112 results on '"Hunter WB"'
Search Results
2. Gene content evolution in the arthropods
- Author
-
Thomas, GWC, Dohmen, E, Hughes, DST, Murali, SC, Poelchau, M, Glastad, K, Anstead, CA, Ayoub, NA, Batterham, P, Bellair, M, Binford, GJ, Chao, H, Chen, YH, Childers, C, Dinh, H, Doddapaneni, HV, Duan, JJ, Dugan, S, Esposito, LA, Friedrich, M, Garb, J, Gasser, RB, Goodisman, MAD, Gundersen-Rindal, DE, Han, Y, Handler, AM, Hatakeyama, M, Hering, L, Hunter, WB, Ioannidis, P, Jayaseelan, JC, Kalra, D, Khila, A, Korhonen, PK, Lee, CE, Lee, SL, Li, Y, Lindsey, ARI, Mayer, G, McGregor, AP, McKenna, DD, Misof, B, Munidasa, M, Munoz-Torres, M, Muzny, DM, Niehuis, O, Osuji-Lacy, N, Palli, SR, Panfilio, KA, Pechmann, M, Perry, T, Peters, RS, Poynton, HC, Prpic, N-M, Qu, J, Rotenberg, D, Schal, C, Schoville, SD, Scully, ED, Skinner, E, Sloan, DB, Stouthamer, R, Strand, MR, Szucsich, NU, Wijeratne, A, Young, ND, Zattara, EE, Benoit, JB, Zdobnov, EM, Pfrender, ME, Hackett, KJ, Werren, JH, Worley, KC, Gibbs, RA, Chipman, AD, Waterhouse, RM, Bornberg-Bauer, E, Hahn, MW, Richards, S, Thomas, GWC, Dohmen, E, Hughes, DST, Murali, SC, Poelchau, M, Glastad, K, Anstead, CA, Ayoub, NA, Batterham, P, Bellair, M, Binford, GJ, Chao, H, Chen, YH, Childers, C, Dinh, H, Doddapaneni, HV, Duan, JJ, Dugan, S, Esposito, LA, Friedrich, M, Garb, J, Gasser, RB, Goodisman, MAD, Gundersen-Rindal, DE, Han, Y, Handler, AM, Hatakeyama, M, Hering, L, Hunter, WB, Ioannidis, P, Jayaseelan, JC, Kalra, D, Khila, A, Korhonen, PK, Lee, CE, Lee, SL, Li, Y, Lindsey, ARI, Mayer, G, McGregor, AP, McKenna, DD, Misof, B, Munidasa, M, Munoz-Torres, M, Muzny, DM, Niehuis, O, Osuji-Lacy, N, Palli, SR, Panfilio, KA, Pechmann, M, Perry, T, Peters, RS, Poynton, HC, Prpic, N-M, Qu, J, Rotenberg, D, Schal, C, Schoville, SD, Scully, ED, Skinner, E, Sloan, DB, Stouthamer, R, Strand, MR, Szucsich, NU, Wijeratne, A, Young, ND, Zattara, EE, Benoit, JB, Zdobnov, EM, Pfrender, ME, Hackett, KJ, Werren, JH, Worley, KC, Gibbs, RA, Chipman, AD, Waterhouse, RM, Bornberg-Bauer, E, Hahn, MW, and Richards, S
- Abstract
BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.
- Published
- 2020
3. Effects of Invertebrate Iridescent Virus 6 inPhyllophaga vandineiand Its Potential as a Biocontrol Delivery System
- Author
-
Jenkins, DA, primary, Hunter, WB, additional, and Goenaga, R, additional
- Published
- 2011
- Full Text
- View/download PDF
4. Notes of Three Cases of Xeroderma Pigmentosum, or Dermatosis Kaposi
- Author
-
Hunter Wb
- Subjects
Pathology ,medicine.medical_specialty ,Xeroderma pigmentosum ,business.industry ,General Engineering ,General Earth and Planetary Sciences ,Medicine ,Articles ,General Medicine ,business ,medicine.disease ,General Environmental Science - Published
- 1889
- Full Text
- View/download PDF
5. Effects of Invertebrate Iridescent Virus 6 in Phyllophaga vandinei and Its Potential as a Biocontrol Delivery System
- Author
-
Jenkins, DA, Hunter, WB, and Goenaga, R
- Published
- 2011
- Full Text
- View/download PDF
6. Complete genome sequences of StopSmel and Aussie, two Mu-like bacteriophages of Sinorhizobium meliloti .
- Author
-
Nielander M, Maybank M, Massimino C, Fitzgerald J, Blossum H, Douthitt C, Holland C, Hunter WB, Carrol M, and D'Elia T
- Abstract
We report the complete genome sequences of two bacteriophages, Aussie and StopSmel, isolated from soil using the host Sinorhizobium meliloti NRRL L-50. The genomes are similar in length and gene content and share 76% nucleotide identity. Comparative analysis of Aussie and StopSmel identified core functional modules associated with Mu-like bacteriophages., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
7. Cross-infectivity of Vorticella sp. across genera of mosquitoes for development of biological mosquito control strategies.
- Author
-
Durden S, Hunter WB, Cruz A, Debboun M, and Duguma D
- Subjects
- Animals, Mosquito Vectors, Mosquito Control, Larva, Aedes, Culex, Oligohymenophorea
- Abstract
Protists in general comprise about one-third of the parasitic species infecting arthropod vectors, the role of free-living and epibiotic ciliates on mosquitoes have been insufficiently studied either due to their low pathogenicity or facultative parasites. Studies have shown that exposure of Paramecium ciliate protists, like Vorticella species, to first instar Culex nigripalpus Theobald, larvae delayed larval development and reduced biomass of emerged adults due to competition for food sources like bacteria and other microbes essential to mosquito growth and survival. Thus, we report on the capacity of a Vorticella sp. protist's ability to cross-infect host species and parasitize multiple mosquito larvae. The unique adapted behavior with the ability to remain on the exuviae in tree hole habitats provide a novel delivery system to develop products for target species-specific mosquitocides, larvicides, or viricides to be applied and sustained in aquatic systems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
8. The genome of the invasive and broadly polyphagous Diaprepes root weevil, Diaprepes abbreviatus (Coleoptera), reveals an arsenal of putative polysaccharide-degrading enzymes.
- Author
-
Sylvester T, Adams R, Hunter WB, Li X, Rivera-Marchand B, Shen R, Shin NR, and McKenna DD
- Subjects
- Animals, Base Sequence, Polysaccharides, Coleoptera, Weevils genetics
- Abstract
The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry., (© The Author(s) 2023. Published by Oxford University Press on behalf of The American Genetic Association. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
9. Diaci v3.0: chromosome-level assembly, de novo transcriptome, and manual annotation of Diaphorina citri, insect vector of Huanglongbing.
- Author
-
Shippy TD, Hosmani PS, Flores-Gonzalez M, Mann M, Miller S, Weirauch MT, Vosberg C, Massimino C, Tank W, de Oliveira L, Chen C, Hoyt S, Adams R, Adkins S, Bailey ST, Chen X, Davis N, DeLaFlor Y, Espino M, Gervais K, Grace R, Harper D, Hasan DL, Hoang M, Holcomb R, Jernigan MR, Kemp M, Kennedy B, Kercher K, Klaessan S, Kruse A, Licata S, Lu A, Masse R, Mathew A, Michels S, Michels E, Neiman A, Norman S, Norus J, Ortiz Y, Panitz N, Paris T, Perentesis KMR, Perry M, Reynolds M, Sena MM, Tamayo B, Thate A, Vandervoort S, Ventura J, Weis N, Wise T, Shatters RG Jr, Heck M, Benoit JB, Hunter WB, Mueller LA, Brown SJ, D'Elia T, and Saha S
- Subjects
- Animals, Citrus microbiology, Citrus genetics, Molecular Sequence Annotation, Hemiptera genetics, Hemiptera microbiology, Insect Vectors genetics, Insect Vectors microbiology, Transcriptome, Plant Diseases microbiology, Plant Diseases genetics
- Abstract
Background: Diaphorina citri is an insect vector of "Candidatus Liberibacter asiaticus" (CLas), the gram-negative bacterial pathogen associated with citrus greening disease. Control measures rely on pesticides with negative impacts on the environment, natural ecosystems, and human and animal health. In contrast, gene-targeting methods have the potential to specifically target the vector species and/or reduce pathogen transmission., Results: To improve the genomic resources needed for targeted pest control, we assembled a D. citri genome based on PacBio long reads followed by proximity ligation-based scaffolding. The 474-Mb genome has 13 chromosomal-length scaffolds. In total, 1,036 genes were manually curated as part of a community annotation project, composed primarily of undergraduate students. We also computationally identified a total of 1,015 putative transcription factors (TFs) and were able to infer motifs for 337 TFs (33%). In addition, we produced a genome-independent transcriptome and genomes for D. citri endosymbionts., Conclusions: Manual annotation provided more accurate gene models for use by researchers and provided an excellent training opportunity for students from multiple institutions. All resources are available on CitrusGreening.org and NCBI. The chromosomal-length D. citri genome assembly serves as a blueprint for the development of collaborative genomics projects for other medically and agriculturally significant insect vectors., (© The Author(s) 2024. Published by Oxford University Press GigaScience.)
- Published
- 2024
- Full Text
- View/download PDF
10. Characterization and RNA interference-mediated silencing of tryptophan 2,3-dioxygenase gene in Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae).
- Author
-
Bansal R, Zhao C, Burks CS, Walse SS, and Hunter WB
- Subjects
- Male, Animals, Tryptophan Oxygenase genetics, Tryptophan genetics, Tryptophan metabolism, RNA Interference, Larva genetics, Coleoptera genetics, Coleoptera metabolism, Dioxygenases genetics, Dioxygenases metabolism
- Abstract
Dried fruit beetle, Carpophilus hemipterus (Linnaeus, 1758) (Coleoptera: Nitidulidae), is a serious pest of ripened fresh fruit in the orchard and dried fruit in postprocessing storage. Despite the economic impact and widespread distribution of C. hemipterus, there is a lack of functional genomics research seeking to elucidate features of molecular physiology for improved pest management. Here, we report the characterization of the gene named Vermilion in C. hemipterus (ChVer) that encodes for tryptophan 2,3-dioxygenase. The Vermilion is frequently used as a visual marker for genomics approaches as tryptophan 2,3-dioxygenase is involved in the biosynthesis of eye coloration pigments in insects. We identified 1628 bp long full-length transcript of ChVer from transcriptomic database of C. hemipterus. The expression analysis among adult body parts revealed peak ChVer expression in head compared to thorax and abdomen, which is consistent with its role. Among the C. hemipterus developmental stages, peak ChVer expression was observed in first instar larva, second instar larva, and adult male stages, whereas the lowest levels of expression were seen in third instar larva, prepupa, and pupa. The nanoinjection of ChVer double-stranded RNA in larval C. hemipterus resulted in a significant reduction in ChVer transcript levels as well as caused a loss of eye color, that is, the white-eyed phenotype in adults. Characterization of visually traceable marker gene and robust RNA interference response seen in this study will enable genomics research is this important pest., (Published 2023. This article is a U.S. Government work and is in the public domain in the USA.)
- Published
- 2024
- Full Text
- View/download PDF
11. Selection and validation of reference genes for quantifying gene expression in the Gill's mealybug.
- Author
-
Bansal R, Haviland DR, and Hunter WB
- Subjects
- Animals, Gills, Algorithms, Real-Time Polymerase Chain Reaction, Gene Expression, Gene Expression Profiling, Reference Standards, Hemiptera, Pistacia
- Abstract
The Gill's mealybug, Ferrisia gilli Gullan, (Hemiptera: Pseudococcidae) has emerged as a major pest of pistachio in California. Because F. gilli is only relatively recently described, there are no validated reference genes to normalize the expression data from real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in this species. We selected and validated 8 commonly used reference genes (RPS8, TBP, UBQE2, RPL7, RPL5, RPL40, RPLP1, and HEL) for expression stability in F. gilli. These genes were evaluated in 5 different geographical populations of F. gilli collected from organic and conventionally grown pistachio orchards. Candidate reference genes were also evaluated in F. gilli fed with 4 plant hosts: pistachio, almond, grapes, and lima beans. The stability of candidate genes was analyzed using 4 software algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. Three genes RPS8, RPL40, and RPL7 encoding for ribosomal proteins were identified as the most stable across the treatments and thus were recommended for normalizing the qRT-PCR data. These findings will support resistance monitoring, molecular toxicology, and functional genomics research in F. gilli., (Published by Oxford University Press on behalf of Entomological Society of America 2023.)
- Published
- 2023
- Full Text
- View/download PDF
12. Wild lime psyllid Leuronota fagarae Burckhardt (Hemiptera: Psylloidea) picorna-like virus full genome annotation and classification.
- Author
-
Stuehler DS Jr, Hunter WB, Carrillo-Tarazona Y, Espitia H, Cicero JM, Bell T, Mann HR, Clarke SV, Paris TM, Metz JL, D'Elia T, Qureshi JA, and Cano LM
- Subjects
- Animals, Amino Acids, Polyproteins, Plant Diseases, Hemiptera genetics, Viruses, Citrus, Rhizobiaceae genetics
- Abstract
Picorna-like viruses of the order Picornavirales are a poorly defined group of positive-sense, single-stranded RNA viruses that include numerous pathogens known to infect plants, animals, and insects. A new picorna-like viral species was isolated from the wild lime psyllid (WLP), Leuronota fagarae, in the state of Florida, USA, and labelled: Leuronota fagarae picorna-like virus isolate FL (LfPLV-FL). The virus was found to have homology to a picorna-like virus identified in the Asian Citrus Psyllid (ACP), Diaphorina citri, collected in the state of Florida. Computational analysis of RNA extracts from WLP adult heads identified a 10,006-nucleotide sequence encoding a 2,942 amino acid polyprotein with similar functional domain structure to polyproteins of both Dicistroviridae and Iflaviridae. Sequence comparisons of nucleic acid and amino acid translations of the conserved RNA-dependent RNA polymerase, along with the entire N-terminal nonstructural coding region, provided insight into an evolutionary relationship of LfPLV-FL to insect-infecting iflaviruses. Viruses belonging to the family Iflaviridae encode a polyprotein of around 3000 amino acids in length that is processed post-translationally to produce components necessary for replication. The classification of a novel picorna-like virus in L. fagarae, with evolutionary characteristics similar to picorna-like viruses infecting Bactericera cockerelli and D. citri, provides an opportunity to examine virus host specificity, as well as identify critical components of the virus' genome required for successful transmission, infection, and replication. This bioinformatic classification allows for further insight into a novel virus species, and aids in the research of a closely related virus of the invasive psyllid, D. citri, a major pest of Floridian citriculture. The potential use of viral pathogens as expression vectors to manage the spread D. citri is an area that requires additional research; however, it may bring forth an effective control strategy to reduce the transmission of Candidatus Liberibacter asiaticus (CLas), the causative agent of Huanglongbing (HLB)., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Inc.)
- Published
- 2023
- Full Text
- View/download PDF
13. Baseline Susceptibility and Evidence of Resistance to Acetamiprid in Gill's Mealybug, Ferrisia gilli Gullan (Hemiptera: Pseudococcidae).
- Author
-
Bansal R, Hunter WB, and Haviland DR
- Subjects
- Animals, Gills, Neonicotinoids, Nymph, Insecticide Resistance, Hemiptera, Insecticides pharmacology
- Abstract
Gill's mealybug, Ferrisia gilli (Gullan) (Hemiptera: Pseudococcidae), is a major pest of pistachio in California. Insecticide treatment is the primary control method and acetamiprid is widely used to control this pest. However, there have been numerous reports of control failures for F. gilli after field applications of recommended insecticides in recent years. The purpose of this study was to develop a method for routine monitoring of F. gilli susceptibility and quantify current levels of F. gilli susceptibility to acetamiprid. A leaf-dip bioassay method using lima bean leaves was established and baseline susceptibility responses of 5 field populations were determined. Lethal concentrations to kill 50% of population (LC50) for second instar nymphs at 48 h ranged from 0.367 to 2.398 µg(AI)ml-1 of acetamiprid. Similarly, lethal concentrations to kill 90% of population (LC90) for second instar nymphs at 48 h ranged from 2.887 to 10.752 µg(AI)ml-1 of acetamiprid. The F. gilli population collected from Hanford area showed up to 6.5-fold significantly decreased mortality to acetamiprid compared to other populations. The resistance identified in this study, although relatively low, indicates that there has been repeated pressure to select for acetamiprid resistance and resistance levels can further magnify if effective management steps are not taken. The baseline susceptibility established in this study can be used to investigate potential cause of recent acetamiprid failures against F. gilli. In the long-term, results of this study will support the development of resistance management strategies by monitoring shifts in the susceptibility of F. gilli populations., (Published by Oxford University Press on behalf of Entomological Society of America 2023.)
- Published
- 2023
- Full Text
- View/download PDF
14. CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture.
- Author
-
Touzdjian Pinheiro Kohlrausch Távora F, de Assis Dos Santos Diniz F, de Moraes Rêgo-Machado C, Chagas Freitas N, Barbosa Monteiro Arraes F, Chumbinho de Andrade E, Furtado LL, Osiro KO, Lima de Sousa N, Cardoso TB, Márcia Mertz Henning L, Abrão de Oliveira Molinari P, Feingold SE, Hunter WB, Fátima Grossi de Sá M, Kobayashi AK, Lima Nepomuceno A, Santiago TR, and Correa Molinari HB
- Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe., Competing Interests: TC and HC were employed by the SEMPRE AgTech. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Touzdjian Pinheiro Kohlrausch Távora, de Assis dos Santos Diniz, de Moraes Rêgo-Machado, Chagas Freitas, Barbosa Monteiro Arraes, Chumbinho de Andrade, Furtado, Osiro, Lima de Sousa, Cardoso, Márcia Mertz Henning, Abrão de Oliveira Molinari, Feingold, Hunter, Fátima Grossi de Sá, Kobayashi, Lima Nepomuceno, Santiago and Correa Molinari.)
- Published
- 2022
- Full Text
- View/download PDF
15. Lessons learned about the biology and genomics of Diaphorina citri infection with "Candidatus Liberibacter asiaticus" by integrating new and archived organ-specific transcriptome data.
- Author
-
Mann M, Saha S, Cicero JM, Pitino M, Moulton K, Hunter WB, Cano LM, Mueller LA, and Heck M
- Subjects
- Animals, Genomics, Liberibacter, Plant Diseases microbiology, Transcriptome, Citrus microbiology, Hemiptera genetics, Rhizobiaceae genetics
- Abstract
Background: Huanglongbing, a devastating disease of citrus, is caused by the obligate, intracellular bacterium "Candidatus Liberibacter asiaticus" (CLas). CLas is transmitted by Diaphorina citri, the Asian citrus psyllid. Development of transmission-blocking strategies to manage huanglongbing relies on knowledge of CLas and D. citri interactions at the molecular level. Prior transcriptome analyses of D. citri point to changes in psyllid biology due to CLas infection but have been hampered by incomplete versions of the D. citri genome, proper host plant controls, and/or a lack of a uniform data analysis approach. In this work, we present lessons learned from a quantitative transcriptome analysis of excised heads, salivary glands, midguts, and bacteriomes from CLas-positive and CLas-negative D. citri using the chromosomal length D. citri genome assembly., Results: Each organ had a unique transcriptome profile and response to CLas infection. Though most psyllids were infected with the bacterium, CLas-derived transcripts were not detected in all organs. By analyzing the midgut dataset using both the Diaci_v1.1 and v3.0 D. citri genomes, we showed that improved genome assembly led to significant and quantifiable differences in RNA-sequencing data interpretation., Conclusions: Our results support the hypothesis that future transcriptome studies on circulative, vector-borne pathogens should be conducted at the tissue-specific level using complete, chromosomal-length genome assemblies for the most accurate understanding of pathogen-induced changes in vector gene expression., (© The Author(s) 2022. Published by Oxford University Press GigaScience.)
- Published
- 2022
- Full Text
- View/download PDF
16. Annotation of Hox cluster and Hox cofactor genes in the Asian citrus psyllid, Diaphorina citri , reveals novel features.
- Author
-
Shippy TD, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
Hox genes and their cofactors are essential developmental genes specifying regional identity in animals. Hox genes have a conserved arrangement in clusters in the same order in which they specify identity along the anterior-posterior axis. A few insect species have breaks in the cluster, but these are exceptions. We annotated the 10 Hox genes of the Asian citrus psyllid Diaphorina citri , and found a split in its Hox cluster between the Deformed and Sex combs reduced genes - the first time a break at this position has been observed in an insect Hox cluster. We also annotated D. citri orthologs of the Hox cofactor genes homothorax, PKNOX and extradenticle and found an additional copy of extradenticle in D. citri that appears to be a retrogene. Expression data and sequence conservation suggest that the extradenticle retrogene may have retained the original extradenticle function and allowed divergence of the parental extradenticle gene., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
17. Annotation of putative circadian rhythm-associated genes in Diaphorina citri (Hemiptera: Liviidae).
- Author
-
Reynolds M, de Oliveira L, Vosburg C, Paris T, Massimino C, Norus J, Ortiz Y, Espino M, Davis N, Masse R, Neiman A, Holcomb R, Gervais K, Kemp M, Hoang M, Shippy TD, Hosmani PS, Flores-Gonzalez M, Pelz-Stelinski K, Qureshi JA, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D'Elia T, and Saha S
- Abstract
The circadian rhythm involves multiple genes that generate an internal molecular clock, allowing organisms to anticipate environmental conditions produced by the Earth's rotation on its axis. Here, we present the results of the manual curation of 27 genes that are associated with circadian rhythm in the genome of Diaphorina citri, the Asian citrus psyllid. This insect is the vector for the bacterial pathogen Candidatus Liberibacter asiaticus ( C Las), the causal agent of citrus greening disease (Huanglongbing). This disease severely affects citrus industries and has drastically decreased crop yields worldwide. Based on cry1 and cry2 identified in the psyllid genome, D. citri likely possesses a circadian model similar to the lepidopteran butterfly, Danaus plexippus . Manual annotation will improve the quality of circadian rhythm gene models, allowing the future development of molecular therapeutics, such as RNA interference or antisense technologies, to target these genes to disrupt the psyllid biology., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
18. Manual curation and phylogenetic analysis of chitinase family genes in the Asian citrus psyllid, Diaphorina citri .
- Author
-
Shippy TD, Miller S, Tamayo B, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
Chitinases are enzymes that digest the polysaccharide polymer chitin. During insect development, breakdown of chitin is an essential step in molting of the exoskeleton. Knockdown of chitinases required for molting is lethal to insects, making chitinase genes an interesting target for RNAi-based pest control methods. The Asian citrus psyllid, Diaphorina citri , carries the bacterium causing Huanglongbing, or citrus greening disease, a devastating citrus disease. We identified and annotated 12 chitinase family genes from D. citri as part of a community effort to create high-quality gene models to aid the design of interdictory molecules for pest control. We categorized the D. citri chitinases according to an established classification scheme and re-evaluated the classification of chitinases in other hemipterans. In addition to chitinases from known groups, we identified a novel class of chitinases present in D. citri and several related hemipterans that appears to be the result of horizontal gene transfer., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
19. Ubiquitin-proteasome pathway annotation in Diaphorina citri can reveal potential targets for RNAi-based pest management.
- Author
-
Tank W, Shippy T, Thate A, Massimino C, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
Ubiquitination is an ATP-dependent process that targets proteins for degradation by the proteasome. Here, we annotated 15 genes from the ubiquitin-proteasome pathway in the Asian citrus psyllid, Diaphorina citri . This psyllid vector has come to prominence in the last decade owing to its role in the transmission of the devastating bacterial pathogen, Candidatus Liberibacter asiaticus ( C Las). Infection of citrus crops by this pathogen causes Huanglongbing (HLB), or citrus greening disease, and results in the eventual death of citrus trees. The identification and correct annotation of these genes in D. citri will be useful for functional genomic studies to aid the development of RNAi-based management strategies aimed at reducing the spread of HLB. Investigating the effects of C Las infection on the expression of ubiquitin-proteasome pathway genes may provide new information about the role these genes play in the acquisition and transmission of C Las by D. citri ., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
20. Larvicidal and repellent activity of N-methyl-1-adamantylamine and oleic acid a major derivative of bael tree ethanol leaf extracts against dengue mosquito vector and their biosafety on natural predator.
- Author
-
Chellappandian M, Senthil-Nathan S, Karthi S, Vasantha-Srinivasan P, Kalaivani K, Hunter WB, Ali AM, Veerabahu C, Elshikh MS, and Al Farraj DA
- Subjects
- Amantadine, Animals, Containment of Biohazards, Ethanol, Larva, Mosquito Vectors, Oleic Acid, Plant Extracts, Plant Leaves, Trees, Aedes, Aegle, Dengue, Insect Repellents, Insecticides
- Abstract
Aegle marmelos (L.) Correa belongs to the family Rutaceae is generally known as "bael fruit tree" occuring across the south Asian countries. The current investigation screened the main derivatives from crude ethanolic extracts of the Bael tree leaf and evaluated activity effects on the larvae and adults of Aedes aegypti (L.) Dengue vector mosquito and a non-target aquatic predator. The GC-MS results showed that the peak area was found to be profound in N-methyl-1-adamantaneacetamide (N-M 1a) followed by oleic acid (OA) with 63.08 and 11.43% respectively. The larvicidal activity against the fourth instar larvae and the crude Ex-Am showed prominent mortality rate (93.60%) at the maximum dosage of 100 ppm. The mortality rate of N-M 1a and OA was occurred at 10 ppm (97.73%) and 12 ppm (95.4%). The repellent activity was found to be prominent at crude Ex-Am (50 ppm) as compared to the pure compounds (N-m 1a and OA) with maximum protection time up to 210 min. The non-target screening of Ex-Am, N-M 1a, and OA on mosquito predator Tx. splendens showed that they are scarcely toxic even at the maximum dosage of 1000 ppm (34.13%), 100 ppm (27.3%), and 120 ppm (31.3%) respectively. Thus, the present investigation clearly proved that the crude Ex-Am and their major derivatives Nm 1-a and OA showed their acute larval toxicity as well as potential mosquito repellent against the dengue mosquito and eco-safety against the mosquito predator., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
21. Annotation of glycolysis, gluconeogenesis, and trehaloneogenesis pathways provide insight into carbohydrate metabolism in the Asian citrus psyllid.
