of the collateral circulation in the hand: validation of the Nexfin system and relation to clinical outcome after transradial catheterisation.
- Author
-
Hollander MR, van Leeuwen MA, van der Heijden DJ, Keizer VM, van de Ven PM, IJsselmuiden SJ, Van Mieghem NM, Amoroso G, Ritt MJ, Knaapen P, and van Royen N
- Subjects
- Adult, Aged, Blood Flow Velocity physiology, Female, Hand surgery, Humans, Male, Middle Aged, Radial Artery physiopathology, Catheterization, Peripheral methods, Collateral Circulation physiology, Hand physiopathology, Radial Artery surgery, Regional Blood Flow physiology
- Abstract
Aims: This study aims primarily to assess the extent of the collateral circulation of the hand in a combined population of healthy individuals and patients who underwent transradial catheterisation, using both the Nexfin system and laser Doppler perfusion imaging., Methods and Results: In total, 85 adults were included in the study (18 healthy volunteers; 67 patients who underwent transradial catheterisation). The perfusion of the thumb was assessed prior to and during complete radial artery compression using laser Doppler perfusion imaging (LDPI) and the Nexfin system. The palmar collateral flow index (PCFI) was compared between both devices and PCFINEXFIN was related to hand angiography and the upper limb function, using the QuickDASH questionnaire. Mean PCFILDPI was 0.77±0.15 and mean PCFINEXFIN was 0.88±0.08. Both were significantly related (Pearson correlation=0.49, 95% CI: 0.31-0.64, p<0.001, agreement -0.11±0.13). PCFINEXFIN correlated with the maximal diameter of the superficial palmar arch (R=0.49, p=0.04) and total minimal arch diameter (R=0.51, p<0.02). High PCFINEXFIN, measured at baseline, was correlated with a lower QuickDASH score for pain, activity and total at one month post transradial catheterisation (p=0.02, p<0.01, p<0.01), but not with discomfort or disability., Conclusions: The Nexfin monitoring system is comparable with laser Doppler perfusion imaging in the quantification of the collateral perfusion in the hand. In patients, the Nexfin-derived collateral flow index measured at baseline is associated with clinical outcome at 30 days post transradial catheterisation.
- Published
- 2017
- Full Text
- View/download PDF
15. Correction: Dissecting the Effects of Ischemia and Reperfusion on the Coronary Microcirculation in a Rat Model of Acute Myocardial Infarction.
- Author
-
Hollander MR, de Waard GA, Konijnenberg LS, Meijer-van Putten RM, van den Brom CE, Paauw N, de Vries HE, van de Ven PM, Aman J, Van Nieuw Amerongen GP, Hordijk PL, Niessen HW, Horrevoets AJ, and Van Royen N
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0157233.].
- Published
- 2016
- Full Text
- View/download PDF
16. The role of ADAMTS13 in acute myocardial infarction: cause or consequence?
- Author
-
Eerenberg ES, Teunissen PF, van den Born BJ, Meijers JC, Hollander MR, Jansen M, Tijssen R, Beliën JA, van de Ven PM, Aly MF, Kamp O, Niessen HW, Kamphuisen PW, Levi M, and van Royen N
- Subjects
- Aged, Animals, Biomarkers blood, Disease Models, Animal, Female, Humans, Injections, Intra-Arterial, Magnetic Resonance Imaging, Male, Middle Aged, Myocardial Reperfusion Injury pathology, Myocardial Reperfusion Injury physiopathology, Percutaneous Coronary Intervention, Prospective Studies, Recombinant Proteins administration & dosage, ST Elevation Myocardial Infarction blood, ST Elevation Myocardial Infarction physiopathology, ST Elevation Myocardial Infarction therapy, Sus scrofa, Time Factors, Treatment Outcome, von Willebrand Factor metabolism, ADAMTS13 Protein administration & dosage, ADAMTS13 Protein blood, Myocardial Reperfusion Injury drug therapy, Myocardium pathology, ST Elevation Myocardial Infarction enzymology
- Abstract
