1. A characterization of unitarity of some highest weight Harish-Chandra modules
- Author
-
Bai, Zhanqiang and Hunziker, Markus
- Subjects
Mathematics - Representation Theory ,22E47, 17B10 - Abstract
Let $L(\lambda)$ be a highest weight Harish-Chandra module with highest weight $\lambda$. When the associated variety of $L(\lambda)$ is not maximal, that is, not equal to the nilradical of the corresponding parabolic subalgebra, we prove that the unitarity of $L(\lambda)$ can be determined by a simple condition on the value of $z = (\lambda + \rho, \beta^{\vee})$, where $\rho$ is half the sum of positive roots and $\beta$ is the highest root. In the proof, certain distinguished antichains of positive noncompact roots play a key role. By using these antichains, we are also able to provide a uniform formula for the Gelfand--Kirillov dimension of all highest weight Harish-Chandra modules, generalizing our previous result for the case of unitary highest weight Harish-Chandra modules., Comment: 20 pages
- Published
- 2024