- Author
-
Tamayo B, Kercher K, Vosburg C, Massimino C, Jernigan MR, Hasan DL, Harper D, Mathew A, Adkins S, Shippy T, Hosmani PS, Flores-Gonzalez M, Panitz N, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D'Elia T, and Saha S
- Abstract
Citrus greening disease is caused by the pathogen Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, Diaphorina citri . No curative treatment or significant prevention mechanism exists for this disease, which causes economic losses from reduced citrus production. A high-quality genome of D. citri is being manually annotated to provide accurate gene models to identify novel control targets and increase understanding of this pest. Here, we annotated 25 D. citri genes involved in glycolysis and gluconeogenesis, and seven in trehaloneogenesis. Comparative analysis showed that glycolysis genes in D. citri are highly conserved but copy numbers vary. Analysis of expression levels revealed upregulation of several enzymes in the glycolysis pathway in the thorax, consistent with the primary use of glucose by thoracic flight muscles. Manually annotating these core metabolic pathways provides accurate genomic foundation for developing gene-targeting therapeutics to control D. citri ., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
22. Genomic identification, annotation, and comparative analysis of Vacuolar-type ATP synthase subunits in Diaphorina citri .
- Author
-
Grace R, Massimino C, Shippy TD, Tank W, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D'Elia T, and Saha S
- Abstract
The hemipteran insect Diaphorina citri , or Asian citrus psyllid, is a vector for Candidatus Liberibacter asiaticus ( C Las), the bacterium causing citrus greening disease, or Huanglongbing (HLB). Millions of citrus trees have been destroyed, and every grove in Florida, USA, has been directly affected by this disease. In eukaryotes, vacuolar-type ATP synthase (V-ATPase) is an abundant heterodimeric enzyme that serves the cell with essential compartment acidification through the active processes that transport protons across the membrane. Fifteen putative V-ATPase genes in the D. citri genome were manually curated. Comparative genomic analysis revealed that D. citri V-ATPase subunits share domains and motifs with other insects, including the V-ATPase-A superfamily domain. Phylogenetic analysis separates D. citri V-ATPase subunits into expected clades with orthologous sequences. Annotation of the D. citri genome is a critical step towards developing directed pest management strategies to reduce the spread of HLB throughout the citrus industry., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
23. RNAi Feeding Bioassay: A Protocol for dsRNA Screening Against Asian Citrus Psyllid and Related Hemipteran Insects.
- Author
-
Dos Santos Silva J, de Santana Cerqueira LR, Hunter WB, and de Andrade EC
- Subjects
- Animals, Biological Assay, Citrus, Insecta, Plant Diseases genetics, Plant Diseases prevention & control, RNA Interference, RNA, Double-Stranded genetics, Hemiptera genetics
- Abstract
RNA interference (RNAi) comprises a natural mechanism of gene regulation and antiviral defense system in eukaryotic cells, and results in sequence-specific degradation of RNAs. Recent scientific studies demonstrate the feasibility of use RNAi-based strategies to control pest and pathogens in plants. A key step in developing RNAi-based products is a reliable method to appropriated screening of selected dsRNAs.Herein presented are a bioassay for screening dsRNAs to control the Asian citrus psyllid (ACP), Diaphorina citri, vector of citrus Huanglongbing (HLB) and other hemipterans. The RNAi feeding bioassay, called in plant system (iPS), uses vegetative new growth citrus flush to deliver double-strand RNA (dsRNA ) to ACP during natural feeding ., (© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
24. RNA Interference Suppression of v-ATPase B and Juvenile Hormone Binding Protein Genes Through Topically Applied dsRNA on Tomato Leaves: Developing Biopesticides to Control the South American Pinworm, Tuta absoluta (Lepidoptera: Gelechiidae).
- Author
-
Ramkumar G, Asokan R, Prasannakumar NR, Kariyanna B, Karthi S, Alwahibi MS, Elshikh MS, Abdel-Megeed A, Ghaith A, Senthil-Nathan S, Kalaivani K, Hunter WB, and Krutmuang P
- Abstract
The South American pinworm Tuta absoluta (Meyrick) (Family: Gelechiidae) is one of the most devastating lepidopteran pests in the developing countries of South America, Africa, and Asia. This pest is classified as the most serious threat for tomato production worldwide. In the present study, we analyzed RNAi-mediated control through exogenously applied dsRNA delivery on tomato. The dsRNA treatments were made to target the juvenile hormone binding protein and the v-ATPase B. Both mRNA targets were cloned, validated by sequencing, and used to produce each dsRNA. After treatments the relative transcript expression was analyzed using qRTPCR to assess to efficacy of RNAi. A leaf-dip assay was used to provide late 2nd instar larvae three feeding access periods: 24, 48, and 72 h, to evaluate the effect of gene silencing of each target. Larvae were fed tomato leaves coated with five different RNAi concentrations (10, 20, 30, 40, and 50 micrograms/centimeter-squared), that suppressed two genes (juvenile hormone protein, JHBP, and vacuolar-type adenosine triphosphatase enzyme, v-ATPase). Treatments with dsRNA showed a significant increase in mortality at 24, 48, and 72 h after ingestion ( P < 0.01, α = 0.05), along with reduced leaf damage, and increased feeding deterrence. The results suggest that these two RNAi products may provide a suitable treatment for control of this and other lepidopteran pests., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Ramkumar, Asokan, Prasannakumar, Kariyanna, Karthi, Alwahibi, Elshikh, Abdel-Megeed, Ghaith, Senthil-Nathan, Kalaivani, Hunter and Krutmuang.)
- Published
- 2021
- Full Text
- View/download PDF
25. Efficacy of Precocene I from Desmosstachya bipinnata as an Effective Bioactive Molecules against the Spodoptera litura Fab. and Its Impact on Eisenia fetida Savigny.
- Author
-
Sundar NS, Karthi S, Sivanesh H, Stanley-Raja V, Chanthini KM, Ramasubramanian R, Ramkumar G, Ponsankar A, Narayanan KR, Vasantha-Srinivasan P, Alkahtani J, Alwahibi MS, Hunter WB, Senthil-Nathan S, Patcharin K, Abdel-Megeed A, Shawer R, and Ghaith A
- Subjects
- Animals, Benzopyrans chemistry, Benzopyrans isolation & purification, Insecticides chemistry, Insecticides isolation & purification, Parasitic Sensitivity Tests, Phytochemicals chemistry, Phytochemicals pharmacology, Plant Extracts chemistry, Plant Extracts isolation & purification, Spectrum Analysis, Annelida drug effects, Benzopyrans pharmacology, Insecticides pharmacology, Plant Extracts pharmacology, Poaceae chemistry, Spodoptera drug effects
- Abstract
The sustainability of agroecosystems are maintained with agro-chemicals. However, after more than 80 years of intensive use, many pests and pathogens have developed resistance to the currently used chemistries. Thus, we explored the isolation and bioactivity of a chemical compound, Precocene I, isolated from the perennial grass, Desmosstachya bipinnata (L.) Stapf. Fractions produced from chloroform extractions showed suppressive activity on larvae of Spodoptera litura (Lepidoptera: Noctuidae), the Oriental armyworm. Column chromatography analyses identified Precocene I confirmed using FTIR, HPLC and NMR techniques. The bioactivity of the plant-extracted Dp-Precocene I was compared to a commercially produced Precocene I standard. The percentage of mortality observed in insects fed on plant tissue treated with 60 ppm Db-Precocene I was 97, 87 and 81, respectively, for the second, third and fourth instar larvae. The LC
50 value of third instars was 23.2 ppm. The percentages of survival, pupation, fecundity and egg hatch were altered at sub-lethal concentrations of Db-Precocene I (2, 4, 6 and 8 ppm, sprays on castor leaves). The observed effects were negatively correlated with concentration, with a decrease in effects as concentrations increased. Distinct changes in feeding activity and damage to gut tissues were observed upon histological examination of S. litura larvae after the ingestion of Db-Precocene I treatments. Comparative analyses of mortality on a non-target organism, the earthworm, Eisenia fetida , at equal concentrations of Precocene I and two chemical pesticides (cypermethrin and monocrotophos) produced mortality only with the chemical pesticide treatments. These results of Db-Precocene I as a highly active bioactive compound support further research to develop production from the grass D. bipinnata as an affordable resource for Precocene-I-based insecticides.- Published
- 2021
- Full Text
- View/download PDF
26. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers.