Aims: ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13, is a metalloprotease that cleaves von Willebrand factor (VWF). There is considerable evidence that VWF levels increase and ADAMTS13 levels decrease in ST-elevation myocardial infarction (STEMI) patients. It is unclear whether this contributes to no reflow, infarct size, and intramyocardial haemorrhage (IMH). We aimed to determine the role of ADAMTS13 in STEMI patients and to investigate the benefits of recombinant ADAMTS13 (rADAMTS13) in a porcine model of myocardial ischaemia-reperfusion., Methods and Results: In 49 consecutive percutaneous coronary intervention (PCI)-treated STEMI patients, blood samples were collected directly after through 7 days following PCI. Cardiac magnetic resonance was performed 4-6 days after PCI to determine infarct size and IMH. In 23 Yorkshire swine, the circumflex coronary artery was occluded for 75 min. rADAMTS13 or vehicle was administered intracoronary following reperfusion. Myocardial injury and infarct characteristics were assessed using cardiac enzymes, ECG, and histopathology. In patients with IMH, VWF activity and VWF antigen were significantly elevated directly after PCI and for all subsequent measurements, and ADAMTS13 activity significantly decreased at 4 and 7 days following PCI, in comparison with patients without IMH. VWF activity and ADAMTS13 activity were not related to infarct size. In rADAMTS13-treated animals, no differences in infarct size, IMH, or formation of microthrombi were witnessed compared with controls., Conclusions: No correlation was found between VWF/ADAMTS13 and infarct size in patients. However, patients suffering from IMH had significantly higher VWF activity and lower ADAMTS13 activity. Intracoronary administration of rADAMTS13 did not decrease infarct size or IMH in a porcine model of myocardial ischaemia-reperfusion. These data dispute the imbalance in ADAMTS13 and VWF as the cause of no reflow., (© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.)
- Published
- 2016
- Full Text
- View/download PDF
17. Dissecting the Effects of Ischemia and Reperfusion on the Coronary Microcirculation in a Rat Model of Acute Myocardial Infarction.
- Author
-
Hollander MR, de Waard GA, Konijnenberg LS, Meijer-van Putten RM, van den Brom CE, Paauw N, de Vries HE, van de Ven PM, Aman J, Van Nieuw-Amerongen GP, Hordijk PL, Niessen HW, Horrevoets AJ, and Van Royen N
- Subjects
- Animals, Capillaries, Cell Communication, Cell Nucleus metabolism, Chromatin chemistry, Disease Models, Animal, Ischemia physiopathology, Male, Microspheres, Myocardial Reperfusion, Perfusion, Permeability, Rats, Rats, Wistar, Coronary Circulation, Heart physiopathology, Myocardial Infarction physiopathology, Myocardial Reperfusion Injury physiopathology
- Abstract
Background: Microvascular injury (MVI) after coronary ischemia-reperfusion is associated with high morbidity and mortality. Both ischemia and reperfusion are involved in MVI, but to what degree these phases contribute is unknown. Understanding the etiology is essential for the development of new potential therapies., Methods and Findings: Rats were divided into 3 groups receiving either 30 minutes ischemia, 90 minutes ischemia or 30 minutes ischemia followed by 60 minutes reperfusion. Subsequently hearts were ex-vivo perfused in a Langendorff-model. Fluorescence and electron microscopy was used for analysis of capillary density, vascular permeability and ultrastructure. Most MVI was observed after 30 minutes ischemia followed by 60 minutes reperfusion. In comparison to the 30' and 90' ischemia group, wall thickness decreased (207.0±74 vs 407.8±75 and 407.5±71, p = 0.02). Endothelial nuclei in the 30'-60' group showed irreversible damage and decreased chromatin density variation (50.5±9.4, 35.4±7.1 and 23.7±3.8, p = 0.03). Cell junction density was lowest in the 30'-60' group (0.15±0.02 vs 2.5±0.6 and 1.8±0.7, p<0.01). Microsphere extravasation was increased in both the 90' ischemia and 30'-60' group., Conclusions: Ischemia alone for 90 minutes induces mild morphological changes to the coronary microcirculation, with increased vascular permeability. Ischemia for 30 minutes, followed by 60 minutes of reperfusion, induces massive MVI. This shows the direct consequences of reperfusion on the coronary microcirculation. These data imply that a therapeutic window exists to protect the microcirculation directly upon coronary revascularization.
