1. Non-Equivalent Donor-Acceptor Type Polymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells.
- Author
-
Haotian Chen, Zhichao He, Xuelin Wang, Lu Yao, Chunyan Li, Zhonggao Zhou, Kan Li, Qidan Ling, and Hongyu Zhen
- Subjects
ENERGY levels (Quantum mechanics) ,SOLAR cells ,HOLE mobility ,SURFACE morphology ,COPOLYMERIZATION - Abstract
Electron donor (D)-electron acceptor (A) type conjugated polymers present bright prospects as dopant-free hole-transporting materials (HTMs) for perovskite solar cells (PVSCs). Most of the reported D-A polymeric HTMs contain equivalent amounts of D and A units, while the appropriate excess proportion of D units could optimize the aggregation state of polymer chains and improve the hole transport properties of the polymers. Herein, a non-equivalent D-A copolymerization strategy was utilized to develop three indacenodithiophene-benzotriazole-based polymeric HTMs for PVSCs, named as F-10, F-15, and F-20, and the equivalent D-A polymer F-00 was studied in parallel. Effects of D:A ratio on the hole transport properties of these D-A type polymeric HTMs, including energy level, molecular stacking, hole mobility, and surface morphology, were investigated by theoretical simulation and test analysis. F-15 performed best due to the appropriate D:A ratio, endowing the PVSCs a champion power conversion efficiency of 20.37% with high stability, which confirms the fine-tuning D:A ratio via non-equivalent D-A copolymerization strategy is very helpful to construct D-A type polymeric HTMs for highperformance PVSCs. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF