108 results on '"I. Bartoš"'
Search Results
2. Electron affinity of undoped and boron-doped polycrystalline diamond films
- Author
-
Oleksandr Romanyuk, Anna Artemenko, Ivan Gordeev, P. Jiříček, Marián Marton, I. Bartoš, Tibor Ižák, Alexander Kromka, and Marian Varga
- Subjects
congenital, hereditary, and neonatal diseases and abnormalities ,Materials science ,Analytical chemistry ,02 engineering and technology ,engineering.material ,01 natural sciences ,X-ray photoelectron spectroscopy ,hemic and lymphatic diseases ,Electron affinity ,parasitic diseases ,0103 physical sciences ,Materials Chemistry ,Electrical and Electronic Engineering ,010302 applied physics ,Mechanical Engineering ,technology, industry, and agriculture ,Diamond ,General Chemistry ,Plasma ,021001 nanoscience & nanotechnology ,Electronic, Optical and Magnetic Materials ,body regions ,Dipole ,Band bending ,engineering ,Crystallite ,0210 nano-technology ,Ultraviolet photoelectron spectroscopy - Abstract
The electron affinity of polycrystalline undoped and boron-doped diamond films was investigated by means of X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. It was demonstrated that both as-grown and hydrogenated polycrystalline diamond films exhibited true negative electron affinity (NEA). Positive electron affinity (PEA) was observed after diamond surface oxidation in plasma. NEA reduction was observed after hydrogenation of the polycrystalline film surface in plasma. This effect was related to depolarization of the surface dipoles, an increase in the density of surface defects, and an increase in contaminations on the surface. Boron doping of the diamond film had a negligible effect on electron affinity. Downward surface band bending was found for all the samples that were studied, and there was larger band bending for polycrystalline diamond surfaces modified in plasma than for as-grown polycrystalline diamond surfaces.
- Published
- 2018
- Full Text
- View/download PDF
3. Band bending at heterovalent interfaces: Hard X-ray photoelectron spectroscopy of GaP/Si(0 0 1) heterostructures
- Author
-
Roberto Félix, Manali Nandy, Jakob Bombsch, Thomas Hannappel, Oleksandr Romanyuk, Shigenori Ueda, Claudia Hartmann, Ivan Gordeev, P. Jiříček, Marcus Bär, Regan G. Wilks, Agnieszka Paszuk, P. Machek, J. Houdkova, I. Bartoš, and Peter Kleinschmidt
- Subjects
Materials science ,General Physics and Astronomy ,Heterojunction ,02 engineering and technology ,Surfaces and Interfaces ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Epitaxy ,01 natural sciences ,Molecular physics ,0104 chemical sciences ,Surfaces, Coatings and Films ,Band bending ,Reflection (mathematics) ,X-ray photoelectron spectroscopy ,Metalorganic vapour phase epitaxy ,0210 nano-technology ,Spectroscopy ,Anisotropy - Abstract
GaP is a preferred candidate for the transition between Si and heterogeneous III-V epilayers as it is nearly lattice-matched to Si. Here, we scrutinize the atomic structure and electronic properties of GaP/Si(0 0 1) heterointerfaces utilizing hard X-ray photoelectron spectroscopy (HAXPES). GaP(0 0 1) epitaxial films with thicknesses between 4 and 50 nm are prepared by metalorganic vapor phase epitaxy on either predominantly single-domain (SD) or two-domain (TD) Si(0 0 1) surfaces. The antiphase domain content in the GaP films is in situ controlled, employing reflection anisotropy spectroscopy. Via the analysis of core level photoelectron intensities, we reveal core level shifts of the P 2p and Si 2p peaks near the interface as well as core level shifts in the Ga 3d peaks near the surface. We suggest an Inter-Diffused Layer (IDL) model of the GaP/Si(0 0 1) interfacial structure with Si P bonds at the heterointerface and residual P atoms in the Si substrate. Using a newly developed Parametrized Polynomial Function (PPF) approach, we derive a non-monotonic band bending profile in the heterostructures, correct experimental valence band offsets implying interfacial electronic barriers, and determine valence band discontinuities of Δ E V = 1.1 ± 0.2 eV (SD samples) and Δ E V = 0.8 ± 0.2 eV (TD samples) at GaP/Si(0 0 1) interfaces.
- Published
- 2021
- Full Text
- View/download PDF
4. Electron band bending and surface sensitivity: X-ray photoelectron spectroscopy of polar GaN surfaces
- Author
-
Oleksandr Romanyuk, P. Jiříček, Tanja Paskova, and I. Bartoš
- Subjects
010302 applied physics ,Chemistry ,Photoemission spectroscopy ,Binding energy ,02 engineering and technology ,Surfaces and Interfaces ,Electron ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Surfaces, Coatings and Films ,Crystal ,Core (optical fiber) ,Band bending ,X-ray photoelectron spectroscopy ,0103 physical sciences ,Materials Chemistry ,Atomic physics ,0210 nano-technology ,Anisotropy - Abstract
The role of electron band bending and surface sensitivity in determining the core level binding energies by X-ray photoelectron spectroscopy is investigated. A dominating contribution of surface atomic layers to photoemission intensity is confirmed for normal photoemission. The energy of the photoelectron core level peak does not deviate from core level peak energies of electrons photoemitted from the surface atomic layers of the crystal. The higher surface sensitivity regime, achieved e.g. at off-normal photoelectron detection angle, can be used to study the surface potential barrier in just a few topmost atomic layers. In addition, it is demonstrated that core level binding energy measured by angle-resolved X-ray photoelectron spectroscopy reflect the electron attenuation anisotropy. In particular, core level binding energy changes with emission angle and correlates with the forward focusing directions in a crystal. This effect is demonstrated by measuring the polar angle dependence of Ga 3d core levels on clean GaN(0001) and GaN ( 000 1 ¯ ) surfaces with a higher and a lower band bending, respectively. The effect is explained by variation of emission depth in a crystal for normal and off-normal photoelectron emission angles.
- Published
- 2017
- Full Text
- View/download PDF
5. GaN quantum dot polarity determination by X-ray photoelectron diffraction
- Author
-
Oleksandr Romanyuk, Tanja Paskova, P. Jiříček, P. de Mierry, Julien Brault, and I. Bartoš
- Subjects
010302 applied physics ,Materials science ,Polarity (physics) ,business.industry ,General Physics and Astronomy ,Heterojunction ,02 engineering and technology ,Surfaces and Interfaces ,General Chemistry ,Substrate (electronics) ,Nitride ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Surfaces, Coatings and Films ,law.invention ,law ,Quantum dot ,0103 physical sciences ,Sapphire ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy ,Light-emitting diode - Abstract
Growth of GaN quantum dots (QDs) on polar and semipolar GaN substrates is a promising technology for efficient nitride-based light emitting diodes (LED). The QDs crystal orientation typically repeats the polarity of the substrate. In case of non-polar or semipolar substrates, the polarity of QDs is not obvious. In this article, the polarity of GaN QDs and of underlying layers was investigated nondestructively by X-ray photoelectron diffraction (XPD). Polar and semipolar GaN/Al0.5Ga0.5N heterostructures were grown on the sapphire substrates with (0001) and ( 1 1 ¯ 00 ) orientations by molecular beam epitaxy (MBE). Polar angle dependence of N 1s core-level photoelectron intensities were measured from GaN QDs and compared with the corresponding experimental curves from free-standing GaN crystals. It is confirmed experimentally, that the crystalline orientation of polar (0001) GaN QDs follows the orientation of the (0001) sapphire substrate. In case of semipolar GaN QDs grown on ( 1 1 ¯ 00 ) sapphire substrate, the ( 11 2 ¯ 2 ) polarity of QDs was determined.
- Published
- 2016
- Full Text
- View/download PDF
6. GaP/Si(0 0 1) interface study by XPS in combination with Ar gas cluster ion beam sputtering
- Author
-
Thomas Hannappel, Oliver Supplie, I. Bartoš, P. Jiříček, Ivan Gordeev, J.P. Stoeckmann, J. Houdkova, Egor Ukraintsev, Agnieszka Paszuk, and Oleksandr Romanyuk
- Subjects
Materials science ,Gas cluster ion beam ,business.industry ,Analytical chemistry ,General Physics and Astronomy ,Heterojunction ,02 engineering and technology ,Surfaces and Interfaces ,General Chemistry ,Photoelectric effect ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Inelastic mean free path ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Semiconductor ,X-ray photoelectron spectroscopy ,Sputtering ,Thin film ,0210 nano-technology ,business - Abstract
The study of the chemical composition of buried interfaces by X-ray photoelectron spectroscopy (XPS) is limited by the inelastic mean free path of emitted photoelectrons (PE). Soft X-ray sources (AlKα) are generally suitable for careful probing of surfaces or very thin films. Here we applied gas cluster ion beam sputtering in combination with in-situ XPS (GCIB-XPS) to analyze buried GaP/Si(0 0 1) heterointerfaces. The GCIB method was used to dig a crater into the 20 nm thick GaP(0 0 1) film. We found optimal parameters for GCIB sputtering and achieved interface layers without severe damage. Destructive effects, i.e. broadening of core level peaks, could not be completely avoided, however, and the formation of metallic Ga on the GaP surface was observed. PE spectra of the sputtered heterostructures were compared with corresponding reference spectra of sputtered bulk crystals. Interface contributions to the intensity of phosphorus and sillicon core level peaks were revealed: interface components are shifted to high binding energies of P 2p Si 2p core levels. Similar results were obtained on 4 nm thick GaP/Si(0 0 1) by XPS. Finally, a top-to-bottom concept for buried semiconductor interfaces studies by GCIB-XPS is demonstrated.
- Published
- 2020
- Full Text
- View/download PDF
7. Polarity of GaN with polar {0001} and semipolar , , orientations by x-ray photoelectron diffraction
- Author
-
Tania Paskova, I. Bartoš, Oleksandr Romanyuk, and P. Jiříček
- Subjects
Diffraction ,Materials science ,Mechanical Engineering ,Crystal structure ,Electron ,Condensed Matter Physics ,Crystallography ,Mechanics of Materials ,Excited state ,Perpendicular ,Polar ,General Materials Science ,Atomic physics ,Wurtzite crystal structure ,Bar (unit) - Abstract
A fast and nondestructive method for polarity determination of wurtzite GaN crystals based on x-ray photoelectron diffraction (XPD) has been demonstrated. Photoelectron emission from N 1s core level excited by Mg Kα source was found sufficient for the polarity determination of GaN crystals. XPD polar plots from polar GaN {0001} and semipolar GaN $\left\{{10\bar 11} \right\},\;\left\{{20\bar 21} \right\},\;\left\{{11\bar 22} \right\}$ crystals have been analyzed. Due to dominant electron forward scattering along N–Ga directions, photoelectron intensities either increase or decrease within a relatively narrow emission polar angle range. The slopes of polar plots are found noticeably different in the polar angle range of 20°–25° for (0001) or $\left({000\bar 1} \right)$ crystals, respectively. The semipolar GaN substrates can be divided into two groups, depending on whether m-plane or a-plane is perpendicular to the semipolar surface. It was found that the slopes of the polar plots are different in the angular range of 20°–27° for semipolar GaN $\left\{{10\bar 11} \right\}$ , 10°–22° for GaN $\left\{{20\bar 21} \right\}$ substrates, while for the GaN $\left\{{11\bar 22} \right\}$ semipolar planes, the slopes are different in the range of 0°–15° with respect to the surface normal.
- Published
- 2015
- Full Text
- View/download PDF
8. Polarity of wurtzite crystals by photoelectron diffraction
- Author
-
Oleksandr Romanyuk and I. Bartoš
- Subjects
Diffraction ,Chemistry ,Polarity (physics) ,General Physics and Astronomy ,Surfaces and Interfaces ,General Chemistry ,Electron ,Condensed Matter Physics ,Molecular physics ,Surfaces, Coatings and Films ,Ion ,Crystal ,Crystallography ,Polar ,Polar coordinate system ,Wurtzite crystal structure - Abstract
Photoelectron diffraction is proposed to determine nondestructively the polarity of wurtzite crystals with polar surfaces (c-plane). Small segments of polar plots of photoemission from anion core levels in the ( 1 0 1 ¯ 0 ) azimuthal plane are qualitatively different for two polarities around the polar angle 20°. The magnitude of the ratio of electron photoemission intensities at two polar angles I20/I23 can be utilized as a simple criterion determining the crystal polarity.