- Published
- 2016
- Full Text
- View/download PDF
18. CD40 in coronary artery disease: a matter of macrophages?
- Author
-
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, and Lutgens E
- Subjects
- Animals, Coronary Artery Disease immunology, Humans, Macrophages immunology, CD40 Antigens immunology, Coronary Artery Disease pathology, Macrophages pathology
- Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
- Published
- 2016
- Full Text
- View/download PDF
19. The emerging role of galectins in cardiovascular disease.
- Author
-
van der Hoeven NW, Hollander MR, Yıldırım C, Jansen MF, Teunissen PF, Horrevoets AJ, van der Pouw Kraan TC, and van Royen N
- Subjects
- Animals, Biomarkers metabolism, Cardiovascular Diseases diagnosis, Cardiovascular Diseases physiopathology, Humans, Neovascularization, Pathologic, Neovascularization, Physiologic, Predictive Value of Tests, Prognosis, Severity of Illness Index, Signal Transduction, Cardiovascular Diseases metabolism, Galectins metabolism
- Abstract
Galectins are an ancient family of β-galactoside-specific lectins and consist of 15 different types, each with a specific function. They play a role in the immune system, inflammation, wound healing and carcinogenesis. In particular the role of galectin in cancer is widely studied. Lately, the role of galectins in the development of cardiovascular disease has gained attention. Worldwide cardiovascular disease is still the leading cause of death. In ischemic heart disease, atherosclerosis limits adequate blood flow. Angiogenesis and arteriogenesis are highly important mechanisms relieving ischemia by restoring perfusion to the post-stenotic myocardial area. Galectins act ambiguous, both relieving ischemia and accelerating atherosclerosis. Atherosclerosis can ultimately lead to myocardial infarction or ischemic stroke, which are both associated with galectins. There is also a role for galectins in the development of myocarditis by their influence on inflammatory processes. Moreover, galectin acts as a biomarker for the severity of myocardial ischemia and heart failure. This review summarizes the association between galectins and the development of multiple cardiovascular diseases such as myocarditis, ischemic stroke, myocardial infarction, heart failure and atrial fibrillation. Furthermore it focuses on the association between galectin and more general mechanisms such as angiogenesis, arteriogenesis and atherosclerosis., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
20. Changes in Coronary Blood Flow After Acute Myocardial Infarction: Insights From a Patient Study and an Experimental Porcine Model.
- Author
-
de Waard GA, Hollander MR, Teunissen PF, Jansen MF, Eerenberg ES, Beek AM, Marques KM, van de Ven PM, Garrelds IM, Danser AH, Duncker DJ, and van Royen N
- Subjects
- Aged, Animals, Biopsy, Blood Flow Velocity, Case-Control Studies, Coronary Angiography, Coronary Vessels diagnostic imaging, Disease Models, Animal, Echocardiography, Doppler, Female, Humans, Hyperemia physiopathology, Magnetic Resonance Imaging, Male, Middle Aged, Percutaneous Coronary Intervention, Propensity Score, ST Elevation Myocardial Infarction diagnostic imaging, ST Elevation Myocardial Infarction therapy, Swine, Time Factors, Treatment Outcome, Coronary Circulation, Coronary Vessels physiopathology, ST Elevation Myocardial Infarction physiopathology
- Abstract
Objectives: The aim of this study was to determine the effects of an acute myocardial infarction (AMI) on baseline and hyperemic flow in both culprit and nonculprit arteries., Background: An impaired coronary flow reserve (CFR) after AMI is related to worse outcomes. The individual contribution of resting and hyperemic flow to the reduction of CFR is unknown. Furthermore, it is unclear whether currently used experimental models of AMI resemble the clinical situation with respect to coronary flow parameters., Methods: Intracoronary Doppler flow velocity measurements were obtained in culprit and nonculprit arteries immediately after successfully revascularized ST-segment elevation myocardial infarction (n = 40). Stable patients without obstructive coronary artery disease served as control subjects and were selected by propensity-score matching (n = 40). Similar measurements in an AMI porcine model were taken both before and immediately after 75-min balloon occlusion of the left circumflex artery (n = 11)., Results: In the culprit artery, CFR was 36% lower than in matched control subjects (Δ = -0.9; 1.8 ± 0.9 vs. 2.8 ± 0.7; p < 0.001) with consistent observations in swine (Δ = -0.9; 1.5 ± 0.4 vs. 2.4 ± 0.9 for after and before AMI, respectively; p = 0.04). An increased baseline and a decreased hyperemic flow contributed to the reduction in CFR in both patients (baseline flow: Δ = +5 and hyperemic flow: Δ = -7 cm/s) and swine (baseline flow: Δ = +8 and hyperemic flow: Δ = -6 cm/s). Similar changes were observed in nonculprit arteries (CFR: 2.8 ± 0.7 vs. 2.0 ± 0.7 for STEMI patients and control subjects; p < 0.001). CFR significantly correlated with infarct size as a percentage of the left ventricle in both patients (r = -0.48; p = 0.001) and swine (r = -0.61; p = 0.047)., Conclusions: CFR in both culprit and nonculprit coronary arteries decreases after AMI with contributions from both an increased baseline flow and a decreased hyperemic flow. The decreased CFR after AMI in culprit and nonculprit vessels is not a result of pre-existing microvascular dysfunction, but represents a combination of post-occlusive hyperemia, myocardial necrosis, hemorrhagic microvascular injury, compensatory hyperkinesis, and neurohumoral vasoconstriction., (Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
21. MAb therapy against the IFN-α/β receptor subunit 1 stimulates arteriogenesis in a murine hindlimb ischaemia model without enhancing atherosclerotic burden.