- Author
-
Hunter WB and Wintermantel WM
- Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2'-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32-55% of the 2'-F- nucleotides produced improved RNAi activity that increased insect mortality by 12-35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid ( Diaphorina citri, Liviidae); whitefly ( Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter ( Homalodisca vitripennis , Cicadellidae). Studies using siRNA with modified 2'-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2'-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
- Published
- 2021
- Full Text
- View/download PDF
27. Annotation of segmentation pathway genes in the Asian citrus psyllid, Diaphorina citri .
- Author
-
Miller S, Shippy TD, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
Insects have a segmented body plan that is established during embryogenesis when the anterior-posterior (A-P) axis is divided into repeated units by a cascade of gene expression. The cascade is initiated by protein gradients created by translation of maternally provided mRNAs, localized at the anterior and posterior poles of the embryo. Combinations of these proteins activate specific gap genes to divide the embryo into distinct regions along the anterior-posterior axis. Gap genes then activate pair-rule genes, which are usually expressed in parts of every other segment. The pair-rule genes, in turn, activate expression of segment polarity genes in a portion of each segment. The segmentation genes are generally conserved among insects, although there is considerable variation in how they are deployed. We annotated 25 segmentation gene homologs in the Asian citrus psyllid, Diaphorina citri . Most of the genes expected to be present in D. citri based on their phylogenetic distribution in other insects were identified and annotated. Two exceptions were eagle and invected , which are present in at least some hemipterans, but were not found in D. citri . Many of the segmentation pathway genes are likely to be essential for D. citri development, and thus they may be useful targets for gene-based pest control methods., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
28. In silico characterization of chitin deacetylase genes in the Diaphorina citri genome.
- Author
-
Miller S, Shippy TD, Tamayo B, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
Chitin deacetylases (CDAs) are one of the least understood components of insect chitin metabolism. The partial deacetylation of chitin polymers appears to be important for the proper formation of higher order chitin structures, such as long fibers and bundles, which contribute to the integrity of the insect exoskeleton and other structures. Some CDAs may also be involved in bacterial defense. Here, we report the manual annotation of four CDA genes from the Asian citrus psyllid, Diaphorina citri , laying the groundwork for future study of these genes., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
29. Annotation of chitin biosynthesis genes in Diaphorina citri , the Asian citrus psyllid.
- Author
-
Miller S, Shippy TD, Tamayo B, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
The polysaccharide chitin is critical for the formation of many insect structures, including the exoskeleton, and is required for normal development. Here we report the annotation of three genes from the chitin synthesis pathway in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), the vector of Huanglongbing (citrus greening disease). Most insects have two chitin synthase (CHS) genes but, like other hemipterans, D. citri has only one. In contrast, D. citri is unusual among insects in having two UDP-N-acetylglucosamine pyrophosphorylase (UAP) genes. One of the D. citri UAP genes is broadly expressed, while the other is expressed predominantly in males. Our work helps pave the way for potential utilization of these genes as pest control targets to reduce the spread of Huanglongbing., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
30. Utilizing a chromosomal-length genome assembly to annotate the Wnt signaling pathway in the Asian citrus psyllid, Diaphorina citri .
- Author
-
Vosburg C, Reynolds M, Noel R, Shippy T, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, and Saha S
- Abstract
The Asian citrus psyllid, Diaphorina citri , is an insect vector that transmits Candidatus Liberibacter asiaticus, the causal agent of the Huanglongbing (HLB), or citrus greening disease. This disease has devastated Florida's citrus industry, and threatens California's industry as well as other citrus producing regions around the world. To find novel solutions to the disease, a better understanding of the vector is needed. The D. citri genome has been used to identify and characterize genes involved in Wnt signaling pathways. Wnt signaling is utilized for many important biological processes in metazoans, such as patterning and tissue generation. Curation based on RNA sequencing data and sequence homology confirms 24 Wnt signaling genes within the D. citri genome, including homologs for beta-catenin, Frizzled receptors, and seven Wnt-ligands. Through phylogenetic analysis, we classify D. citri Wnt ligands as Wg/Wnt1 , Wnt5 , Wnt6 , Wnt7 , Wnt10 , Wnt11 , and WntA . The D. citri version 3.0 genome with chromosomal length scaffolds reveals a conserved Wnt1-Wnt6-Wnt10 gene cluster with a gene configuration like that in Drosophila melanogaster . These findings provide greater insight into the evolutionary history of D. citri and Wnt signaling in this important hemipteran vector. Manual annotation was essential for identifying high quality gene models. These gene models can be used to develop molecular systems, such as CRISPR and RNAi, which target and control psyllid populations to manage the spread of HLB. Manual annotation of Wnt signaling pathways was done as part of a collaborative community annotation project., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
31. Annotation of yellow genes in Diaphorina citri , the vector for Huanglongbing disease.
- Author
-
Massimino C, Vosburg C, Shippy T, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D'Elia T, and Saha S
- Abstract
Huanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus ( C Las). It is a serious threat to global citrus production. This bacterium is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera). There are no effective in planta treatments for C Las. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could be novel targets for psyllid control. The yellow gene family is an excellent target because yellow genes, which have roles in melanization, are linked to development and immunity. Combined analysis of the genome with RNA-seq datasets, sequence homology, and phylogenetic trees were used to identify and annotate nine yellow genes in the D. citri genome. Manual curation of genes in D. citri provided in-depth analysis of the yellow family among hemipteran insects and provides new targets for molecular control of this psyllid pest. Manual annotation was done as part of a collaborative Citrus Greening community annotation project., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
32. Publisher Correction: Using micro-computed tomography to reveal the anatomy of adult Diaphorina citri Kuwayama (Insecta: Hemiptera, Liviidae) and how it pierces and feeds within a citrus leaf.
- Author
-
Alba-Tercedor J, Hunter WB, and Alba-Alejandre I
- Published
- 2021
- Full Text
- View/download PDF
33. Antibacterial FANA oligonucleotides as a novel approach for managing the Huanglongbing pathosystem.
- Author
-
Sandoval-Mojica AF, Hunter WB, Aishwarya V, Bonilla S, and Pelz-Stelinski KS
- Subjects
- Animals, Arabinonucleotides administration & dosage, Arabinonucleotides genetics, Cell Line, Citrus microbiology, Drosophila, Gene Silencing, Hemiptera drug effects, Insect Vectors drug effects, Insect Vectors microbiology, Oligonucleotides, Antisense genetics, Plant Diseases microbiology, Rhizobiaceae genetics, Rhizobiaceae pathogenicity, Symbiosis drug effects, Symbiosis genetics, Gene Expression Regulation, Bacterial drug effects, Hemiptera microbiology, Oligonucleotides, Antisense administration & dosage, Plant Diseases prevention & control, Rhizobiaceae drug effects
- Abstract
Candidatus Liberibacter asiaticus (CLas), a bacterium transmitted by the Asian citrus psyllid, Diaphorina citri, is the causal agent of citrus greening disease, or Huanglongbng (HLB). Currently, vector population suppression with insecticides and tree removal are the most effective strategies for managing the HLB pathosystem. In this study, we assessed the bactericidal capabilities of 2'-deoxy-2'-fluoro-D-arabinonucleic acid antisense oligonucleotides (FANA ASO) both in vitro and in vivo by (1) confirming their capacity to penetrate insect cells, (2) silencing bacterial essential genes, and (3) quantifying reductions in bacterial titer and D. citri transmission. We confirmed that FANA ASO are able to penetrate insect cells without the use of a delivery agent. Expression of an essential gene in the D. citri endosymbiont, Wolbachia (wDi), significantly decreased by 30% following incubation with a wDi-specific FANA ASO. Viability of isolated wDi cells also decreased in response to the FANA ASO treatment. Delivery of a CLas-specific FANA ASO to infected adult D. citri in feeding assays resulted in significant silencing of a CLas essential gene. CLas relative density and transmission were significantly lower among D. citri fed FANA ASO in diet compared to untreated insects. Root infusions of a CLas-specific FANA ASO into infected Citrus trees significantly reduced CLas titer during a 30-day trial. Our results suggest that FANA ASO targeting insect-transmitted plant bacteria or insect endosymbionts may be useful tool for integrated management of agricultural pathogens.
- Published
- 2021
- Full Text
- View/download PDF
34. Using micro-computed tomography to reveal the anatomy of adult Diaphorina citri Kuwayama (Insecta: Hemiptera, Liviidae) and how it pierces and feeds within a citrus leaf.