- Published
- 2014
- Full Text
- View/download PDF
9. Layer-resolved photoelectron diffraction from Si(0 0 1) and GaAs(0 0 1)
- Author
-
Oleksandr Romanyuk and I. Bartoš
- Subjects
Diffraction ,Radiation ,Photon ,Materials science ,Attenuation ,Diamond ,Electron ,engineering.material ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Crystal ,engineering ,Physical and Theoretical Chemistry ,Atomic physics ,Anisotropy ,Spectroscopy ,Excitation - Abstract
Photoelectron diffraction in the layer-resolved mode brings more detailed information about local atomic arrangement than is obtained in the standard mode. This is demonstrated in crystals with diamond and zinc-blende structures, both for unpolarized photon excitation as well as for circularly polarized excitation. The full angular distributions of photoemission intensities are evaluated for large atomic clusters representing ideally truncated surfaces of Si(0 0 1) and GaAs(0 0 1). Highly structured layer-resolved patterns enable a more detailed understanding of the standard mode outcomes. Photoelectron intensities from atomic layers placed at different depths under the crystal surface provide direct evidence about electron attenuation and its anisotropy in crystals.
- Published
- 2012
- Full Text
- View/download PDF
10. Layer-resolved photoelectron diffraction: Electron attenuation anisotropy in GaAs
- Author
-
I. Bartoš, P. Jiříček, and M. Cukr
- Subjects
Diffraction ,Radiation ,Materials science ,010304 chemical physics ,Analytical chemistry ,Synchrotron radiation ,Electron ,Photoelectric effect ,Condensed Matter Physics ,01 natural sciences ,Molecular physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Materials Science ,Excited state ,0103 physical sciences ,Monolayer ,Surface layer ,Physical and Theoretical Chemistry ,010306 general physics ,Anisotropy ,Spectroscopy - Abstract
Photoelectron diffraction was used to get polar plots of the low-energy photoemission intensities from AlAs monolayer buried 2, 3 and 4 GaAs monolayers below the GaAs(0 0 1)- c (4×4) reconstructed surface. Unexpected differences in polar plots of the layer-resolved, synchrotron radiation excited photoelectron emission from even and odd AlAs monolayers were observed experimentally and obtained theoretically. This 26 eV kinetic energy photoelectron emission is accompanied by electron attenuation anisotropy and a non-exponential intensity decay in the near-surface region. The importance of the top surface layer and its reconstruction is demonstrated by theoretical simulations. Enhanced contributions of photoelectrons from individual subsurface layers in specific directions offer a way to investigate the desired subsurface atomic layers.
- Published
- 2012
- Full Text
- View/download PDF
11. Reflection electron energy loss spectroscopy of aluminum
- Author
-
I. Bartoš, Wolfgang S. M. Werner, J. Zemek, and Petr Jiricek
- Subjects
Chemistry ,Electron energy loss spectroscopy ,Surface plasmon ,Surfaces and Interfaces ,Electron ,Photoelectric effect ,Condensed Matter Physics ,Kinetic energy ,Surfaces, Coatings and Films ,Reflection (mathematics) ,Materials Chemistry ,Atomic physics ,Anisotropy ,Single crystal - Abstract
Reflection electron energy loss spectra (REELS) of Al(111) single crystal and of the aluminum polycrystalline (poly Al) film were measured at 200 eV and 1000 eV electron energies for a variety of experimental geometries and were mutually compared. No anisotropy was found for the poly Al, as expected. Polar intensity plots evaluated from the elastic (no loss) and inelastic first surface plasmon- and first bulk plasmon-loss intensities of the Al(111) surface show clearly discernable peaks for both considered electron energies. Their positions on the angular axis are the same for the elastic as well as for the inelastic, surface and bulk plasmon-loss peaks. The polar plots of intensities of the elastically and inelastically reflected electrons were compared to calculated intensities of photoelectrons emitted from the Al 2s core level to the same kinetic energy. Peak positions in the theoretically determined polar plots of electron intensities agree with those obtained experimentally in REELS.
- Published
- 2010
- Full Text
- View/download PDF
12. Photoemission from α and β phases of the GaAs(001)-c(4×4) surface
- Author
-
Janusz Sadowski, M. Cukr, I. Bartoš, and Petr Jiricek
- Subjects
Chemistry ,Analytical chemistry ,Dangling bond ,Synchrotron radiation ,Surfaces and Interfaces ,Photon energy ,Condensed Matter Physics ,Spectral line ,Surfaces, Coatings and Films ,X-ray photoelectron spectroscopy ,Phase (matter) ,Materials Chemistry ,Ultraviolet photoelectron spectroscopy ,Molecular beam epitaxy - Abstract
We prepared alpha- and beta surface phases of GaAs(0 0 1)-c(4 x 4) reconstruction by molecular beam epitaxy (MBE) using As-4 and As-2 molecular beams, respectively, and examined them by angle-resolved ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) with synchrotron radiation as an excitation source. The UPS valence band spectra and the XPS 3d core level data show pronounced differences corresponding to the surface composition and the atomic structure of the two phases, as proposed in the literature. In UPS, the beta phase is characterized by an intensive surface state 0.5 eV below the top of the valence band at low photon energy, while an analogous peak in the alpha phase spectra is missing. The surface state is interpreted in terms of dangling bonds on As dimers. The As3d and Ga3d core level photoelectron lines exhibit phase-specific shapes as well as differences in the number, position and intensity of their deconvoluted components. The location of various atoms in the surface and subsurface layers is discussed; our photoemission results support models of the beta phase and the alpha phase with As-As dimers and Ga-As heterodimers, respectively. (C) 2009 Elsevier B.V. All rights reserved. (Less)
- Published
- 2009
- Full Text
- View/download PDF
13. Electron attenuation anisotropy at crystal surfaces from LEED
- Author
-
Oleksandr Romanyuk and I. Bartoš
- Subjects
Reflection high-energy electron diffraction ,Low-energy electron diffraction ,business.industry ,Chemistry ,Attenuation ,Attenuation length ,Surfaces and Interfaces ,Electron ,Condensed Matter Physics ,Molecular physics ,Surfaces, Coatings and Films ,Amorphous solid ,Optics ,Materials Chemistry ,Anisotropy ,business ,Electron scattering - Abstract
Dynamical theory of electron scattering is used to describe the electron transport in the surface regions of crystals. The angle resolved attenuation length of electrons is derived from the transmitted LEED electron current decay. Electron attenuation length energy dependence and anisotropy in polar angle are found for crystalline Cu(1 1 1) for two high symmetry azimuths. Pronounced anisotropy in polar angle distributions of attenuation lengths is found to be in qualitative agreement with the results obtained from the photoelectron diffraction. Comparison with the attenuation lengths obtained from semiclassical simulations for amorphous copper is given. This comparison demonstrates that simple transfers of the smoothly behaving surface sensitivity from amorphous materials oversimplifies the electron attenuation process and can lead to incorrect results in quantitative analyses of crystalline surfaces.
- Published
- 2009
- Full Text
- View/download PDF
14. Anisotropy of the angle resolved electron attenuation at crystal surfaces
- Author
-
I. Bartoš
- Subjects
Chemistry ,Inverse photoemission spectroscopy ,Attenuation length ,Angle-resolved photoemission spectroscopy ,Surfaces and Interfaces ,Electron ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Crystal ,Photoexcitation ,Materials Chemistry ,Atomic physics ,Anisotropy ,Electron scattering - Abstract
Photoemission multiple scattering theory is used to describe the electron transport in the surface region of a crystal. Intensities of photoemission from core levels of atoms situated in subsurface atomic layers are calculated as a function of the emitter distance from the surface. The electron angle resolved attenuation length (ARAL) is extracted from the exponential fitting of the intensity decays of photoemission into different directions. Substantial anisotropy of the electron ARAL is found for the Cu(1 1 1) surface in Mg Kα photoexcitation of Cu 2p 3/2 levels and correlated with the orientation of highly packed atomic rows. Enhanced photoemission contributions from specific subsurface layers, caused by electron forward focusing effects, are reported.
- Published
- 2009
- Full Text
- View/download PDF
15. Role of final states in photoemission from Al(111)
- Author
-
Eugene E. Krasovskii, W. Schattke, P. Jiříček, V. Dudr, and I. Bartoš
- Subjects
Elastic scattering ,Chemistry ,Inverse photoemission spectroscopy ,Angle-resolved photoemission spectroscopy ,Surfaces and Interfaces ,Electron ,Photon energy ,Condensed Matter Physics ,Surfaces, Coatings and Films ,X-ray photoelectron spectroscopy ,Materials Chemistry ,Atomic physics ,Electronic band structure ,Surface states - Abstract
Enhancement of surface state peaks in angle resolved ultraviolet photoelectron spectra (ARUPS) from the Al(1 1 1) surface is studied experimentally and theoretically within the one-step model of photoemission. The resonant enhancement of the surface state emission is explained by the crucial role of elastic scattering of the outgoing electron. Dipole transitions to evanescent states in the final bands of the crystal are shown to determine photoemission at the resonant photon energy. The band structure based explanation is confirmed by the measurements of electron reflectivity and of the fine structure of valence band spectra. The surface sensitivity of ARUPS is shown to depend strongly on the complex band structure of the crystal and to be finely tunable by the choice of photoemitted electron energy.
- Published
- 2007
- Full Text
- View/download PDF
16. Electron surface states in short-period superlattices: (GaAs)2/(AlAs)2(100)-c(4×4)
- Author
-
I. Bartoš, W. Schattke, T. Strasser, P. Jiříček, M. Cukr, and Martin Adell
- Subjects
Superlattice ,Angle-resolved photoemission spectroscopy ,Surfaces and Interfaces ,Electronic structure ,Photon energy ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Gallium arsenide ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,chemistry ,X-ray photoelectron spectroscopy ,Materials Chemistry ,Atomic physics ,Molecular beam epitaxy ,Surface states - Abstract
The electronic structure of (GaAs)2/(AlAs)2(1 0 0)-c(4 × 4) superlattice surfaces was studied by means of angular-resolved photoelectron spectroscopy (ARUPS) in the photon energy range 20–38 eV. Four samples with different surface termination layers were grown and As-capped by molecular beam epitaxy (MBE). ARUPS measurements were performed on decapped samples with perfect c(4 × 4) reconstructed surfaces. An intensive surface state was, for the first time, observed below the top of the valence band. This surface state was found to shift with superlattices’ different surface termination in agreement with theoretical predictions.
- Published
- 2006
- Full Text
- View/download PDF
17. LEED structural analysis of GaAs(001)-c(4×4) surface
- Author
-
I. Bartoš, Oleksandr Romanyuk, P. Jiříček, and M. Cukr
- Subjects
Diffraction ,Scattering ,Surfaces and Interfaces ,Electron ,Condensed Matter Physics ,Molecular physics ,Surfaces, Coatings and Films ,Gallium arsenide ,Condensed Matter::Materials Science ,Crystallography ,chemistry.chemical_compound ,chemistry ,Materials Chemistry ,Molecule ,Tensor ,Surface reconstruction ,Molecular beam epitaxy - Abstract
The tensor LEED analysis of the intensities of electron beams diffracted from the GaAs(0 0 1)-c(4 × 4) grown by molecular beam epitaxy (MBE) has been performed. Surface structures with symmetrical and asymmetrical 3-dimer models in the topmost layer have been investigated. The best-fit structure with central dimer compressed with respect to the As 4 molecule by 20% has been found. Model with asymmetrically arranged dimers fits experimental data better than that with symmetrical alignment.
- Published
- 2004
- Full Text
- View/download PDF
18. Electron mean free path for GaAs(100)-c(4×4) at very low energies
- Author
-
M. Cukr, Janusz Sadowski, I. Bartoš, and Petr Jiricek
- Subjects
Range (particle radiation) ,Mean free path ,Surfaces and Interfaces ,Electron ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Gallium arsenide ,Overlayer ,chemistry.chemical_compound ,chemistry ,X-ray photoelectron spectroscopy ,Materials Chemistry ,Atomic physics ,Electronic band structure ,Molecular beam epitaxy - Abstract
Electron mean free path (MFP) was determined by the angular resolved photoemission in 10-40 eV energy range for GaAs(100)-c(4 x 4) by the overlayer method. The investigation was based on the attenuation of the normal photoemission intensity of the Al 2p line from the molecular-beam-epitaxy grown GaAlAs layer buried four monolayers of GaAs below the surface. The energy dependence of the MFP shows a pronounced maximum at about 30 eV which is related to the corresponding section of the electron band structure of GaAs(100). (C) 2004 Elsevier B.V. All rights reserved.