- Author
-
Teunissen PF, Boshuizen MC, Hollander MR, Biesbroek PS, van der Hoeven NW, Mol JQ, Gijbels MJ, van der Velden S, van der Pouw Kraan TC, Horrevoets AJ, de Winther MP, and van Royen N
- Subjects
- Animals, Antibodies, Monoclonal immunology, Atherosclerosis metabolism, Collateral Circulation drug effects, Disease Models, Animal, Femoral Artery physiology, Hindlimb blood supply, Ischemia immunology, Ischemia metabolism, Macrophages immunology, Mice, Knockout, Monocytes metabolism, Antibodies, Monoclonal therapeutic use, Atherosclerosis drug therapy, Femoral Artery immunology, Hindlimb drug effects, Hindlimb immunology, Ischemia drug therapy, Receptor, Interferon alpha-beta immunology
- Abstract
Aims: IFN-beta (IFNβ) signalling is increased in patients with insufficient coronary collateral growth (i.e. arteriogenesis) and IFNβ hampers arteriogenesis in mice. A downside of most pro-arteriogenic agents investigated in the past has been their pro-atherosclerotic properties, rendering them unsuitable for therapeutic application. Interestingly, type I IFNs have also been identified as pro-atherosclerotic cytokines and IFNβ treatment increases plaque formation and accumulation of macrophages. We therefore hypothesized that mAb therapy to inhibit IFNβ signalling would stimulate arteriogenesis and simultaneously attenuate-rather than aggravate-atherosclerosis., Methods and Results: In a murine hindlimb ischaemia model, atherosclerotic low-density lipoprotein receptor knockout (LDLR(-/-)) mice were treated during a 4-week period with blocking MAbs specific for mouse IFN-α/β receptor subunit 1 (IFNAR1) or murine IgG isotype as a control. The arteriogenic response was quantified using laser Doppler perfusion imaging (LDPI) as well as immunohistochemistry. Effects on atherosclerosis were determined by quantification of plaque area and analysis of plaque composition. Downstream targets of IFNβ were assessed by real-time PCR (RT-PCR) in the aortic arch. Hindlimb perfusion restoration after femoral artery ligation was improved in mice treated with anti-IFNAR1 compared with controls as assessed by LDPI. This was accompanied by a decrease in CXCL10 expression in the IFNAR1 MAb-treated group. Anti-IFNAR1 treatment reduced plaque apoptosis without affecting total plaque area or other general plaque composition parameters. Results were confirmed in a short-term model and in apolipoprotein E knockout (APOE)(-/-) mice., Conclusion: Monoclonal anti-IFNAR1 therapy during a 4-week treatment period stimulates collateral artery growth in mice and did not enhance atherosclerotic burden. This is the first reported successful strategy using MAbs to stimulate arteriogenesis., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
22. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.