- Author
-
Alba-Tercedor J, Hunter WB, and Alba-Alejandre I
- Subjects
- Animals, Female, Hemiptera physiology, Male, Citrus parasitology, Hemiptera anatomy & histology, Imaging, Three-Dimensional, Plant Leaves parasitology, X-Ray Microtomography
- Abstract
The Asian citrus psyllid (ACP), Diaphorina citri, is a harmful pest of citrus trees that transmits Candidatus Liberibacter spp. which causes Huanglongbing (HLB) (citrus greening disease); this is considered to be the most serious bacterial disease of citrus plants. Here we detail an anatomical study of the external and internal anatomy (excluding the reproductive system) using micro-computed tomography (micro-CT). This is the first complete 3D micro-CT reconstruction of the anatomy of a psylloid insect and includes a 3D reconstruction of an adult feeding on a citrus leaf that can be used on mobile devices. Detailed rendered images and videos support first descriptions of coxal and scapus antennal glands and sexual differences in the internal anatomy (hindgut rectum, mesothoracic ganglion and brain). This represents a significant advance in our knowledge of ACP anatomy, and of psyllids in general. Together the images, videos and 3D model constitute a unique anatomical atlas and are useful tools for future research and as teaching aids.
- Published
- 2021
- Full Text
- View/download PDF
35. Anti-herbivore activity of soluble silicon for crop protection in agriculture: a review.
- Author
-
Murali-Baskaran RK, Senthil-Nathan S, and Hunter WB
- Subjects
- Agriculture, Animals, Ecosystem, India, Crop Protection, Silicon
- Abstract
Silicon (Si) is considered an important component for plant growth, development, and yield in many crop species. Silicon is also known to reduce plant pests. Although Si, the major component of soil next to oxygen, it is not used as a major nutrient by crop plants. However, extensive literature demonstrate the beneficial effects of soluble silicates, like silicon [orthosilicic acid (Si(H
4 SiO4 )], on reducing biotic stress in crop ecosystems. In general, monocots tend to accumulate substantially more Si in plant tissues than dicots. Si accumulates in plant cell walls, providing protection by increasing the synthesis of lignin and phenolic compounds and activating the endogenous chemical defenses of plants including volatile and non-volatile compounds and other physical structures like trichomes. This review provides an overview of the history of silicon use in agriculture in India, for the management of insect pests. The future research needs in this field of study are also presented.- Published
- 2021
- Full Text
- View/download PDF
36. Peptide conjugated morpholinos for management of the huanglongbing pathosystem.
- Author
-
Sandoval-Mojica AF, Altman S, Hunter WB, and Pelz-Stelinski KS
- Subjects
- Animals, Morpholinos, Peptides, Plant Diseases, Citrus, Hemiptera, Rhizobiaceae genetics
- Abstract
Background: 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of the devastating citrus disease Huanglongbing (HLB) and is transmitted by the insect vector Diaphorina citri (Hemiptera: Liviidae). A potential approach for treating CLas infection is the use of synthetic nucleic acid-like oligomers to silence bacterial gene expression. Peptide conjugated morpholinos (PPMOs) targeting essential genes in CLas and the psyllid vector's endosymbiotic bacteria, Wolbachia (-Diaphorina, wDi), were evaluated using in vitro and in vivo assays., Results: Expression of the wDi gyrA gene was significantly reduced following incubation of wDi cells with PPMOs. In addition, the viability of isolated wDi cells was greatly reduced when treated with PPMOs as compared to untreated cells. Feeding D. citri adults with a complementary PPMO (CLgyrA-14) showed significantly reduced (70% lower) expression of the CLas gyrA gene. CLas relative density was significantly lower in the psyllids fed with CLgyrA-14, when compared to untreated insects. Psyllids that were treated with CLgyrA-14 were less successful in transmitting the pathogen into uninfected plants, compared to untreated insects., Conclusion: The expression of essential genes in the D. citri symbiont, wDi and the HLB pathogen were suppressed in response to PPMO treatments. This study demonstrates the potential of PPMOs as a novel strategy for management of bacterial pathogens of fruit trees, such as HLB. © 2020 Society of Chemical Industry., (© 2020 Society of Chemical Industry.)
- Published
- 2020
- Full Text
- View/download PDF
37. Microencapsulation of Tangeretin in a Citrus Pectin Mixture Matrix.
- Author
-
Sun X, Cameron RG, Manthey JA, Hunter WB, and Bai J
- Abstract
The objectives of this research were to microencapsulate tangeretin, and to evaluate the basic characteristics of the microcapsule products. Tangeretin is a polymethoxyflavone (PMF) which has been revealed to possess various health benefits and is abundant in tangerine and other citrus peels. Microencapsulation technology is widely employed in the food and pharmaceutical industries to exploit functional ingredients, cells, and enzymes. Spray drying is a frequently applied microencapsulation method because of its low cost and technical requirements. In this research, tangeretin dissolved at different concentrations in bergamot oil was microencapsulated in a citrus pectin/sodium alginate matrix. The resulting microcapsule powder showed promising physical and structural properties. The retention efficiency of tangeretin was greater at a concentration of 2.0% (98.92%) than at 0.2% (71.05%), probably due to the higher temperature of the emulsion during the homogenizing and spray-drying processes. Encapsulation efficiency was reduced with increased concentration of tangeretin. Our results indicate that tangeretin could be successfully encapsulated within a citrus pectin/sodium alginate matrix using bergamot oil as a carrier.
- Published
- 2020
- Full Text
- View/download PDF
38. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny.
- Author
-
Ponsankar A, Sahayaraj K, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Petchidurai G, Madasamy M, and Hunter WB
- Subjects
- Animals, Larva, Spectroscopy, Fourier Transform Infrared, Spodoptera, Triterpenes, Citrullus colocynthis, Cucurbitaceae, Insecticides, Oligochaeta
- Abstract
Pest management with natural botanical insecticides is a significant implementation for the sustainability of agroecosystem by reducing the unnecessary risk from the inputs of synthetic insecticides. In this research, we isolated the bioactive compound cucurbitacin E from Citrullus colocynthis (L.) Schrad, and their toxicological effects were screened against different larval instars of Spodoptera litura. The bioactive compound cucurbitacin E was chemically characterized through TLC, FT-IR, and NMR analyses. The larval mortality bioassay revealed that the larvae exposed to cucurbitacin E at the discriminating dose of 50 ppm display higher mortality rate against second (93.8%), third (86.4%), and fourth (73.2%) instar respectively. The lethal concentrations (LC
50 and LC90 ) was detected as 15.84 and 67.60 ppm for third instar respectively. The sub-lethal concentration of cucurbitacin E (2, 4, and 6 ppm) intentionally altered the percentage of survival, pupation, fecundity, and egg hatchability of S. litura. Moreover, antifeedant activity of cucurbitacin E was analyzed using choice-based test. In addition, we found the toxic effects of cucurbitacin E (50 and 100 ppm) and chemical pesticides (cypermethrin and monocrotophos) against terrestrial beneficial earthworm Eisenia fetida, and the result revealed that cucurbitacin E has no harmful effect on non-target organism. Hence, the present study reveals that cucurbitacin E might be a part of a new biorational product alternative to synthetic pesticides.- Published
- 2020
- Full Text
- View/download PDF
39. A Study of the Cellular Uptake of Magnetic Branched Amphiphilic Peptide Capsules.
- Author
-
Natarajan P, Roberts JD, Kunte N, Hunter WB, Fleming SD, Tomich JM, and Avila LA
- Subjects
- Endocytosis physiology, Flow Cytometry, Microscopy, Confocal, Nanoparticles chemistry, Reactive Nitrogen Species metabolism, Reactive Oxygen Species metabolism, Peptides chemistry
- Abstract
Understanding cellular uptake mechanisms of nanoparticles with therapeutic potential has become critical in the field of drug delivery. Elucidation of cellular entry routes can aid in the dissection of the complex intracellular trafficking and potentially allow for the manipulation of nanoparticle fate after cellular delivery (i.e., avoid lysosomal degradation). Branched amphiphilic peptide capsules (BAPCs) are peptide nanoparticles that have been and are being explored as delivery systems for nucleic acids and other therapeutic molecules in vitro and in vivo. In the present study, we determined the cellular uptake routes of BAPCs with and without a magnetic nanobead core (BAPc-MNBs) in two cell lines: macrophages and intestinal epithelial cells. We also studied the influence of size and growth media composition in this cellular process. Substituting the water-filled core with magnetic nanobeads might provide the peptide bilayer nanocapsules with added functionalities, facilitating their use in bio/immunoassays, magnetic field guided drug delivery, and magnetofection among others. Results suggest that BAPc-MNBs are internalized into the cytosol using more than one endocytic pathway. Flow cytometry and analysis of reactive oxygen and nitrogen species (ROS/RNS) demonstrated that cell viability was minimally impacted by BAPc-MNBs. Cellular uptake pathways of peptide vesicles remain poorly understood, particularly with respect to endocytosis and intracellular trafficking. Outcomes from these studies provide a fundamental understanding of the cellular uptake of this peptide-based delivery system which will allow for strengthening of their delivery capabilities and expanding their applications both in vitro and in vivo.
- Published
- 2020
- Full Text
- View/download PDF
40. Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography.