- Published
- 2004
- Full Text
- View/download PDF
19. Eccentricity Estimation for Five Binary Black Hole Mergers with Higher-order Gravitational-wave Modes
- Author
-
H. L. Iglesias, J. Lange, I. Bartos, S. Bhaumik, R. Gamba, V. Gayathri, A. Jan, R. Nowicki, R. O’Shaughnessy, D. M. Shoemaker, R. Venkataramanan, and K. Wagner
- Subjects
Gravitational waves ,Eccentricity ,Stellar mass black holes ,Astrophysics ,QB460-466 - Abstract
The detection of orbital eccentricity for a binary black hole system via gravitational waves is a key signature to distinguish between the possible binary origins. The identification of eccentricity has been difficult so far due to the limited availability of eccentric gravitational waveforms over the full range of black hole masses and eccentricities. Here we evaluate the eccentricity of five black hole mergers detected by the LIGO and Virgo observatories using the TEOBResumS-DALI , TEOBResumS-GIOTTO , and TEOBResumSP models. This analysis studies eccentricities up to 0.6 at the reference frequency of 5 Hz and incorporates higher-order gravitational-wave modes critical to model emission from highly eccentric orbits. The binaries have been selected due to previous hints of eccentricity or due to their unusual mass and spin. While other studies found marginal evidence for eccentricity for some of these events, our analyses do not favor the incorporation of eccentricity compared to the quasi-circular case. While lacking the eccentric evidence of other analyses, we find our analyses marginally shifts the posterior in multiple parameters for several events when allowing eccentricity to be nonzero.
- Published
- 2024
- Full Text
- View/download PDF
20. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run
- Author
-
R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, S. Akcay, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, T. Andrić, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, S. Appert, Koji Arai, Koya Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, M. Arogeti, S. M. Aronson, K. G. Arun, H. Asada, Y. Asali, G. Ashton, Y. Aso, M. Assiduo, S. M. Aston, P. Astone, F. Aubin, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, C. Badger, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, L. Baiotti, J. Baird, R. Bajpai, M. Ball, G. Ballardin, S. W. Ballmer, A. Balsamo, G. Baltus, S. Banagiri, D. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, A. C. Baylor, M. Bazzan, B. Bécsy, V. M. Bedakihale, M. Bejger, I. Belahcene, V. Benedetto, D. Beniwal, T. F. Bennett, J. D. Bentley, M. BenYaala, F. Bergamin, B. K. Berger, S. Bernuzzi, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, D. Beveridge, R. Bhandare, U. Bhardwaj, D. Bhattacharjee, S. Bhaumik, I. A. Bilenko, G. Billingsley, S. Bini, R. Birney, O. Birnholtz, S. Biscans, M. Bischi, S. Biscoveanu, A. Bisht, B. Biswas, M. Bitossi, M.-A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, F. Bobba, N. Bode, M. Boer, G. Bogaert, M. Boldrini, L. D. Bonavena, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, R. Bork, V. Boschi, N. Bose, S. Bose, V. Bossilkov, V. Boudart, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, A. Branch, M. Branchesi, J. Brandt, J. E. Brau, M. Breschi, T. Briant, J. H. Briggs, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks, J. Brooks, D. D. Brown, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, C. Buy, R. L. Byer, G. S. Cabourn Davies, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, J. D. Callaghan, T. A. Callister, E. Calloni, J. Cameron, J. B. Camp, M. Canepa, S. Canevarolo, M. Cannavacciuolo, K. C. Cannon, H. Cao, Z. Cao, E. Capocasa, E. Capote, G. Carapella, F. Carbognani, J. B. Carlin, M. F. Carney, M. Carpinelli, G. Carrillo, G. Carullo, T. L. Carver, J. Casanueva Diaz, C. Casentini, G. Castaldi, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, M. Ceasar, G. Cella, P. Cerdá-Durán, E. Cesarini, W. Chaibi, K. Chakravarti, S. Chalathadka Subrahmanya, E. Champion, C.-H. Chan, C. Chan, C. L. Chan, K. Chan, M. Chan, K. Chandra, P. Chanial, S. Chao, C. E. A. Chapman-Bird, P. Charlton, E. A. Chase, E. Chassande-Mottin, C. Chatterjee, Debarati Chatterjee, Deep Chatterjee, M. Chaturvedi, S. Chaty, K. Chatziioannou, C. Chen, H. Y. Chen, J. Chen, K. Chen, X. Chen, Y.-B. Chen, Y.-R. Chen, Z. Chen, H. Cheng, C. K. Cheong, H. Y. Cheung, H. Y. Chia, F. Chiadini, C-Y. Chiang, G. Chiarini, R. Chierici, A. Chincarini, M. L. Chiofalo, A. Chiummo, G. Cho, H. S. Cho, R. K. Choudhary, S. Choudhary, N. Christensen, H. Chu, Q. Chu, Y-K. Chu, S. Chua, K. W. Chung, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, E. N. Clark, J. A. Clark, L. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, E. Codazzo, P.-F. Cohadon, D. E. Cohen, L. Cohen, M. Colleoni, C. G. Collette, A. Colombo, M. Colpi, C. M. Compton, M. Constancio, Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, K. R. Corley, N. Cornish, D. Corre, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, J.-P. Coulon, S. T. Countryman, B. Cousins, P. Couvares, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, A. W. Criswell, M. Croquette, S. G. Crowder, J. R. Cudell, T. J. Cullen, A. Cumming, R. Cummings, L. Cunningham, E. Cuoco, M. Curyło, P. Dabadie, T. Dal Canton, S. Dall’Osso, G. Dálya, A. Dana, L. M. DaneshgaranBajastani, B. D’Angelo, B. Danila, S. Danilishin, S. D’Antonio, K. Danzmann, C. Darsow-Fromm, A. Dasgupta, L. E. H. Datrier, V. Dattilo, I. Dave, M. Davier, D. Davis, M. C. Davis, E. J. Daw, P. F. de Alarcón, R. Dean, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, V. Del Favero, F. De Lillo, N. De Lillo, W. Del Pozzo, L. M. DeMarchi, F. De Matteis, V. D’Emilio, N. Demos, T. Dent, A. Depasse, R. De Pietri, R. De Rosa, C. De Rossi, R. DeSalvo, R. De Simone, S. Dhurandhar, M. C. Díaz, M. Diaz-Ortiz, Jr., N. A. Didio, T. Dietrich, L. Di Fiore, C. Di Fronzo, C. Di Giorgio, F. Di Giovanni, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. K. Divakarla, A. Dmitriev, Z. Doctor, L. D’Onofrio, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, M. Drago, J. C. Driggers, Y. Drori, J.-G. Ducoin, P. Dupej, O. Durante, D. D’Urso, P.-A. Duverne, S. E. Dwyer, C. Eassa, P. J. Easter, M. Ebersold, T. Eckhardt, G. Eddolls, B. Edelman, T. B. Edo, O. Edy, A. Effler, S. Eguchi, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, A. Ejlli, E. Engelby, Y. Enomoto, L. Errico, R. C. Essick, H. Estellés, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, B. E. Ewing, V. Fafone, H. Fair, S. Fairhurst, A. M. Farah, S. Farinon, B. Farr, W. M. Farr, N. W. Farrow, E. J. Fauchon-Jones, G. Favaro, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, E. Fenyvesi, D. L. Ferguson, A. Fernandez-Galiana, I. Ferrante, T. A. Ferreira, F. Fidecaro, P. Figura, I. Fiori, M. Fishbach, R. P. Fisher, R. Fittipaldi, V. Fiumara, R. Flaminio, E. Floden, H. Fong, J. A. Font, B. Fornal, P. W. F. Forsyth, A. Franke, S. Frasca, F. Frasconi, C. Frederick, J. P. Freed, Z. Frei, A. Freise, R. Frey, P. Fritschel, V. V. Frolov, G. G. Fronzé, Y. Fujii, Y. Fujikawa, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, W. E. Gabella, B. U. Gadre, J. R. Gair, J. Gais, S. Galaudage, R. Gamba, D. Ganapathy, A. Ganguly, D. Gao, S. G. Gaonkar, B. Garaventa, F. García, C. García-Núñez, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, V. Gayathri, G.-G. Ge, G. Gemme, A. Gennai, J. George, R. N. George, O. Gerberding, L. Gergely, P. Gewecke, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, Shaon Ghosh, Shrobana Ghosh, B. Giacomazzo, L. Giacoppo, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, M. Giesler, P. Giri, F. Gissi, J. Glanzer, A. E. Gleckl, P. Godwin, E. Goetz, R. Goetz, N. Gohlke, J. Golomb, B. Goncharov, G. González, A. Gopakumar, M. Gosselin, R. Gouaty, D. W. Gould, B. Grace, A. Grado, M. Granata, V. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, A. M. Gretarsson, E. M. Gretarsson, D. Griffith, W. Griffiths, H. L. Griggs, G. Grignani, A. Grimaldi, S. J. Grimm, H. Grote, S. Grunewald, P. Gruning, D. Guerra, G. M. Guidi, A. R. Guimaraes, G. Guixé, H. K. Gulati, H.-K. Guo, Y. Guo, Anchal Gupta, Anuradha Gupta, P. Gupta, E. K. Gustafson, R. Gustafson, F. Guzman, S. Ha, L. Haegel, A. Hagiwara, S. Haino, O. Halim, E. D. Hall, E. Z. Hamilton, G. Hammond, W.-B. Han, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. Hannuksela, H. Hansen, T. J. Hansen, J. Hanson, T. Harder, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, D. Hartwig, K. Hasegawa, B. Haskell, R. K. Hasskew, C.-J. Haster, K. Hattori, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, A. Heidt, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, P. Hello, A. F. Helmling-Cornell, G. Hemming, M. Hendry, I. S. Heng, E. Hennes, J. Hennig, M. H. Hennig, A. G. Hernandez, F. Hernandez Vivanco, M. Heurs, S. Hild, P. Hill, Y. Himemoto, A. S. Hines, Y. Hiranuma, N. Hirata, E. Hirose, S. Hochheim, D. Hofman, J. N. Hohmann, D. G. Holcomb, N. A. Holland, K. Holley-Bockelmann, I. J. Hollows, Z. J. Holmes, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, J. Hough, S. Hourihane, E. J. Howell, C. G. Hoy, D. Hoyland, A. Hreibi, B-H. Hsieh, Y. Hsu, G-Z. Huang, H-Y. Huang, P. Huang, Y-C. Huang, Y.-J. Huang, Y. Huang, M. T. Hübner, A. D. Huddart, B. Hughey, D. C. Y. Hui, V. Hui, S. Husa, S. H. Huttner, R. Huxford, T. Huynh-Dinh, S. Ide, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, C. Ingram, Y. Inoue, K. Ioka, M. Isi, K. Isleif, K. Ito, Y. Itoh, B. R. Iyer, K. Izumi, V. JaberianHamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, A. Z. Jan, K. Jani, J. Janquart, K. Janssens, N. N. Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, K. Jenner, C. Jeon, M. Jeunon, W. Jia, H.-B. Jin, G. R. Johns, N. K. Johnson-McDaniel, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones, R. J. G. Jonker, L. Ju, P. Jung, K. Jung, J. Junker, V. Juste, K. Kaihotsu, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, J. B. Kanner, Y. Kao, S. J. Kapadia, D. P. Kapasi, S. Karat, C. Karathanasis, S. Karki, R. Kashyap, M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, T. Kaur, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, S. Khan, E. A. Khazanov, N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, J. C. Kim, J. Kim, K. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, N. Kimura, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, S. Klimenko, A. M. Knee, T. D. Knowles, E. Knyazev, P. Koch, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, P. Kolitsidou, M. Kolstein, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, K. Kotake, M. Kovalam, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. V. Krishnendu, A. Królak, G. Kuehn, F. Kuei, P. Kuijer, S. Kulkarni, A. Kumar, P. Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, C. Kuo, H-S. Kuo, Y. Kuromiya, S. Kuroyanagi, K. Kusayanagi, S. Kuwahara, K. Kwak, P. Lagabbe, D. Laghi, E. Lalande, T. L. Lam, A. Lamberts, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, I. La Rosa, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. Lee, J. Lehmann, A. Lemaître, M. Leonardi, N. Leroy, N. Letendre, C. Levesque, Y. Levin, J. N. Leviton, K. Leyde, A. K. Y. Li, B. Li, J. Li, K. L. Li, T. G. F. Li, X. Li, C-Y. Lin, F-K. Lin, F-L. Lin, H. L. Lin, L. C.-C. Lin, F. Linde, S. D. Linker, J. N. Linley, T. B. Littenberg, G. C. Liu, J. Liu, K. Liu, X. Liu, F. Llamas, M. Llorens-Monteagudo, R. K. L. Lo, A. Lockwood, M. Loh, L. T. London, A. Longo, D. Lopez, M. Lopez Portilla, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, T. P. Lott, J. D. Lough, C. O. Lousto, G. Lovelace, J. F. Lucaccioni, H. Lück, D. Lumaca, A. P. Lundgren, L.-W. Luo, J. E. Lynam, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, I. Magaña Hernandez, C. Magazzù, R. M. Magee, R. Maggiore, M. Magnozzi, S. Mahesh, E. Majorana, C. Makarem, I. Maksimovic, S. Maliakal, A. Malik, N. Man, V. Mandic, V. Mangano, J. L. Mango, G. L. Mansell, M. Manske, M. Mantovani, M. Mapelli, F. Marchesoni, M. Marchio, F. Marion, Z. Mark, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, M. Martinez, V. A. Martinez, V. Martinez, K. Martinovic, D. V. Martynov, E. J. Marx, H. Masalehdan, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, M. Mateu-Lucena, F. Matichard, M. Matiushechkina, N. Mavalvala, J. J. McCann, R. McCarthy, D. E. McClelland, P. K. McClincy, S. McCormick, L. McCuller, G. I. McGhee, S. C. McGuire, C. McIsaac, J. McIver, T. McRae, S. T. McWilliams, D. Meacher, M. Mehmet, A. K. Mehta, Q. Meijer, A. Melatos, D. A. Melchor, G. Mendell, A. Menendez-Vazquez, C. S. Menoni, R. A. Mercer, L. Mereni, K. Merfeld, E. L. Merilh, J. D. Merritt, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Meylahn, A. Mhaske, A. Miani, H. Miao, I. Michaloliakos, C. Michel, Y. Michimura, H. Middleton, L. Milano, A. L. Miller, A. Miller, B. Miller, M. Millhouse, J. C. Mills, E. Milotti, O. Minazzoli, Y. Minenkov, N. Mio, Ll. M. Mir, M. Miravet-Tenés, C. Mishra, T. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, Y. Miyazaki, K. Miyo, S. Miyoki, Geoffrey Mo, L. M. Modafferi, E. Moguel, K. Mogushi, S. R. P. Mohapatra, S. R. Mohite, I. Molina, M. Molina-Ruiz, M. Mondin, M. Montani, C. J. Moore, D. Moraru, F. Morawski, A. More, C. Moreno, G. Moreno, Y. Mori, S. Morisaki, Y. Moriwaki, G. Morrás, B. Mours, C. M. Mow-Lowry, S. Mozzon, F. Muciaccia, Arunava Mukherjee, D. Mukherjee, Soma Mukherjee, Subroto Mukherjee, Suvodip Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, P. G. Murray, R. Musenich, S. Muusse, S. L. Nadji, K. Nagano, S. Nagano, A. Nagar, K. Nakamura, H. Nakano, M. Nakano, R. Nakashima, Y. Nakayama, V. Napolano, I. Nardecchia, T. Narikawa, L. Naticchioni, B. Nayak, R. K. Nayak, R. Negishi, B. F. Neil, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, P. Neubauer, A. Neunzert, K. Y. Ng, S. W. S. Ng, C. Nguyen, P. Nguyen, T. Nguyen, L. Nguyen Quynh, W.-T. Ni, S. A. Nichols, A. Nishizawa, S. Nissanke, E. Nitoglia, F. Nocera, M. Norman, C. North, S. Nozaki, J. F. Nuño Siles, L. K. Nuttall, J. Oberling, B. D. O’Brien, Y. Obuchi, J. O’Dell, E. Oelker, W. Ogaki, G. Oganesyan, J. J. Oh, K. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, H. Ohta, M. A. Okada, Y. Okutani, K. Okutomi, C. Olivetto, K. Oohara, C. Ooi, R. Oram, B. O’Reilly, R. G. Ormiston, N. D. Ormsby, L. F. Ortega, R. O’Shaughnessy, E. O’Shea, S. Oshino, S. Ossokine, C. Osthelder, S. Otabe, D. J. Ottaway, H. Overmier, A. E. Pace, G. Pagano, M. A. Page, G. Pagliaroli, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, H. Pan, K. Pan, P. K. Panda, H. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. H. Panther, F. Paoletti, A. Paoli, A. Paolone, A. Parisi, H. Park, J. Park, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patel, M. Pathak, B. Patricelli, A. S. Patron, S. Paul, E. Payne, M. Pedraza, M. Pegoraro, A. Pele, F. E. Peña Arellano, S. Penn, A. Perego, A. Pereira, T. Pereira, C. J. Perez, C. Périgois, C. C. Perkins, A. Perreca, S. Perriès, J. Petermann, D. Petterson, H. P. Pfeiffer, K. A. Pham, K. S. Phukon, O. J. Piccinni, M. Pichot, M. Piendibene, F. Piergiovanni, L. Pierini, V. Pierro, G. Pillant, M. Pillas, F. Pilo, L. Pinard, I. M. Pinto, M. Pinto, B. Piotrzkowski, K. Piotrzkowski, M. Pirello, M. D. Pitkin, E. Placidi, L. Planas, W. Plastino, C. Pluchar, R. Poggiani, E. Polini, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, R. Poulton, J. Powell, M. Pracchia, T. Pradier, A. K. Prajapati, K. Prasai, R. Prasanna, G. Pratten, M. Principe, G. A. Prodi, L. Prokhorov, P. Prosposito, L. Prudenzi, A. Puecher, M. Punturo, F. Puosi, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, R. Quitzow-James, N. Qutob, F. J. Raab, G. Raaijmakers, H. Radkins, N. Radulesco, P. Raffai, S. X. Rail, S. Raja, C. Rajan, K. E. Ramirez, T. D. Ramirez, A. Ramos-Buades, J. Rana, P. Rapagnani, U. D. Rapol, A. Ray, V. Raymond, N. Raza, M. Razzano, J. Read, L. A. Rees, T. Regimbau, L. Rei, S. Reid, S. W. Reid, D. H. Reitze, P. Relton, A. Renzini, P. Rettegno, A. Reza, M. Rezac, F. Ricci, D. Richards, J. W. Richardson, L. Richardson, G. Riemenschneider, K. Riles, S. Rinaldi, K. Rink, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, S. Rodriguez, L. Rolland, J. G. Rollins, M. Romanelli, R. Romano, C. L. Romel, A. Romero-Rodríguez, I. M. Romero-Shaw, J. H. Romie, S. Ronchini, L. Rosa, C. A. Rose, D. Rosińska, M. P. Ross, S. Rowan, S. J. Rowlinson, S. Roy, Santosh Roy, Soumen Roy, D. Rozza, P. Ruggi, K. Ruiz-Rocha, K. Ryan, S. Sachdev, T. Sadecki, J. Sadiq, N. Sago, S. Saito, Y. Saito, K. Sakai, Y. Sakai, M. Sakellariadou, Y. Sakuno, O. S. Salafia, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, E. J. Sanchez, J. H. Sanchez, L. E. Sanchez, N. Sanchis-Gual, J. R. Sanders, A. Sanuy, T. R. Saravanan, N. Sarin, B. Sassolas, H. Satari, B. S. Sathyaprakash, S. Sato, T. Sato, O. Sauter, R. L. Savage, T. Sawada, D. Sawant, H. L. Sawant, S. Sayah, D. Schaetzl, M. Scheel, J. Scheuer, M. Schiworski, P. Schmidt, S. Schmidt, R. Schnabel, M. Schneewind, R. M. S. Schofield, A. Schönbeck, B. W. Schulte, B. F. Schutz, E. Schwartz, J. Scott, S. M. Scott, M. Seglar-Arroyo, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. S. Sengupta, D. Sentenac, E. G. Seo, V. Sequino, A. Sergeev, Y. Setyawati, T. Shaffer, M. S. Shahriar, B. Shams, L. Shao, A. Sharma, P. Sharma, P. Shawhan, N. S. Shcheblanov, S. Shibagaki, M. Shikauchi, R. Shimizu, T. Shimoda, K. Shimode, H. Shinkai, T. Shishido, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, M. Sieniawska, D. Sigg, L. P. Singer, D. Singh, N. Singh, A. Singha, A. M. Sintes, V. Sipala, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. Smetana, J. R. Smith, R. J. E. Smith, J. Soldateschi, S. N. Somala, K. Somiya, E. J. Son, K. Soni, S. Soni, V. Sordini, F. Sorrentino, N. Sorrentino, H. Sotani, R. Soulard, T. Souradeep, E. Sowell, V. Spagnuolo, A. P. Spencer, M. Spera, R. Srinivasan, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, D. A. Steer, J. Steinhoff, J. Steinlechner, S. Steinlechner, S. P. Stevenson, D. J. Stops, M. Stover, K. A. Strain, L. C. Strang, G. Stratta, A. Strunk, R. Sturani, A. L. Stuver, S. Sudhagar, V. Sudhir, R. Sugimoto, H. G. Suh, A. G. Sullivan, J. M. Sullivan, T. Z. Summerscales, H. Sun, L. Sun, S. Sunil, A. Sur, J. Suresh, P. J. Sutton, Takamasa Suzuki, Toshikazu Suzuki, B. L. Swinkels, M. J. Szczepańczyk, P. Szewczyk, M. Tacca, H. Tagoshi, S. C. Tait, H. Takahashi, R. Takahashi, A. Takamori, S. Takano, H. Takeda, M. Takeda, C. J. Talbot, C. Talbot, H. Tanaka, Kazuyuki Tanaka, Kenta Tanaka, Taiki Tanaka, Takahiro Tanaka, A. J. Tanasijczuk, S. Tanioka, D. B. Tanner, D. Tao, L. Tao, E. N. Tapia San Martín, C. Taranto, J. D. Tasson, S. Telada, R. Tenorio, J. E. Terhune, L. Terkowski, M. P. Thirugnanasambandam, L. Thomas, M. Thomas, P. Thomas, J. E. Thompson, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, A. M. Toivonen, K. Toland, A. E. Tolley, T. Tomaru, Y. Tomigami, T. Tomura, M. Tonelli, A. Torres-Forné, C. I. Torrie, I. Tosta e Melo, D. Töyrä, A. Trapananti, F. Travasso, G. Traylor, M. Trevor, M. C. Tringali, A. Tripathee, L. Troiano, A. Trovato, L. Trozzo, R. J. Trudeau, D. S. Tsai, D. Tsai, K. W. Tsang, T. Tsang, J-S. Tsao, M. Tse, R. Tso, K. Tsubono, S. Tsuchida, L. Tsukada, D. Tsuna, T. Tsutsui, T. Tsuzuki, K. Turbang, M. Turconi, D. Tuyenbayev, A. S. Ubhi, N. Uchikata, T. Uchiyama, R. P. Udall, A. Ueda, T. Uehara, K. Ueno, G. Ueshima, C. S. Unnikrishnan, F. Uraguchi, A. L. Urban, T. Ushiba, A. Utina, H. Vahlbruch, G. Vajente, A. Vajpeyi, G. Valdes, M. Valentini, V. Valsan, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, J. Vanosky, M. H. P. M. van Putten, N. van Remortel, M. Vardaro, A. F. Vargas, V. Varma, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, J. Venneberg, G. Venugopalan, D. Verkindt, P. Verma, Y. Verma, D. Veske, F. Vetrano, A. Viceré, S. Vidyant, A. D. Viets, A. Vijaykumar, V. Villa-Ortega, J.-Y. Vinet, A. Virtuoso, S. Vitale, T. Vo, H. Vocca, E. R. G. von Reis, J. S. A. von Wrangel, C. Vorvick, S. P. Vyatchanin, L. E. Wade, M. Wade, K. J. Wagner, R. C. Walet, M. Walker, G. S. Wallace, L. Wallace, S. Walsh, J. Wang, J. Z. Wang, W. H. Wang, R. L. Ward, J. Warner, M. Was, T. Washimi, N. Y. Washington, J. Watchi, B. Weaver, S. A. Webster, M. Weinert, A. J. Weinstein, R. Weiss, C. M. Weller, R. A. Weller, F. Wellmann, L. Wen, P. Weßels, K. Wette, J. T. Whelan, D. D. White, B. F. Whiting, C. Whittle, D. Wilken, D. Williams, M. J. Williams, N. Williams, A. R. Williamson, J. L. Willis, B. Willke, D. J. Wilson, W. Winkler, C. C. Wipf, T. Wlodarczyk, G. Woan, J. Woehler, J. K. Wofford, I. C. F. Wong, C. Wu, D. S. Wu, H. Wu, S. Wu, D. M. Wysocki, L. Xiao, W-R. Xu, T. Yamada, H. Yamamoto, Kazuhiro Yamamoto, Kohei Yamamoto, T. Yamamoto, K. Yamashita, R. Yamazaki, F. W. Yang, L. Yang, Y. Yang, Yang Yang, Z. Yang, M. J. Yap, D. W. Yeeles, A. B. Yelikar, M. Ying, K. Yokogawa, J. Yokoyama, T. Yokozawa, J. Yoo, T. Yoshioka, Hang Yu, Haocun Yu, H. Yuzurihara, A Zadrożny, M. Zanolin, S. Zeidler, T. Zelenova, J.-P. Zendri, M. Zevin, M. Zhan, H. Zhang, J. Zhang, L. Zhang, T. Zhang, Y. Zhang, C. Zhao, G. Zhao, Y. Zhao, Yue Zhao, Y. Zheng, R. Zhou, Z. Zhou, X. J. Zhu, Z.-H. Zhu, A. B. Zimmerman, Y. Zlochower, M. E. Zucker, and J. Zweizig
- Subjects
Physics ,QC1-999 - Abstract
The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin p_{astro}>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with p_{astro}>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star–black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with p_{astro}>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars.