- Author
-
Yıldırım C, Vogel DY, Hollander MR, Baggen JM, Fontijn RD, Nieuwenhuis S, Haverkamp A, de Vries MR, Quax PH, Garcia-Vallejo JJ, van der Laan AM, Dijkstra CD, van der Pouw Kraan TC, van Royen N, and Horrevoets AJ
- Subjects
- Animals, CD40 Antigens biosynthesis, Cell Differentiation, Cells, Cultured, Collateral Circulation drug effects, Dendritic Cells metabolism, Galectin 2 deficiency, Galectin 2 genetics, Galectin 2 pharmacology, Gene Expression Regulation, Humans, Lectins, C-Type biosynthesis, Lipopolysaccharide Receptors immunology, Lipopolysaccharide Receptors physiology, Macrophages classification, Macrophages drug effects, Mannose Receptor, Mannose-Binding Lectins biosynthesis, Mice, Mice, Inbred C57BL, Mice, Knockout, Monocytes drug effects, Phenotype, Protein Binding drug effects, RAW 264.7 Cells, Receptors, Cell Surface biosynthesis, Recombinant Fusion Proteins metabolism, Recombinant Fusion Proteins pharmacology, Signal Transduction, T-Lymphocytes metabolism, Toll-Like Receptor 4 metabolism, Collateral Circulation physiology, Galectin 2 physiology, Inflammation physiopathology, Macrophages physiology, Monocytes physiology
- Abstract
Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR)-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1). In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1) and reduced numbers of CD206-positive (M2) macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular patients.
- Published
- 2015
- Full Text
- View/download PDF
23. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention.
- Author
-
Teunissen PF, de Waard GA, Hollander MR, Robbers LF, Danad I, Biesbroek PS, Amier RP, Echavarría-Pinto M, Quirós A, Broyd C, Heymans MW, Nijveldt R, Lammertsma AA, Raijmakers PG, Allaart CP, Lemkes JS, Appelman YE, Marques KM, Bronzwaer JG, Horrevoets AJ, van Rossum AC, Escaned J, Beek AM, Knaapen P, and van Royen N
- Subjects
- Aged, Blood Flow Velocity, Coronary Vessels diagnostic imaging, Echocardiography, Doppler, Female, Humans, Magnetic Resonance Angiography, Male, Middle Aged, Positron-Emission Tomography, Prospective Studies, Vascular Resistance physiology, Coronary Circulation physiology, Coronary Vessels physiopathology, Myocardial Infarction physiopathology, Myocardial Infarction surgery, Percutaneous Coronary Intervention adverse effects
- Abstract
Background: A total of 40% to 50% of patients with ST-segment-elevation myocardial infarction develop microvascular injury (MVI) despite angiographically successful primary percutaneous coronary intervention (PCI). We investigated whether hyperemic microvascular resistance (HMR) immediately after angiographically successful PCI predicts MVI at cardiovascular magnetic resonance and reduced myocardial blood flow at positron emission tomography (PET)., Methods and Results: Sixty patients with ST-segment-elevation myocardial infarction were included in this prospective study. Immediately after successful PCI, intracoronary pressure-flow measurements were performed and analyzed off-line to calculate HMR and indices derived from the pressure-velocity loops, including pressure at zero flow. Cardiovascular magnetic resonance and H2 (15)O PET imaging were performed 4 to 6 days after PCI. Using cardiovascular magnetic resonance, MVI was defined as a subendocardial recess of myocardium with low signal intensity within a gadolinium-enhanced area. Myocardial perfusion was quantified using H2 (15)O PET. Reference HMR values were obtained in 16 stable patients undergoing coronary angiography. Complete data sets were available in 48 patients of which 24 developed MVI. Adequate pressure-velocity loops were obtained in 29 patients. HMR in the culprit artery in patients with MVI was significantly higher than in patients without MVI (MVI, 3.33±1.50 mm Hg/cm per second versus no MVI, 2.41±1.26 mm Hg/cm per second; P=0.03). MVI was associated with higher pressure at zero flow (45.68±13.16 versus 32.01±14.98 mm Hg; P=0.015). Multivariable analysis showed HMR to independently predict MVI (P=0.04). The optimal cutoff value for HMR was 2.5 mm Hg/cm per second. High HMR was associated with decreased myocardial blood flow on PET (myocardial perfusion reserve <2.0, 3.18±1.42 mm Hg/cm per second versus myocardial perfusion reserve ≥2.0, 2.24±1.19 mm Hg/cm per second; P=0.04)., Conclusions: Doppler-flow-derived physiological indices of coronary resistance (HMR) and extravascular compression (pressure at zero flow) obtained immediately after successful primary PCI predict MVI and decreased PET myocardial blood flow., Clinical Trial Registration Url: http://www.trialregister.nl. Unique identifier: NTR3164., (© 2015 American Heart Association, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
