Le, Huu Phuoc, Safey El Din, Mohab, Polynomial Systems (PolSys), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Mohab Safey El Din and Huu Phuoc Le are supported by the ANR grants ANR-18-CE33-0011 SESAME, and ANR-19-CE40-0018 DERERUMNATURA, the joint ANR-FWF ANR-19-CE40-0018 ECARP project, the PGMO grant CAMISADO and the European Union’s Horizon 2020 research and innovative training network program under the Marie Skłodowska-Curie grant agreement N° 813211 (POEMA) and the Grant FA8665-20-1-7029 of the EOARD-AFOSR., ANR-18-CE33-0011,SESAME,Singularités Et Stabilité des AsservisseMEnts référencés capteurs(2018), ANR-19-CE40-0018,DeRerumNatura,Décider l'irrationalité et la transcendance(2019), ANR-19-CE48-0015,ECARP,Algorithmes efficaces et exacts pour la planification de trajectoire en robotique(2019), European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme), H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019), European Project, European Project: 813211,H2020,POEMA(2019), and Mohab Safey El Din and Huu Phuoc Le are supported by the ANR grants ANR-18-CE33-0011 SESAME, and ANR-19-CE40-0018 DERERUMNATURA, the joint ANR-FWF ANR-19-CE40-0018 ECARP project, the PGMO grant CAMISADO and the European Union’s Horizon 2020 research and innovative training network program under the Marie Skłodowska-Curie grant agreement N° 813211 (POEMA)
International audience; We design a new algorithm for solving parametric systems of equations having finitely many complex solutions for generic values of theparameters. More precisely, let $\mathbf{f} = (f_1, \ldots, f_m)\subset \mathbb{Q}[\mathbf{y}][\mathbf{x}]$ with $\mathbf{y} = (y_1, \ldots, y_{t})$ and $\mathbf{x} = (x_1, \ldots, x_{n})$, $\mathcal{V}\subset \mathbb{C}^t \times \mathbb{C}^n$ be the algebraic set defined by the simultaneous vanishing of the $f_i$'s and $\pi$ be the projection $(\mathbf{y}, \mathbf{x}) \to \mathbf{y}$. Under the assumptions that $\mathbf{f}$ admits finitely many complex solutions when specializing $\mathbf{y}$ to generic values and that the ideal generated by $\mathbf{f}$ is radical, we solve the following algorithmic problem. On input $\mathbf{f}$, we compute {\em semi-algebraic formulas} defining open semi-algebraic sets$\mathcal{S}_1, \ldots, \mathcal{S}_{\ell}$ in the parameters' space $\mathbb{R}^t$ such that $\cup_{i=1}^{\ell} \mathcal{S}_i$ is dense in$\mathbb{R}^t$ and, for $1\leq i \leq \ell$, the number of real points in $\mathcal{V}\cap \pi^{-1}(\eta)$ is invariant when $\eta$ rangesover $\mathcal{S}_i$.This algorithm exploits special properties of some well chosen monomial bases in the quotient algebra $\mathbb{Q}(\mathbf{y})[\mathbf{x}] / I$ where $I\subset \mathbb{Q}(\mathbf{y})[\mathbf{x}]$ is the ideal generated by $\mathbf{f}$ in $\mathbb{Q}(\mathbf{y})[\mathbf{x}]$ as well as thespecialization property of the so-called Hermite matrices which represent Hermite's quadratic forms. This allows us to obtain``compact'' representations of the semi-algebraic sets $\mathcal{S}_i$ by means of semi-algebraic formulas encoding the signature of a givensymmetric matrix. When $\mathbf{f}$ satisfies extra genericity assumptions (such as regularity), we use the theory of Gr\"obner bases to derive complexitybounds both on the number of arithmetic operations in $\mathbb{Q}$ and the degree of the output polynomials. More precisely, letting $d$ bethe maximal degrees of the $f_i$'s and $\mathfrak{D} = n(d-1)d^n$, we prove that, on a generic input $\mathbf{f}=(f_1,\ldots,f_n)$, one cancompute those semi-algebraic formulas with $O\ {\widetilde{~}}\left (\binom{t+\mathfrak{D}}{t}\ 2^{3t}\ n^{2t+1} d^{3nt+2(n+t)+1} \right )$arithmetic operations in $\mathbb{Q}$ and that the polynomials involved in these formulas have degree bounded by $\mathfrak{D}$.We report on practical experiments which illustrate the efficiency of this algorithm, both on generic parametric systems and parametricsystems coming from applications since it allows us to solve systems which are out of reach on the current state-of-the-art.