- Published
- 2023
- Full Text
- View/download PDF
21. [Untitled]
- Author
-
M. Cukr, P. Jiříček, I. Bartoš, and O. Romanyuk
- Subjects
Diffraction ,Range (particle radiation) ,Materials science ,Reflection high-energy electron diffraction ,Low-energy electron diffraction ,Relaxation (NMR) ,General Physics and Astronomy ,Ideal surface ,Electron ,Epitaxy ,Molecular physics - Abstract
GaAs (100)-(1X1) surface grown by molecular-beam epitaxy was studied by low energy electron diffraction (LEED). Intensities of diffraction spots were measured in the energy range of (40-300) eV and analysed using dynamical tensor LEED package. Relaxation of surface layers decreased the Pendry's R-factor to 0.48. Analysis of the LEED intensity-voltage curves for the normal electron incidence shows that the investigated surface structure is more complicated than a simply relaxed ideal surface.
- Published
- 2003
- Full Text
- View/download PDF
22. Electronic structure and photoemission spectra of thin (GaAs)n(AlAs)n superlattices
- Author
-
T. Strasser, W. Schattke, and I. Bartoš
- Subjects
Condensed matter physics ,Chemistry ,Superlattice ,Surfaces and Interfaces ,Electronic structure ,Electron ,Condensed Matter Physics ,Electron localization function ,Surfaces, Coatings and Films ,Brillouin zone ,Condensed Matter::Materials Science ,X-ray photoelectron spectroscopy ,Materials Chemistry ,Atomic physics ,Electronic band structure ,Surface states - Abstract
Increased translational period of crystalline superlattices gives rise to qualitative modifications of the electron band structure E ( k ): minigaps appear at new Brillouin zone boundaries and band dispersions are reduced into narrower allowed energy bands. Modifications of the wave functions, consisting in electron confinement into one of the two components of a superlattice can affect the intensities of photoemitted electrons. The layer-resolved contributions from a few topmost layers to the photoelectron intensity are evaluated in the one-step model and the importance of the related optical matrix elements is shown. Large number of surface states and resonances connected with superlattice can be expected. This expectation is confirmed by evaluation of the local densities of electron states for the unreconstructed (1 0 0) surface of the 2×2 superlattice. The space distribution of localized states is presented. Energy distribution curves for normally photoemitted electrons are analyzed from the above viewpoints.
- Published
- 2002
- Full Text
- View/download PDF
23. A theoretical investigation of photoemission spectra from (GaAs)2(AlAs)2 superlattices
- Author
-
Charles S. Fadley, P. Jiříček, I. Bartoš, W. Schattke, C. Solterbeck, T. Strasser, M. Cukr, and M. A. Van Hove
- Subjects
Photocurrent ,Radiation ,Materials science ,Condensed matter physics ,business.industry ,Band gap ,Superlattice ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Spectral line ,Electronic, Optical and Magnetic Materials ,Brillouin zone ,Condensed Matter::Materials Science ,Semiconductor ,Secondary emission ,Physical and Theoretical Chemistry ,business ,Spectroscopy ,Surface states - Abstract
We calculated photoemission spectra within the one-step model for the (001) surface of the (AlAs) 2 (GaAs) 2 superlattice structure. The purpose is to discriminate between spectral features which are caused by the surface, and those which are characteristic properties of the superlattice. Direct transitions indicate the opening of band gaps at the Brillouin zone edge, which are characteristic for the modified periodicity of the superlattice. Furthermore, the layer resolved photocurrent shows that one can also identify excitations from AlAs which are hidden below the first two GaAs layers and from As atoms at the boundary between the different semiconductors. Furthermore, emissions from surface states and resonances are also recognized.
- Published
- 2001
- Full Text
- View/download PDF
24. Attenuation of excited electrons at crystal surfaces
- Author
-
I. Bartoš and Eugene E. Krasovskii
- Subjects
Electron density ,Radiation ,Reflection high-energy electron diffraction ,Low-energy electron diffraction ,Gas electron diffraction ,Chemistry ,technology, industry, and agriculture ,Energy-dispersive X-ray spectroscopy ,Condensed Matter Physics ,Electron spectroscopy ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Electron diffraction ,Energy filtered transmission electron microscopy ,Physical and Theoretical Chemistry ,Atomic physics ,Spectroscopy - Abstract
Attenuation of the electron current determines surface sensitivity of electron spectroscopies. Pronounced energy and directional dependencies of the electron attenuation in crystals differ strongly from those commonly used for amorphous solids. Quantum descriptions of the electron attenuation can be obtained from the complex band structure of crystal surfaces at energies above the vacuum level. Contributions, specific for concrete processes, are obtained from theoretical description of photoelectron spectroscopy and of electron diffraction.
- Published
- 2010
- Full Text
- View/download PDF
25. Optical potential and escape depth for electron scattering at very low energies
- Author
-
A. Bödicker, W. Schattke, O. Tiedje, T. Strasser, I. Bartoš, S. Brodersen, and C. Solterbeck
- Subjects
Physics ,GW approximation ,Radiation ,Scattering ,Electron ,Condensed Matter Physics ,Electron spectroscopy ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Schrödinger equation ,symbols.namesake ,symbols ,Boundary value problem ,Physical and Theoretical Chemistry ,Atomic physics ,Wave function ,Electron scattering ,Spectroscopy - Abstract
Electron spectroscopy at low kinetic energies, e.g., valence band photoemission with vacuum ultraviolet light, is sensitive to the fine structure of the electron damping, i.e., to the magnitude and energy dependence of the optical potential. The basis of this quantity is usually given by a semiquantitative analytical derivation together with empirical findings from the escape depth. Only recently the optical potential has been determined ab-initio via calculating the self-energy. Here, this approach is used to calculate the self-energy and from this the wave functions in the conduction band regime with scattering boundary conditions for the surface system. For the former, the GW approximation is applied. For the latter, algebraic solvers in the Laue representation have been used to solve the Schrodinger equation for arbitrary potentials. The wave function is investigated to extract physical quantities, like the angle and energy dependent escape depth, which are significant in discussing electron scattering.
- Published
- 1999
- Full Text
- View/download PDF
26. [Untitled]
- Author
-
J. Slezák, M. Cukr, O. Pacherová, and I. Bartoš
- Subjects
Materials science ,Dopant ,Screening effect ,General Physics and Astronomy ,Atomic physics ,Charge screening ,Molecular physics - Abstract
In this contribution we show that the screening effect around the Si dopant atoms in GaAs can be observed not only at low temperature, as reported earlier, but also at room temperature.
- Published
- 1999
- Full Text
- View/download PDF
27. Gravitational Wave Source Populations: Disentangling an AGN Component
- Author
-
V. Gayathri, Daniel Wysocki, Y. Yang, Vera Delfavero, R. O’Shaughnessy, Z. Haiman, H. Tagawa, and I. Bartos
- Subjects
Gravitational waves ,Gravitational wave sources ,Active galactic nuclei ,Astrophysics ,QB460-466 - Abstract
The astrophysical origin of over 90 compact binary mergers discovered by the LIGO and Virgo gravitational wave observatories is an open question. While the unusual mass and spin of some of the discovered objects constrain progenitor scenarios, the observed mergers are consistent with multiple interpretations. A promising approach to solve this question is to consider the observed distributions of binary properties and compare them to expectations from different origin scenarios. Here we describe a new hierarchical population analysis framework to assess the relative contribution of different formation channels simultaneously. For this study we considered binary formation in active galactic nucleus (AGN) disks along with phenomenological models, but the same framework can be extended to other models. We find that high-mass and high-mass-ratio binaries appear more likely to have an AGN origin compared to having the same origin as lower-mass events. Future observations of high-mass black hole mergers could further disentangle the AGN component from other channels.
- Published
- 2023
- Full Text
- View/download PDF
28. Electronic structure of crystals via VLEED
- Author
-
I. Bartoš
- Subjects
Low-energy electron diffraction ,Chemistry ,Surfaces and Interfaces ,General Chemistry ,Electron ,Electronic structure ,Condensed Matter Physics ,Surfaces, Coatings and Films ,X-ray photoelectron spectroscopy ,Dispersion relation ,Quasiparticle ,Vacuum level ,Atomic physics ,Electronic band structure - Abstract
Dispersion relations E (k) of electrons in crystals preserve their meaning in many-electron systems. Interacting electrons become quasiparticles, which apart from energies, are also characterised by lifetimes. As for real systems these characteristics are difficult to evaluate, some experimental evidence is desirable. Attention will be focused on two methods applicable at energies above the vacuum level. Interaction of external beam of slow electrons with crystals in target current spectroscopy (TCS), and in very low energy electron diffraction (VLEED), will be discussed in context with the unoccupied part of the electronic band structure. Knowledge of electron dispersion relations above the vacuum level is important for interpretations of angular resolved photoelectron spectroscopy. Comparison of experimental TCS and VLEED data with theoretical band structure calculations determines positions of energy gaps and more detailed theoretical interpretations of the intensity profiles provides information about electron lifetimes in metals and semiconductors.
- Published
- 1998
- Full Text
- View/download PDF
29. Cu(111) Electron Band Structure and Channeling by VLEED
- Author
-
A. Barbieri, Q. Cai, M. A. Van Hove, W. F. Chung, I. Bartoš, and Michael S. Altman
- Subjects
Range (particle radiation) ,Chemistry ,Electron ,Condensed Matter Physics ,Molecular physics ,Resonance (particle physics) ,Electronic, Optical and Magnetic Materials ,law.invention ,Crystal ,Crystallography ,Electron diffraction ,law ,Electron microscope ,Anisotropy ,Electronic band structure - Abstract
Very-low-energy electron diffraction (VLEED) intensities from clean Cu(111) surface have been measured in detail in the energy range 15 to 35 eV by low-energy electron microscope. Corresponding theoretical I-V curves are obtained in good agreement with experimental data when the anisotropy of the electron attenuation is taken into account. The coincidence of the peaks in the I-V curves at normal incidence with two kinds of energy gaps of the electron band structure of the copper crystal (Ek d =0) is interpreted. The small width of the resonance peak in the I-V curve at normal incidence is explained in terms of electron surface channeling. VLEED thus provides information about the unoccupied part of the electron band structure of copper which complements that obtained from angular resolved photoemission.
- Published
- 1997
- Full Text
- View/download PDF
30. Deviations from Quantized Hall Conductivity and Current Density Distribution in Finite 2DEG Samples
- Author
-
I. Bartoš and Baruch Rosenstein
- Subjects
Physics ,Condensed matter physics ,Fermi level ,Statistical and Nonlinear Physics ,Electron ,Quantum Hall effect ,Conductivity ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Condensed Matter Physics ,Magnetic field ,symbols.namesake ,Kubo formula ,Quantum electrodynamics ,Dispersion relation ,symbols ,Constant (mathematics) - Abstract
Simple expressions for local and total Hall conductivities in finite two dimensional electron systems under magnetic field are obtained from the Kubo formula. The deviations of the Hall conductivity from integer values are always negative and their magnitude is inversely proportional to the effective width of the sample and proportional to the slope of the Landau branch dispersion relation at the Fermi level, Eq. (22). We also calculate the local conductivity in finite samples. The conductivity density is constant in the bulk and sums up to an integer value. Its spatial distribution is terminated in the bulk in a universal manner. Illustrations for simple models of the confinement barrier, as well as relation to recent experimental data for quantum wires are given.