24. Cellular and pharmacological targets to induce coronary arteriogenesis.
- Author
-
Hollander MR, Horrevoets AJ, and van Royen N
- Subjects
- Angiogenesis Inducing Agents therapeutic use, Angiogenesis Inhibitors therapeutic use, Animals, Bradykinin physiology, Coronary Circulation physiology, Coronary Vessels physiology, Disease Models, Animal, Granulocyte Colony-Stimulating Factor physiology, Granulocyte-Macrophage Colony-Stimulating Factor physiology, Humans, Intercellular Signaling Peptides and Proteins physiology, Macrophages physiology, Mice, Monocytes physiology, Muscle, Smooth, Vascular physiology, Neuregulins physiology, Platelet-Rich Plasma physiology, Receptors, Bradykinin physiology, Signal Transduction physiology, Stem Cells physiology, Vascular Endothelial Growth Factor A physiology, Vasodilator Agents therapeutic use, Collateral Circulation physiology, Coronary Artery Disease physiopathology, Neovascularization, Physiologic physiology
- Abstract
The formation of collateral vessels (arteriogenesis) to sustain perfusion in ischemic tissue is native to the body and can compensate for coronary stenosis. However, arteriogenesis is a complex process and is dependent on many different factors. Although animal studies on collateral formation and stimulation show promising data, clinical trials have failed to replicate these results. Further research to the exact mechanisms is needed in order to develop a pharmalogical stimulant. This review gives an overview of recent data in the field of arteriogenesis.
- Published
- 2014
- Full Text
- View/download PDF
25. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage.
- Author
-
Robbers LF, Eerenberg ES, Teunissen PF, Jansen MF, Hollander MR, Horrevoets AJ, Knaapen P, Nijveldt R, Heymans MW, Levi MM, van Rossum AC, Niessen HW, Marcu CB, Beek AM, and van Royen N
- Subjects
- Adult, Aged, Animals, Balloon Occlusion, Contrast Media, Coronary Thrombosis pathology, Disease Models, Animal, Female, Humans, Magnetic Resonance Angiography, Magnetic Resonance Imaging, Cine, Male, Meglumine, Microvessels pathology, Middle Aged, Myocardial Infarction therapy, Myocardial Revascularization adverse effects, Necrosis pathology, Organometallic Compounds, Percutaneous Coronary Intervention, Sus scrofa, Cardiomyopathies pathology, Coronary Occlusion pathology, Hemorrhage pathology, Myocardial Infarction pathology
- Abstract
Aims: Lack of gadolinium-contrast wash-in on first-pass perfusion imaging, early gadolinium-enhanced imaging, or late gadolinium-enhanced (LGE) cardiovascular magnetic resonance (CMR) imaging after revascularized ST-elevation myocardial infarction (STEMI) is commonly referred to as microvascular obstruction (MVO). Additionally, T2-weighted imaging allows for the visualization of infarct-related oedema and intramyocardial haemorrhage (IMH) within the infarction. However, the exact histopathological correlate of the contrast-devoid core and its relation to IMH is unknown., Methods and Results: In eight Yorkshire swine, the circumflex coronary artery was occluded for 75 min by a balloon catheter. After 7 days, CMR with cine imaging, T2-weighted turbospinecho, and LGE was performed. Cardiovascular magnetic resonance images were compared with histological findings after phosphotungstic acid-haematoxylin and anti-CD31/haematoxylin staining. These findings were compared with CMR findings in 27 consecutive PCI-treated STEMI patients, using the same scanning protocol. In the porcine model, the infarct core contained extensive necrosis and erythrocyte extravasation, without intact vasculature and hence, no MVO. The surrounding-gadolinium-enhanced-area contained granulation tissue, leucocyte infiltration, and necrosis with morphological intact microvessels containing microthrombi, without erythrocyte extravasation. Areas with IMH (median size 1.92 [0.36-5.25] cm(3)) and MVO (median size 2.19 [0.40-4.58] cm(3)) showed close anatomic correlation [intraclass correlation coefficient (ICC) 0.85, r = 0.85, P = 0.03]. Of the 27 STEMI patients, 15 had IMH (median size 6.60 [2.49-9.79] cm(3)) and 16 had MVO (median size 4.31 [1.05-7.57] cm(3)). Again, IMH and MVO showed close anatomic correlation (ICC 0.87, r = 0.93, P < 0.001)., Conclusion: The contrast-devoid core of revascularized STEMI contains extensive erythrocyte extravasation with microvascular damage. Attenuating the reperfusion-induced haemorrhage may be a novel target in future adjunctive STEMI treatment.