- Author
-
Alba-Alejandre I, Alba-Tercedor J, and Hunter WB
- Subjects
- Animals, Female, Genitalia, Female anatomy & histology, Genitalia, Female microbiology, Hemiptera anatomy & histology, Hemiptera microbiology, Rhizobiaceae classification, Rhizobiaceae growth & development, X-Ray Microtomography
- Abstract
Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fluorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the first detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a significant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.
- Published
- 2020
- Full Text
- View/download PDF
41. Gene content evolution in the arthropods.
- Author
-
Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, Anstead CA, Ayoub NA, Batterham P, Bellair M, Binford GJ, Chao H, Chen YH, Childers C, Dinh H, Doddapaneni HV, Duan JJ, Dugan S, Esposito LA, Friedrich M, Garb J, Gasser RB, Goodisman MAD, Gundersen-Rindal DE, Han Y, Handler AM, Hatakeyama M, Hering L, Hunter WB, Ioannidis P, Jayaseelan JC, Kalra D, Khila A, Korhonen PK, Lee CE, Lee SL, Li Y, Lindsey ARI, Mayer G, McGregor AP, McKenna DD, Misof B, Munidasa M, Munoz-Torres M, Muzny DM, Niehuis O, Osuji-Lacy N, Palli SR, Panfilio KA, Pechmann M, Perry T, Peters RS, Poynton HC, Prpic NM, Qu J, Rotenberg D, Schal C, Schoville SD, Scully ED, Skinner E, Sloan DB, Stouthamer R, Strand MR, Szucsich NU, Wijeratne A, Young ND, Zattara EE, Benoit JB, Zdobnov EM, Pfrender ME, Hackett KJ, Werren JH, Worley KC, Gibbs RA, Chipman AD, Waterhouse RM, Bornberg-Bauer E, Hahn MW, and Richards S
- Subjects
- Animals, Arthropods classification, DNA Methylation, Genetic Speciation, Genetic Variation, Phylogeny, Arthropods genetics, Evolution, Molecular
- Abstract
Background: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods., Results: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception., Conclusions: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.
- Published
- 2020
- Full Text
- View/download PDF
42. Reinterpretation of 'sperm pump' or 'sperm syringe' function with notes on other male internal reproductive organs in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae).
- Author
-
Cicero JM, Hunter WB, Cano LM, Saha S, Mueller LA, and Brown SJ
- Subjects
- Animals, Genitalia, Male anatomy & histology, Male, Hemiptera anatomy & histology
- Abstract
Reproduction is a critical feature in the search for means to manage the Asian citrus psyllid, vector of a devastating bacterial pathogen of citrus. The importance of accuracy in functional, anatomical descriptions and interpretations for use by other disciplines, particularly molecular genetics, cannot be overstressed. The term 'sperm pump' was coined by classical authors on observational appearance of the endoskeleton of the male reproductive apparatus. They described a thimble-shaped cuticle with smooth, cylindrical columns, interpreted as muscles, that ran longitudinally around a central cylinder. They detected transverse lines on the cylinder giving the false impression of a coiled spring. These features fostered the teleological interpretation that the device is a contractile pump. Now obsolete, the term is replaced by 'drum/spout complex'. It is a hypodermis with a sclerotized cuticle that houses the phallus which transports seminal fluid through its lumen to the female for insemination. Between the spout and the external genitalia is a spout extension, conferring flexibility to the apparatus about the abdominal apex. Approximately 21 longitudinal columns extend circumferentially around the cylinder's hemolymph-side, from the thimble's basal plate to its apical plate. These columns are correctly muscle cells, and reinterpreted to exude a lipaceous, lubricating substance for mating., (Published by Elsevier Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
43. Color morphology of Diaphorina citri influences interactions with its bacterial endosymbionts and 'Candidatus Liberibacter asiaticus'.
- Author
-
Hosseinzadeh S, Ramsey J, Mann M, Bennett L, Hunter WB, Shams-Bakhsh M, Hall DG, and Heck M
- Subjects
- Animals, Citrus parasitology, Color, Hemiptera physiology, Hemocyanins metabolism, Insect Vectors physiology, Rhizobiaceae isolation & purification, Citrus microbiology, Hemiptera microbiology, Host-Pathogen Interactions, Insect Vectors microbiology, Plant Diseases microbiology, Rhizobiaceae physiology, Symbiosis
- Abstract
Diaphorina citri is a vector of 'Candidatus Liberibacter asiaticus,' (CLas), associated with Huanglongbing, (HLB, or citrus greening) disease in citrus. D. citri exhibits three different color morph variants, blue, gray and yellow. Blue morphs have a greater capacity for long-distance flight as compared to non-blue morphs, but little else is known about how color morphology influences vector characteristics. In this study, we show that the color morphology of the insect is derived from pigmented cells of the fat body. Blue morphs acquire a lower level of CLas in their bodies from infected trees as compared to their gray and yellow conspecifics, referred to in this paper collectively as non-blue morphs. Accordingly, CLas titer in citrus leaves inoculated by non-blue insects was 6-fold higher than in leaves inoculated by blue insects. Blue color morphs harbored lower titers of Wolbachia and 'Candidatus Profftella armatura,' two of the D. citri bacterial endosymbionts. Expression of hemocyanin, a copper-binding oxygen transport protein responsible for the blue coloration of hemolymph of other arthropods and mollusks, was previously correlated with blue color morphology and is highly up-regulated in insects continuously reared on CLas infected citrus trees. Based on our results, we hypothesized that a reduction of hemocyanin expression would reduce the D. citri immune response and an increase in the titer of CLas would be observed. Surprisingly, a specific 3-fold reduction of hemocyanin-1 transcript levels using RNA silencing in blue adult D. citri morphs had an approximately 2-fold reduction on the titer of CLas. These results suggest that hemocyanin signaling from the fat body may have multiple functions in the regulation of bacterial titers in D. citri, and that hemocyanin is one of multiple psyllid genes involved in regulating CLas titer., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
44. Disease, contagious cannibalism, and associated population crash in an omnivorous bug, Geocoris pallens.
- Author
-
Rosenheim JA, Booster NA, Culshaw-Maurer M, Mueller TG, Kuffel RL, Law YH, Goodell PB, Pierce T, Godfrey LD, Hunter WB, and Sadeh A
- Subjects
- Animals, Body Size, California, Female, Predatory Behavior, Cannibalism, Heteroptera
- Abstract
Disease and cannibalism are two strongly density-dependent processes that can suppress predator populations. Here we show that California populations of the omnivorous predatory bug Geocoris pallens are subject to infection by a pathogen, as yet unidentified, that elicits elevated expression of cannibalism. Laboratory experiments showed that the pathogen is moderately virulent, causing flattened abdomens, elevated nymphal mortality, delayed development, and reduced body size of adult females. Infection furthermore increases the expression of cannibalism. Field populations of Geocoris spp. declined strongly in association with sharp increases in the expression of egg cannibalism by adult G. pallens. Increased cannibalism was accompanied by a strongly bimodal distribution of cannibalism expression, with some females (putatively uninfected) expressing little cannibalism and others (putatively infected) consuming most or all of the eggs present. Highly cannibalistic females did not increase their consumption of Ephestia cautella moth eggs, suggesting that the high cannibalism phenotype reflected a specific loss of restraint against eating conspecifics. Highly cannibalistic females also often exhibited reduced egg laying, consistent with a virulent pathogen; less frequently, more cannibalistic females exhibited elevated egg laying, suggesting that cannibalism might also facilitate recycling of nutrients in eggs. Elevated cannibalism was not correlated with reduced prey availability or elevated field densities of G. pallens. Geocoris pallens population crashes appear to reflect the combined consequences of direct virulence-adverse pathogen effects on the infected host's physiology-and indirect virulence-mortality of both infected and uninfected individuals due to elevated cannibalism expression by infected individuals.
- Published
- 2019
- Full Text
- View/download PDF
45. Asian citrus psyllid stylet morphology and applicability to the model for inter-instar stylet replacement in the potato psyllid.
- Author
-
Cicero JM, Alba-Tercedor J, Hunter WB, Cano LM, Saha S, Mueller LA, and Brown SJ
- Subjects
- Animals, Feeding Behavior, Hemiptera microbiology, Hemiptera ultrastructure, Microscopy, Electron, Scanning, Hemiptera growth & development, Models, Biological, Rhizobiaceae physiology
- Abstract
In Hemiptera, presumptive stylets for each consecutive postembryonic instar are manufactured prior to ecdysis to replace the ecdysial stylets discarded with the exuviae. With the discovery that the bacterium "Candidatus" Liberibacter solanacearum accesses the tissues involved in the stylet replacement process of the potato psyllid, a hypothesis was formed that the bacterium could adhere to the stylets of freshly emerged instars and hence gain access to the host plant when feeding is resumed. Although unproven, it was imperative that a model for stylet replacement be built. Stylet morphology and the stylet replacement process of the Asian citrus psyllid (ACP), vector of "C." L. asiaticus, causal pathogen of citrus greening disease, are comparable to the potato psyllid model system. Morphology consists of a basal terminus with its tab-shaped auricle, a base, shaft, and an apical terminus. Each of the four auricles act as a platform for the replacement apparatus, which is compacted into a tight aggregate of cells, the 'end-cap'. As modeled, on apolysis of larval instar hypodermis, the aggregate 'deconstructs' and expands into a snail shell-shaped tube, the 'atrium', that houses the presumptive stylet as it is synthesized. Completed stylets then despool from the atrium and are fitted into their functional positions as the next instar emerges from its exuviae., (Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
46. Micro-CT study of male genitalia and reproductive system of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Insecta: Hemiptera, Liviidae).