- Published
- 1997
- Full Text
- View/download PDF
31. GaN polarity determination by photoelectron diffraction
- Author
-
Oleksandr Romanyuk, I. Bartoš, P. Jiříček, I. Bieloshapka, and Tanja Paskova
- Subjects
010302 applied physics ,Diffraction ,Materials science ,Physics and Astronomy (miscellaneous) ,Polarity (physics) ,Wide-bandgap semiconductor ,Analytical chemistry ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Crystal ,Condensed Matter::Materials Science ,Excited state ,0103 physical sciences ,0210 nano-technology ,Electron scattering ,Wurtzite crystal structure - Abstract
A nondestructive approach to determine the wurtzite GaN crystal polarity based on X-ray photoelectron diffraction is proposed. The approach, utilizing the ratio of photoemitted electron currents excited by a standard laboratory X-ray source from the N 1s level in the (101¯0) plane at polar angles of 20° and 25°, is tested on GaN crystals. The photoelectron intensity ratio I20/I25 is larger or smaller than unity for GaN(0001) or GaN(0001¯), respectively. The approach can be used for polarity determination of other binary wurtzite crystals. The atom with the smaller electron scattering cross-section should be used as the emitter.
- Published
- 2013
- Full Text
- View/download PDF
32. Surface analysis of free-standing GaN substrates with polar, non-polar, and semipolar crystal orientations
- Author
-
P. Jiříček, I. Bartoš, O. Romanyuk, Tania Paskova, and P. Mutombo
- Subjects
Diffraction ,Materials science ,Annealing (metallurgy) ,business.industry ,Analytical chemistry ,Gallium nitride ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Crystal ,chemistry.chemical_compound ,Electron diffraction ,chemistry ,0103 physical sciences ,Polar ,Optoelectronics ,Polar coordinate system ,010306 general physics ,0210 nano-technology ,business - Abstract
Surface structure of the free-standing GaN substrates with polar (000-1), non-polar (1-100), (11-20), and semipolar (20- 21) surface plane were investigated. Clean polar and non-polar GaN surfaces were prepared by annealing under NH3 atmosphere. (1x1) diffraction patterns were observed by low-energy electron diffraction (LEED) for both polar and non-polar GaN surfaces. The polar GaN surface was found well-ordered, while the non-polar GaN surfaces were found less ordered with atomic steps on the surface. Polar angle dependences of the photoelecton diffraction (PED) intensities exited by MgKα radiation from N 1s level were analyzed for all the GaN surfaces, aiming to determine the polarities of the GaN surfaces with polar and semipolar crystal orientations.
- Published
- 2013
- Full Text
- View/download PDF
33. Edges of two-dimensional electron systems under strong magnetic fields
- Author
-
I. Bartoš and Baruch Rosenstein
- Subjects
Condensed matter physics ,Chemistry ,business.industry ,Fermi level ,Surfaces and Interfaces ,General Chemistry ,Electron ,Landau quantization ,Quantum Hall effect ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Magnetic field ,symbols.namesake ,Semiconductor ,Kubo formula ,symbols ,business ,Quantum - Abstract
Two-dimensional electron systems, which exist e.g. at interlaces between two different semiconductors, exhibit interesting physical properties under strong magnetic fields. In interpreting the quantum Hall effect the role of one-dimensional system edges begins to be taken into account. The electron structure, connected with Landau quantization of 2D electron states under magnetic field, has been studied in the vicinity of system edges. Model systems with abrupt confinement barriers exhibit electron dispersions with edge plateaus above the barrier tops, accompanied by regions of substantially reduced gaps between neighbouring Landau branches. Selfconsistent results for smoothly confined systems provide alternating channels of compressible and incompressible Fermi liquids along the system edges. Recent investigation illustrates the transition between the two limiting confinement barrier cases. In order to evaluate the Hall conductivity, the Kubo formula has been adopted in a straightforward manner to two-dimensional stripes confined by arbitrary barriers. Total deviation of the Hall conductivity from the integer values is given by the product of two factors: the geometrical factor is inversely proportional to the sample width and the edge factor is proportional to the derivative of the electron dispersion at the Fermi level and is thus governed by the shape of the confinement barrier. The deviations have been evaluated for model systems of various widths and a qualitative agreement with recent experimental data for quantum wires has been found. The formulas provide also current densities and this enables to investigate spatial distributions of the electron current across the Hall stripes. Application to the abruptly confined model shows that the quantized part of the total current takes place within the interior of the stripe whereas the edge currents distribution is affected by the confinement barrier.
- Published
- 1995
- Full Text
- View/download PDF
34. <font>Cu</font>(111) SURFACE RELAXATION BY VLEED
- Author
-
A. Barbieri, I. Bartoš, Michael S. Altman, M. A. Van Hove, Q. Cai, W. F. Chung, and P. Jaroš
- Subjects
Reflection high-energy electron diffraction ,Chemistry ,Relaxation (NMR) ,Surfaces and Interfaces ,Electron ,Condensed Matter Physics ,Molecular physics ,Surfaces, Coatings and Films ,law.invention ,Magnetic field ,Crystallography ,Electron diffraction ,law ,Materials Chemistry ,Electron microscope ,Anisotropy ,Atomic spacing - Abstract
Very-low-energy electron diffraction (VLEED) intensities from a clean Cu (111) surface have been measured in detail in the energy range 15–100 eV by low-energy electron microscope (LEEM). This enabled the elimination of possible disturbances due to stray magnetic fields. Corresponding theoretical I–V curves have been obtained in good agreement with experimental data when an image-type surface barrier and anisotropy of the electron attenuation were taken into account. The reliability factor analysis indicates a slight expansion of the topmost interatomic spacing of Cu (111) relative to its bulk value.
- Published
- 1995
- Full Text
- View/download PDF
35. Erratum: 'Electron band bending of polar, semipolar and non-polar GaN surfaces' [J. Appl. Phys. 119, 105303 (2016)]
- Author
-
Plamen Paskov, P. Jiříček, Oleksandr Romanyuk, I. Bartoš, J. Houdkova, and Tanja Paskova
- Subjects
010302 applied physics ,Materials science ,Condensed matter physics ,business.industry ,Wide-bandgap semiconductor ,General Physics and Astronomy ,02 engineering and technology ,Bending ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Band bending ,0103 physical sciences ,Polar ,Optoelectronics ,Non polar ,0210 nano-technology ,business - Published
- 2016
- Full Text
- View/download PDF
36. Electron band bending of polar, semipolar and non-polar GaN surfaces
- Author
-
P. Jiříček, I. Bartoš, Plamen Paskov, Oleksandr Romanyuk, J. Houdkova, and Tanja Paskova
- Subjects
010302 applied physics ,Materials science ,Band gap ,business.industry ,Wide-bandgap semiconductor ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,Molecular physics ,Semimetal ,Condensed Matter::Materials Science ,Band bending ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,Electronic band structure ,business ,Wurtzite crystal structure ,Surface states - Abstract
The magnitudes of the surface band bending have been determined by X-ray photoelectron spectroscopy for polar, semipolar, and non-polar surfaces of wurtzite GaN crystals. All surfaces have been prepared from crystalline GaN samples grown by the hydride-vapour phase epitaxy and separated from sapphire substrates. The Ga 3d core level peak shifts have been used for band bending determination. Small band bending magnitudes and also relatively small difference between the band bendings of the surfaces with opposite polarity have been found. These results point to the presence of electron surface states of different amounts and types on surfaces of different polarity and confirm the important role of the electron surface states in compensation of the bound surface polarity charges in wurtzite GaN crystals.
- Published
- 2016
- Full Text
- View/download PDF
37. 2-Dimensional electron gas under strong magnetic fields: Properties near abrupt edges
- Author
-
I. Bartoš
- Subjects
Physics ,Condensed matter physics ,Fermi level ,Surfaces and Interfaces ,General Chemistry ,Electron ,Landau quantization ,Condensed Matter Physics ,Surfaces, Coatings and Films ,symbols.namesake ,Hall effect ,Dispersion relation ,Kubo formula ,symbols ,Fermi gas ,Wave function - Abstract
According to mechanism of electron confinement within the plane, the effective confinement barriers at system edges can be classified as smooth and abrupt. Here, less studied abrupt barriers will be investigated. For simple finite rectangular step barriers, Landau level bending in the step vicinity exhibits pronounced structures in the form of electron dispersion plateaus above the barrier tops, accompanied by regions with a substantial reduction of energy gaps between neighbouring Landau branches [1].The enhanced density of electron states should be observable in optical and nuclear spin relaxation phenomena. Distortions of electron wave functions, consisting in systematical lagging of electron center of mass behind the orbital center are described. Diamagnetic current density, and in particular, development of diamagnetic edge channels as a function of the position of the Fermi level of the 2-dimensional electron gas (2DEG) is investigated. Total currents along the individual edges are found to be quantized. From the Kubo formula, very simple expressions for Hall conductivity have been derived for a general confinement barrier. Application to a system with a simple rectangular confinement elucidates the problem of space distribution of the current throughout the Hall bar. Total deviation of the Hall conductivity from the integer values is found to be given by the product of two factors. The geometrical factor is inversely proportional to the sample width. The edge factor is proportional to the derivative of the electron dispersion relation at the Fermi level and in this way it relates the Hall conductivity deviation to the shape of the confinement barrier. The deviations have been evaluated for several channel widths and found to be in qualitative agreement with recent experimental results for quantum wires.
- Published
- 1995
- Full Text
- View/download PDF
38. Mn incorporation into the GaAs lattice investigated by hard x-ray photoelectron spectroscopy and diffraction
- Author
-
P. Jiříček, Eiji Ikenaga, M. Cukr, Takeharu Sugiyama, Igor Píš, Keisuke Kobayashi, I. Bartoš, and Masaaki Kobata
- Subjects
Materials science ,X-ray photoelectron spectroscopy ,Electron diffraction ,X-ray crystallography ,Binding energy ,Analytical chemistry ,Crystal structure ,Atomic physics ,Condensed Matter Physics ,Spectroscopy ,Electron spectroscopy ,Crystallographic defect ,Electronic, Optical and Magnetic Materials - Abstract
(Received 22 December 2010; revised manuscript received 31 March 2011; published 15 June 2011) Photoelectron spectroscopy and diffraction have been used to investigate structural changes during the annealing process of Ga1−xMnxAs samples. Hard x-ray radiation helped in observing photoelectron core-level spectra and electron diffraction from the bulk underlying the oxidized surface layer. High electron-energy resolution enabled us to separate the components due to substitutional and interstitial Mn atoms in the intrinsic Mn 2p3/2 photoemission profile, resulting in two peaks at 638.8 and 639.5 eV binding energy, respectively. The peaks display the known characteristic behavior after annealing, that is, an almost complete reduction of the interstitial component and preservation of the substitutional component. In the photoelectron diffraction, a sensitivity of high-energy polar plots to the incorporation sites of photoemitting atoms into the atomic lattice has been shown. As a consequence, the experimental polar plots from substitutional and interstitial Mn atoms, which are supported theoretically, show characteristic features that provide structural information. From the similarities and differences of the polar plots for Mn and Ga, we have confirmed the assignment of components within the intrinsic part of the photoemission Mn 2p3/2 signal suggested by photoelectron spectroscopy.
- Published
- 2011
- Full Text
- View/download PDF
39. Electron structure of a 2D crystalline stripe in magnetic fields
- Author
-
I. Bartoš and P. Jaroš
- Subjects
Physics ,Paramagnetism ,Condensed matter physics ,Magnetic energy ,Perpendicular ,General Physics and Astronomy ,Electron ,Edge states ,Landau quantization ,Electronic band structure ,Magnetic field - Abstract
Edge states in the 2DEG systems play an important role in magnetotransport phenomena in strong magnetic fields. Even in the strongest magnetic field available, spacing of discrete Landau levels cannot be considered large in comparison with the crystalline potential. A treatment considering both the crystalline and magnetic field effects on the same level is presented by means of the surface Green function formalism complemented by the transfer matrix method. Formation of the electron band structure of a stripe of finite width is evaluated as a function of the stripe width especially with respect to localized edge states. Influence of perpendicular magnetic fieds on energy spectrum is displayed.