- Published
- 2013
- Full Text
- View/download PDF
26. Galectin-2 expression is dependent on the rs7291467 polymorphism and acts as an inhibitor of arteriogenesis.
- Author
-
van der Laan AM, Schirmer SH, de Vries MR, Koning JJ, Volger OL, Fledderus JO, Bastiaansen AJ, Hollander MR, Baggen JM, Koch KT, Baan J Jr, Henriques JP, van der Schaaf RJ, Vis MM, Mebius RE, van der Pouw Kraan TC, Quax PH, Piek JJ, Horrevoets AJ, and van Royen N
- Subjects
- Aged, Animals, Cardiovascular Agents pharmacology, Collateral Circulation drug effects, Coronary Occlusion metabolism, Coronary Occlusion physiopathology, Female, Galectin 2 genetics, Galectin 2 pharmacology, Hindlimb, Humans, Interleukin-4 pharmacology, Male, Mice, Mice, Inbred C57BL, Middle Aged, Monocytes drug effects, RNA, Messenger metabolism, Collateral Circulation genetics, Coronary Occlusion genetics, Galectin 2 metabolism, Polymorphism, Genetic genetics
- Abstract
Aims: In patients with obstructive coronary artery disease (CAD), the growth of collateral arteries, i.e. arteriogenesis, can preserve myocardial tissue perfusion and function. Monocytes modulate this process, supplying locally the necessary growth factors and degrading enzymes. Knowledge on factors involved in human arteriogenesis is scarce. Thus, the aim of the present study is to identify targets in monocytes that are critical for arteriogenesis in patients with CAD., Methods and Results: A total of 50 patients with a chronic total coronary occlusion were dichotomized according to their collateral flow index. From each patient, RNA was isolated from unstimulated peripheral blood monocytes, monocytes stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, and from macrophages. Increased mRNA expression of galectin-2 was found in three out of four monocytic cell types of patients with a low capacity of the collateral circulation (P= 0.03 for unstimulated monocytes; P= 0.02 for LPS-stimulated monocytes; P= 0.20 for IL-4-stimulated monocytes; P= 0.02 for macrophages). Additionally, galectin-2 mRNA expression was significantly associated with the rs7291467 polymorphism in LGALS2 encoding galectin-2 in all four monocytic cell types. Patient with the rs7291467 CC genotype displayed highest galectin-2 expression, and also tended to have a lower arteriogenic response. To evaluate the effect of galectin-2 on arteriogenesis in vivo, we used a murine hindlimb model. Treatment with galectin-2 markedly impaired the perfusion restoration at Day 7., Conclusion: Collectively, these results identify galectin-2 as a novel inhibitor of arteriogenesis. Modulation of galectin-2 may constitute a new therapeutic strategy for the stimulation of arteriogenesis in patients with CAD.
- Published
- 2012
- Full Text
- View/download PDF
27. Total contact povidone-iodine perfusion cast for the treatment of neuropathic ulcers.
- Author
-
Hollander MR, Holton K, and Mader D
- Subjects
- Diabetic Neuropathies drug therapy, Foot Diseases drug therapy, Humans, Male, Middle Aged, Perfusion methods, Shoes, Skin Ulcer drug therapy, Casts, Surgical, Diabetic Neuropathies therapy, Foot Diseases therapy, Povidone analogs & derivatives, Povidone-Iodine administration & dosage, Skin Ulcer therapy
- Abstract
The total contact povidone-iodine perfusion cast is an effective, conservative treatment for the neuropathic ulcer. This is accomplished by redistribution of forces exerted on the foot, as well as the antiseptic environment established by the povidone-iodine. The case study presented demonstrates a cost-effective treatment for the diabetic neuropathic ulcer.
- Published
- 1986
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.