- Author
-
Alba-Alejandre I, Hunter WB, and Alba-Tercedor J
- Subjects
- Animals, Genitalia, Male anatomy & histology, Imaging, Three-Dimensional, Male, Models, Anatomic, Plant Diseases microbiology, Rhizobiaceae pathogenicity, X-Ray Microtomography, Citrus microbiology, Citrus parasitology, Hemiptera anatomy & histology, Hemiptera microbiology, Insect Vectors anatomy & histology, Insect Vectors microbiology
- Abstract
The Asian citrus psyllid (ACP), Diaphorina citri, is a major vector of the bacteria Candidatus Liberibacter asiaticus and C.L. americanus, which cause Huanglongbing disease (HLB) (aka Citrus greening disease), considered the most serious bacterial disease of citrus trees. As part of a multidisciplinary project on psyllid biology (www.citrusgreening.org), the results presented here concern a detailed anatomical study of the male reproductive system (testes, seminal vesicles, accessory glands, sperm pump, connecting ducts, and aedeagus) using micro-computed tomography (micro-CT). The study summarizes current knowledge on psyllids male reproductive system and represents significant advances in the knowledge of ACP anatomy., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
47. Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae.
- Author
-
Karthi S, Vaideki K, Shivakumar MS, Ponsankar A, Thanigaivel A, Chellappandian M, Vasantha-Srinivasan P, Muthu-Pandian CK, Hunter WB, and Senthil-Nathan S
- Subjects
- Animals, Biological Assay, Hemocytes cytology, Immune System immunology, Larva enzymology, Monophenol Monooxygenase metabolism, Spodoptera enzymology, Spodoptera growth & development, Spodoptera metabolism, Aspergillus flavus pathogenicity, Larva physiology, Peroxidases metabolism, Spodoptera physiology, Superoxide Dismutase metabolism
- Abstract
Insects have developed tolerance against mycoses caused by entomopathogenic fungi through several humoral and cellular mechanisms. Antioxidant enzymes such as superoxide dismutase, lipid peroxidase, and peroxidase can play a role in defense against mycosis, but the physiological interactions between the fungus and the insect are not well characterized. In this study, the effects of infection by entomopathogenic fungus, Aspergillus flavus on the antioxidant defense system of Spodoptera litura, were investigated. The fungi, A. flavus exposure resulted in modification of the levels of antioxidant enzymes, as well as significant decline in phenoloxidase titers and the total hemocyte count 48 h post exposure. A significant increase was observed in detoxifying enzymes. All these results suggest that A. flavus infects S. litura by directly acting on the immune system, resulting in decreased immune function. Bioassay results showed that A. flavus affects third and fourth instar larvae of S. litura. This report supports the importance of A. flavus as a candidate for biological control of S. litura., (Copyright © 2018. Published by Elsevier Inc.)
- Published
- 2018
- Full Text
- View/download PDF
48. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects.
- Author
-
Ghosh SKB, Hunter WB, Park AL, and Gundersen-Rindal DE
- Subjects
- Administration, Oral, Animals, Insecta, Hemiptera growth & development, Phloem metabolism, RNA Interference immunology, RNA, Double-Stranded genetics
- Abstract
Phloem and plant sap feeding insects invade the integrity of crops and fruits to retrieve nutrients, in the process damaging food crops. Hemipteran insects account for a number of economically substantial pests of plants that cause damage to crops by feeding on phloem sap. The brown marmorated stink bug (BMSB), Halyomorpha halys (Heteroptera: Pentatomidae) and the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae) are hemipteran insect pests introduced in North America, where they are an invasive agricultural pest of high-value specialty, row, and staple crops and citrus fruits, as well as a nuisance pest when they aggregate indoors. Insecticide resistance in many species has led to the development of alternate methods of pest management strategies. Double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) is a gene silencing mechanism for functional genomic studies that has potential applications as a tool for the management of insect pests. Exogenously synthesized dsRNA or small interfering RNA (siRNA) can trigger highly efficient gene silencing through the degradation of endogenous RNA, which is homologous to that presented. Effective and environmental use of RNAi as molecular biopesticides for biocontrol of hemipteran insects requires the in vivo delivery of dsRNAs through feeding. Here we demonstrate methods for delivery of dsRNA to insects: loading of dsRNA into green beans by immersion, and absorbing of gene-specific dsRNA with oral delivery through ingestion. We have also outlined non-transgenic plant delivery approaches using foliar sprays, root drench, trunk injections as well as clay granules, all of which may be essential for sustained release of dsRNA. Efficient delivery by orally ingested dsRNA was confirmed as an effective dosage to induce a significant decrease in expression of targeted genes, such as juvenile hormone acid O-methyltransferase (JHAMT) and vitellogenin (Vg). These innovative methods represent strategies for delivery of dsRNA to use in crop protection and overcome environmental challenges for pest management.
- Published
- 2018
- Full Text
- View/download PDF
49. Target and non-target response of Swietenia Mahagoni Jacq. chemical constituents against tobacco cutworm Spodoptera litura Fab. and earthworm, Eudrilus eugeniae Kinb.
- Author
-
Dinesh-Kumar A, Srimaan E, Chellappandian M, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Ponsankar A, Muthu-Pandian Chanthini K, Shyam-Sundar N, Annamalai M, Kalaivani K, Hunter WB, and Senthil-Nathan S
- Subjects
- Animals, Gas Chromatography-Mass Spectrometry, Insecticides pharmacology, Larva drug effects, Phytochemicals analysis, Plant Extracts toxicity, Pupa drug effects, West Indies, Meliaceae toxicity, Oligochaeta drug effects, Spodoptera drug effects
- Abstract
Toxicological screening of Swietenia mahagoni Jacq. (Meliaceae, West Indies Mahogany) against the lepidopteran pest Spodoptera litura was examined. Phytochemical screening through GC-MS analysis revealed nine peaks with prominent peak area % in Bis (2-ethylhexyl) phthalate (31.5%) was observed. The larvae exposed to discriminating dosage of 100 ppm deliver significant mortality rate compare to other treatment concentrations. The lethal concentrations (LC
50 and LC90 ) was observed at the dosage of 31.04 and 86.82 ppm respectively. Sub-lethal concentrations (30 ppm) showed higher larval and pupal durations. However, pupal weight and mean fecundity rate reduced significantly. Similarly, the adult longevity reduced significantly in dose dependent manner. Midgut histology studies showed that the methanolic extracts significantly disturbs the gut epithelial layer, lumen and brush border membrane compare to the control. The soil assay on a non-target beneficial organism, the soil indicator earthworm Eudrilus eugeniae, with extracts from S. mahagoni (200 mg/kg) showed no toxicity compared to Monocrotophos at the dosage of 10 ppm/kg. Current results suggest that this bio-rational plant product from S. mahagoni displays a significant effect to reduce lepidopteran pests with low toxicity to other beneficial species., (Copyright © 2018. Published by Elsevier Ltd.)- Published
- 2018
- Full Text
- View/download PDF
50. Botanical essential oils and uses as mosquitocides and repellents against dengue.
- Author
-
Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, and Hunter WB
- Subjects
- Aedes, Animals, Dengue transmission, Humans, Insect Repellents chemistry, Insecticides chemistry, Larva, Mosquito Vectors, Dengue prevention & control, Insect Repellents analysis, Insecticides analysis, Oils, Volatile chemistry, Plant Oils chemistry
- Abstract
Plants naturally produce bioactive compounds along with many secondary metabolites which serve as defensive chemical against herbivorers including insect pests. One group of these phytochemicals are the 'Essential Oils' (EO's), which possess an extensive range of biological activity especially insecticidal and insect repellents. This review provides a comprehensive viewpoint on potential modes of action of biosafety plant derived Essential Oils (EO's) along with their principal chemical derivatives against larvae and adult mosquito vectors of dengue virus. The development and use of Essential Oils (EO's) effectively applied in small rural communities provides an enormous potential for low cost effective management of insect vectors of human pathogens which cause disease., (Copyright © 2017. Published by Elsevier Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.