- Published
- 1993
- Full Text
- View/download PDF
40. Simple models of Tamm surface states and of subsurface impurities
- Author
-
P. Jaroš and I. Bartoš
- Subjects
Crystal ,Surface (mathematics) ,Condensed matter physics ,Simple (abstract algebra) ,Impurity ,Chemistry ,Surfaces and Interfaces ,General Chemistry ,Electron ,Condensed Matter Physics ,Transfer matrix ,Surfaces, Coatings and Films ,Surface states - Abstract
On simple models, qualitative trends of the electron structure (discrete states and resonances) as functions of the impurity-surface distance are presented and explained. Possible existence of more localized states within the gap of model crystal is documented and interpreted. Impurity/adsorbate, represented by a δ-function at the Sommerfeld and periodic semiinfinite model surface are treated by surface Green function. Green functions involved are evaluated analytically and by means of the transfer matrix.
- Published
- 1993
- Full Text
- View/download PDF
41. Electron Damping in Surface Studies
- Author
-
I. Bartoš
- Subjects
Chemistry ,Analytical chemistry ,General Physics and Astronomy - Abstract
Eeco coeaio is esosie o iie ieimes o ecie eecosi cysas ieime eegy eeece ca e oaie o iiie eiummoe a oy ey ecey e is esus o a iiie cysa ae eeeauae (GW aoimaio ee a eomeoogica aoac aseo Gee ucios is esee oaeig o oca esiies o eecosaes as we as a o agua-esoe ooemissio (AUS eaks aey-ow-eegy-eeco iacio (EE oies ue o e imagiaycomoe o e oica oeia is eiewe a ieee Aisooy oeeco amig o cysa suaces as ee ou i EE as a esu oeeco caeig aog e esey acke (111 suace aomic aes icc cysas Ieeaio o eak wis i EE-a AUS-oiesoies a mea o ea aou amig o eecos ecie o cysasuaceACS umes 71- 73
- Published
- 1992
- Full Text
- View/download PDF
42. SURFACE SENSITIVITY OF VERY LOW ENERGY ELECTRONS
- Author
-
W. Schattke and I. Bartoš
- Subjects
Physics ,Electron density ,Reflection high-energy electron diffraction ,Attenuation ,Surfaces and Interfaces ,Electron ,Photoelectric effect ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electron diffraction ,Materials Chemistry ,Local-density approximation ,Atomic physics ,Anisotropy - Abstract
The surface sensitivity of electron diffraction and of electron spectroscopies is determined by the imaginary component of the electron self-energy. In crystals, the energy and direction dependence of the electron attenuation and of the escape depth should be taken into account at very low energies. Strong anisotropy of the electron attenuation has been obtained around 20 eV from peak shapes in VLEED intensity profiles from (111) transition metal surfaces. Extension of the local density approximation in the density functional formalism provides quantitative description of the electron self-energy. The one-step model of angular resolved photoemission incorporating the self-energy predicts a strong energy and angle dependence of the escape depth of low energy photoelectrons emitted from GaAs(110).
- Published
- 1999
- Full Text
- View/download PDF
43. Valence band VUV spectra
- Author
-
W. Schattke and I. Bartoš
- Subjects
Materials science ,Valence band ,Atomic physics ,Spectral line - Published
- 2008
- Full Text
- View/download PDF
44. On Pd(111) sharp resonances in VLEED
- Author
-
I. Bartoš and J. Koukal
- Subjects
Crystallography ,Materials science ,Surfaces and Interfaces ,General Chemistry ,Electron ,Condensed Matter Physics ,Electronic band structure ,Molecular physics ,Reflectivity ,Surfaces, Coatings and Films - Abstract
Sharp resonances have been observed in electron reflectivity from (111) surfaces of fcc metals at very low energies [1]. Their close relation to band structure features of unoccupied bands, has been confirmed for Cu(111) [2, 3]. Here, this relation is demonstrated in detail for Pd(111).
- Published
- 1990
- Full Text
- View/download PDF
45. Non-destructive assessment of the polarity of GaN nanowire ensembles using low-energy electron diffraction and x-ray photoelectron diffraction
- Author
-
Oliver Brandt, I. Bartoš, Tanja Paskova, Sergio Fernández-Garrido, Lutz Geelhaar, Oleksandr Romanyuk, and P. Jiříček
- Subjects
Diffraction ,Materials science ,Physics and Astronomy (miscellaneous) ,X-ray photoelectron spectroscopy ,Low-energy electron diffraction ,Electron diffraction ,Condensed matter physics ,X-ray crystallography ,Nanowire ,Substrate (electronics) ,Molecular physics ,Molecular beam epitaxy - Abstract
We investigate GaN nanowire ensembles spontaneously formed in plasma-assisted molecular beam epitaxy by non-destructive low-energy electron diffraction (LEED) and x-ray photoelectron diffraction (XPD). We show that GaN nanowire ensembles prepared on AlN-buffered 6H-SiC(0001¯) substrates with well-defined N polarity exhibit similar LEED intensity-voltage curves and angular distribution of photo-emitted electrons as N-polar free-standing GaN layers. Therefore, as in the case of GaN layers, LEED and XPD are found to be suitable techniques to assess the polarity of GaN nanowire ensembles on a macroscopic scale. The analysis of GaN nanowire ensembles prepared on bare Si(111) allows us to conclude that, on this non-polar substrate, the majority of nanowires is also N-polar.
- Published
- 2015
- Full Text
- View/download PDF
46. Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
- Author
-
R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, P. F. de Alarcón, S. Akcay, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, T. Andrić, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, F. Antonini, S. Appert, Koji Arai, Koya Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, M. Arogeti, S. M. Aronson, K. G. Arun, H. Asada, Y. Asali, G. Ashton, Y. Aso, M. Assiduo, S. M. Aston, P. Astone, F. Aubin, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, C. Badger, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, L. Baiotti, J. Baird, R. Bajpai, M. Ball, G. Ballardin, S. W. Ballmer, A. Balsamo, G. Baltus, S. Banagiri, D. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, A. C. Baylor, M. Bazzan, B. Bécsy, V. M. Bedakihale, M. Bejger, I. Belahcene, V. Benedetto, D. Beniwal, T. F. Bennett, J. D. Bentley, M. BenYaala, F. Bergamin, B. K. Berger, S. Bernuzzi, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, D. Beveridge, R. Bhandare, U. Bhardwaj, D. Bhattacharjee, S. Bhaumik, I. A. Bilenko, G. Billingsley, S. Bini, R. Birney, O. Birnholtz, S. Biscans, M. Bischi, S. Biscoveanu, A. Bisht, B. Biswas, M. Bitossi, M.-A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, F. Bobba, N. Bode, M. Boer, G. Bogaert, M. Boldrini, L. D. Bonavena, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, R. Bork, V. Boschi, N. Bose, S. Bose, V. Bossilkov, V. Boudart, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, A. Branch, M. Branchesi, J. Brandt, J. E. Brau, M. Breschi, T. Briant, J. H. Briggs, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks, J. Brooks, D. D. Brown, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, C. Buy, R. L. Byer, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, J. D. Callaghan, T. A. Callister, E. Calloni, J. Cameron, J. B. Camp, M. Canepa, S. Canevarolo, M. Cannavacciuolo, K. C. Cannon, H. Cao, Z. Cao, E. Capocasa, E. Capote, G. Carapella, F. Carbognani, J. B. Carlin, M. F. Carney, M. Carpinelli, G. Carrillo, G. Carullo, T. L. Carver, J. Casanueva Diaz, C. Casentini, G. Castaldi, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, M. Ceasar, G. Cella, P. Cerdá-Durán, E. Cesarini, W. Chaibi, K. Chakravarti, S. Chalathadka Subrahmanya, E. Champion, C.-H. Chan, C. Chan, C. L. Chan, K. Chan, M. Chan, K. Chandra, P. Chanial, S. Chao, C. E. A. Chapman-Bird, P. Charlton, E. A. Chase, E. Chassande-Mottin, C. Chatterjee, Debarati Chatterjee, Deep Chatterjee, M. Chaturvedi, S. Chaty, K. Chatziioannou, C. Chen, H. Y. Chen, J. Chen, K. Chen, X. Chen, Y.-B. Chen, Y.-R. Chen, Z. Chen, H. Cheng, C. K. Cheong, H. Y. Cheung, H. Y. Chia, F. Chiadini, C-Y. Chiang, G. Chiarini, R. Chierici, A. Chincarini, M. L. Chiofalo, A. Chiummo, G. Cho, H. S. Cho, R. K. Choudhary, S. Choudhary, N. Christensen, H. Chu, Q. Chu, Y-K. Chu, S. Chua, K. W. Chung, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, E. N. Clark, J. A. Clark, L. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, E. Codazzo, P.-F. Cohadon, D. E. Cohen, L. Cohen, M. Colleoni, C. G. Collette, A. Colombo, M. Colpi, C. M. Compton, M. Constancio, Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, K. R. Corley, N. Cornish, D. Corre, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, J.-P. Coulon, S. T. Countryman, B. Cousins, P. Couvares, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, A. W. Criswell, M. Croquette, S. G. Crowder, J. R. Cudell, T. J. Cullen, A. Cumming, R. Cummings, L. Cunningham, E. Cuoco, M. Curyło, P. Dabadie, T. Dal Canton, S. Dall’Osso, G. Dálya, A. Dana, L. M. DaneshgaranBajastani, B. D’Angelo, B. Danila, S. Danilishin, S. D’Antonio, K. Danzmann, C. Darsow-Fromm, A. Dasgupta, L. E. H. Datrier, S. Datta, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, M. C. Davis, E. J. Daw, R. Dean, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, V. Del Favero, F. De Lillo, N. De Lillo, W. Del Pozzo, L. M. DeMarchi, F. De Matteis, V. D’Emilio, N. Demos, T. Dent, A. Depasse, R. De Pietri, R. De Rosa, C. De Rossi, R. DeSalvo, R. De Simone, S. Dhurandhar, M. C. Díaz, M. Diaz-Ortiz, Jr., N. A. Didio, T. Dietrich, L. Di Fiore, C. Di Fronzo, C. Di Giorgio, F. Di Giovanni, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. K. Divakarla, A. Dmitriev, Z. Doctor, L. D’Onofrio, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, M. Drago, J. C. Driggers, Y. Drori, J.-G. Ducoin, P. Dupej, O. Durante, D. D’Urso, P.-A. Duverne, S. E. Dwyer, C. Eassa, P. J. Easter, M. Ebersold, T. Eckhardt, G. Eddolls, B. Edelman, T. B. Edo, O. Edy, A. Effler, S. Eguchi, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, A. Ejlli, E. Engelby, Y. Enomoto, L. Errico, R. C. Essick, H. Estellés, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, B. E. Ewing, V. Fafone, H. Fair, S. Fairhurst, A. M. Farah, S. Farinon, B. Farr, W. M. Farr, N. W. Farrow, E. J. Fauchon-Jones, G. Favaro, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, E. Fenyvesi, D. L. Ferguson, A. Fernandez-Galiana, I. Ferrante, T. A. Ferreira, F. Fidecaro, P. Figura, I. Fiori, M. Fishbach, R. P. Fisher, R. Fittipaldi, V. Fiumara, R. Flaminio, E. Floden, H. Fong, J. A. Font, B. Fornal, P. W. F. Forsyth, A. Franke, S. Frasca, F. Frasconi, C. Frederick, J. P. Freed, Z. Frei, A. Freise, R. Frey, P. Fritschel, V. V. Frolov, G. G. Fronzé, Y. Fujii, Y. Fujikawa, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, J. R. Gair, J. Gais, S. Galaudage, R. Gamba, D. Ganapathy, A. Ganguly, D. Gao, S. G. Gaonkar, B. Garaventa, F. García, C. García-Núñez, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, V. Gayathri, G.-G. Ge, G. Gemme, A. Gennai, J. George, R. N. George, O. Gerberding, L. Gergely, P. Gewecke, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, Shaon Ghosh, Shrobana Ghosh, B. Giacomazzo, L. Giacoppo, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, M. Giesler, P. Giri, F. Gissi, J. Glanzer, A. E. Gleckl, P. Godwin, J. Golomb, E. Goetz, R. Goetz, N. Gohlke, B. Goncharov, G. González, A. Gopakumar, M. Gosselin, R. Gouaty, D. W. Gould, B. Grace, A. Grado, M. Granata, V. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, A. M. Gretarsson, E. M. Gretarsson, D. Griffith, W. Griffiths, H. L. Griggs, G. Grignani, A. Grimaldi, S. J. Grimm, H. Grote, S. Grunewald, P. Gruning, D. Guerra, G. M. Guidi, A. R. Guimaraes, G. Guixé, H. K. Gulati, H.-K. Guo, Y. Guo, Anchal Gupta, Anuradha Gupta, P. Gupta, E. K. Gustafson, R. Gustafson, F. Guzman, S. Ha, L. Haegel, A. Hagiwara, S. Haino, O. Halim, E. D. Hall, E. Z. Hamilton, G. Hammond, W.-B. Han, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. Hannuksela, H. Hansen, T. J. Hansen, J. Hanson, T. Harder, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, D. Hartwig, K. Hasegawa, B. Haskell, R. K. Hasskew, C.-J. Haster, K. Hattori, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, A. Heidt, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, P. Hello, A. F. Helmling-Cornell, G. Hemming, M. Hendry, I. S. Heng, E. Hennes, J. Hennig, M. H. Hennig, A. G. Hernandez, F. Hernandez Vivanco, M. Heurs, S. Hild, P. Hill, Y. Himemoto, A. S. Hines, Y. Hiranuma, N. Hirata, E. Hirose, S. Hochheim, D. Hofman, J. N. Hohmann, D. G. Holcomb, N. A. Holland, I. J. Hollows, Z. J. Holmes, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, J. Hough, S. Hourihane, E. J. Howell, C. G. Hoy, D. Hoyland, A. Hreibi, B-H. Hsieh, Y. Hsu, G-Z. Huang, H-Y. Huang, P. Huang, Y-C. Huang, Y.-J. Huang, Y. Huang, M. T. Hübner, A. D. Huddart, B. Hughey, D. C. Y. Hui, V. Hui, S. Husa, S. H. Huttner, R. Huxford, T. Huynh-Dinh, S. Ide, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, C. Ingram, Y. Inoue, K. Ioka, M. Isi, K. Isleif, K. Ito, Y. Itoh, B. R. Iyer, K. Izumi, V. JaberianHamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, A. Z. Jan, K. Jani, J. Janquart, K. Janssens, N. N. Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, K. Jenner, C. Jeon, M. Jeunon, W. Jia, H.-B. Jin, G. R. Johns, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones, R. J. G. Jonker, L. Ju, P. Jung, k. Jung, J. Junker, V. Juste, K. Kaihotsu, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, J. B. Kanner, Y. Kao, S. J. Kapadia, D. P. Kapasi, S. Karat, C. Karathanasis, S. Karki, R. Kashyap, M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, T. Kaur, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, S. Khan, E. A. Khazanov, N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, J. C. Kim, J. Kim, K. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, N. Kimura, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, S. Klimenko, A. M. Knee, T. D. Knowles, E. Knyazev, P. Koch, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, P. Kolitsidou, M. Kolstein, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, K. Kotake, M. Kovalam, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. V. Krishnendu, A. Królak, G. Kuehn, F. Kuei, P. Kuijer, S. Kulkarni, A. Kumar, P. Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, C. Kuo, H-S. Kuo, Y. Kuromiya, S. Kuroyanagi, K. Kusayanagi, S. Kuwahara, K. Kwak, P. Lagabbe, D. Laghi, E. Lalande, T. L. Lam, A. Lamberts, M. Landry, P. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, I. La Rosa, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. Lee, J. Lehmann, A. Lemaître, M. Leonardi, N. Leroy, N. Letendre, C. Levesque, Y. Levin, J. N. Leviton, K. Leyde, A. K. Y. Li, B. Li, J. Li, K. L. Li, T. G. F. Li, X. Li, C-Y. Lin, F-K. Lin, F-L. Lin, H. L. Lin, L. C.-C. Lin, F. Linde, S. D. Linker, J. N. Linley, T. B. Littenberg, G. C. Liu, J. Liu, K. Liu, X. Liu, F. Llamas, M. Llorens-Monteagudo, R. K. L. Lo, A. Lockwood, M. Loh, L. T. London, A. Longo, D. Lopez, M. Lopez Portilla, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, T. P. Lott, J. D. Lough, C. O. Lousto, G. Lovelace, J. F. Lucaccioni, H. Lück, D. Lumaca, A. P. Lundgren, L.-W. Luo, J. E. Lynam, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, I. Magaña Hernandez, C. Magazzù, R. M. Magee, R. Maggiore, M. Magnozzi, S. Mahesh, E. Majorana, C. Makarem, I. Maksimovic, S. Maliakal, A. Malik, N. Man, V. Mandic, V. Mangano, J. L. Mango, G. L. Mansell, M. Manske, M. Mantovani, M. Mapelli, F. Marchesoni, M. Marchio, F. Marion, Z. Mark, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, M. Martinez, V. A. Martinez, V. Martinez, K. Martinovic, D. V. Martynov, E. J. Marx, H. Masalehdan, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, M. Mateu-Lucena, F. Matichard, M. Matiushechkina, N. Mavalvala, J. J. McCann, R. McCarthy, D. E. McClelland, P. K. McClincy, S. McCormick, L. McCuller, G. I. McGhee, S. C. McGuire, C. McIsaac, J. McIver, T. McRae, S. T. McWilliams, D. Meacher, M. Mehmet, A. K. Mehta, Q. Meijer, A. Melatos, D. A. Melchor, G. Mendell, A. Menendez-Vazquez, C. S. Menoni, R. A. Mercer, L. Mereni, K. Merfeld, E. L. Merilh, J. D. Merritt, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Meylahn, A. Mhaske, A. Miani, H. Miao, I. Michaloliakos, C. Michel, Y. Michimura, H. Middleton, L. Milano, A. L. Miller, A. Miller, B. Miller, S. Miller, M. Millhouse, J. C. Mills, E. Milotti, O. Minazzoli, Y. Minenkov, N. Mio, Ll. M. Mir, M. Miravet-Tenés, C. Mishra, T. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, Y. Miyazaki, K. Miyo, S. Miyoki, Geoffrey Mo, L. M. Modafferi, E. Moguel, K. Mogushi, S. R. P. Mohapatra, S. R. Mohite, I. Molina, M. Molina-Ruiz, M. Mondin, M. Montani, C. J. Moore, D. Moraru, F. Morawski, A. More, C. Moreno, G. Moreno, Y. Mori, S. Morisaki, Y. Moriwaki, G. Morrás, B. Mours, C. M. Mow-Lowry, S. Mozzon, F. Muciaccia, Arunava Mukherjee, D. Mukherjee, Soma Mukherjee, Subroto Mukherjee, Suvodip Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, P. G. Murray, R. Musenich, S. Muusse, S. L. Nadji, K. Nagano, S. Nagano, A. Nagar, K. Nakamura, H. Nakano, M. Nakano, R. Nakashima, Y. Nakayama, V. Napolano, I. Nardecchia, T. Narikawa, L. Naticchioni, B. Nayak, R. K. Nayak, R. Negishi, B. F. Neil, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, P. Neubauer, A. Neunzert, K. Y. Ng, S. W. S. Ng, C. Nguyen, P. Nguyen, T. Nguyen, L. Nguyen Quynh, W.-T. Ni, S. A. Nichols, A. Nishizawa, S. Nissanke, E. Nitoglia, F. Nocera, M. Norman, C. North, S. Nozaki, J. F. Nuño Siles, L. K. Nuttall, J. Oberling, B. D. O’Brien, Y. Obuchi, J. O’Dell, E. Oelker, W. Ogaki, G. Oganesyan, J. J. Oh, K. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, H. Ohta, M. A. Okada, Y. Okutani, K. Okutomi, C. Olivetto, K. Oohara, C. Ooi, R. Oram, B. O’Reilly, R. G. Ormiston, N. D. Ormsby, L. F. Ortega, R. O’Shaughnessy, E. O’Shea, S. Oshino, S. Ossokine, C. Osthelder, S. Otabe, D. J. Ottaway, H. Overmier, A. E. Pace, G. Pagano, M. A. Page, G. Pagliaroli, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, H. Pan, K. Pan, P. K. Panda, H. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. H. Panther, F. Paoletti, A. Paoli, A. Paolone, A. Parisi, H. Park, J. Park, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patel, M. Pathak, B. Patricelli, A. S. Patron, S. Paul, E. Payne, M. Pedraza, M. Pegoraro, A. Pele, F. E. Peña Arellano, S. Penn, A. Perego, A. Pereira, T. Pereira, C. J. Perez, C. Périgois, C. C. Perkins, A. Perreca, S. Perriès, J. Petermann, D. Petterson, H. P. Pfeiffer, K. A. Pham, K. S. Phukon, O. J. Piccinni, M. Pichot, M. Piendibene, F. Piergiovanni, L. Pierini, V. Pierro, G. Pillant, M. Pillas, F. Pilo, L. Pinard, I. M. Pinto, M. Pinto, B. Piotrzkowski, K. Piotrzkowski, M. Pirello, M. D. Pitkin, E. Placidi, L. Planas, W. Plastino, C. Pluchar, R. Poggiani, E. Polini, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, R. Poulton, J. Powell, M. Pracchia, T. Pradier, A. K. Prajapati, K. Prasai, R. Prasanna, G. Pratten, M. Principe, G. A. Prodi, L. Prokhorov, P. Prosposito, L. Prudenzi, A. Puecher, M. Punturo, F. Puosi, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, R. Quitzow-James, F. J. Raab, G. Raaijmakers, H. Radkins, N. Radulesco, P. Raffai, S. X. Rail, S. Raja, C. Rajan, K. E. Ramirez, T. D. Ramirez, A. Ramos-Buades, J. Rana, P. Rapagnani, U. D. Rapol, A. Ray, V. Raymond, N. Raza, M. Razzano, J. Read, L. A. Rees, T. Regimbau, L. Rei, S. Reid, S. W. Reid, D. H. Reitze, P. Relton, A. Renzini, P. Rettegno, A. Reza, M. Rezac, F. Ricci, D. Richards, J. W. Richardson, L. Richardson, G. Riemenschneider, K. Riles, S. Rinaldi, K. Rink, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, S. Rodriguez, L. Rolland, J. G. Rollins, M. Romanelli, R. Romano, C. L. Romel, A. Romero-Rodríguez, I. M. Romero-Shaw, J. H. Romie, S. Ronchini, L. Rosa, C. A. Rose, D. Rosińska, M. P. Ross, S. Rowan, S. J. Rowlinson, S. Roy, Santosh Roy, Soumen Roy, D. Rozza, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, J. Sadiq, N. Sago, S. Saito, Y. Saito, K. Sakai, Y. Sakai, M. Sakellariadou, Y. Sakuno, O. S. Salafia, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, E. J. Sanchez, J. H. Sanchez, L. E. Sanchez, N. Sanchis-Gual, J. R. Sanders, A. Sanuy, T. R. Saravanan, N. Sarin, B. Sassolas, H. Satari, B. S. Sathyaprakash, S. Sato, T. Sato, O. Sauter, R. L. Savage, T. Sawada, D. Sawant, H. L. Sawant, S. Sayah, D. Schaetzl, M. Scheel, J. Scheuer, M. Schiworski, P. Schmidt, S. Schmidt, R. Schnabel, M. Schneewind, R. M. S. Schofield, A. Schönbeck, B. W. Schulte, B. F. Schutz, E. Schwartz, J. Scott, S. M. Scott, M. Seglar-Arroyo, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. S. Sengupta, D. Sentenac, E. G. Seo, V. Sequino, A. Sergeev, Y. Setyawati, T. Shaffer, M. S. Shahriar, B. Shams, L. Shao, A. Sharma, P. Sharma, P. Shawhan, N. S. Shcheblanov, S. Shibagaki, M. Shikauchi, R. Shimizu, T. Shimoda, K. Shimode, H. Shinkai, T. Shishido, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, M. Sieniawska, D. Sigg, L. P. Singer, D. Singh, N. Singh, A. Singha, A. M. Sintes, V. Sipala, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. Smetana, J. R. Smith, R. J. E. Smith, J. Soldateschi, S. N. Somala, K. Somiya, E. J. Son, K. Soni, S. Soni, V. Sordini, F. Sorrentino, N. Sorrentino, H. Sotani, R. Soulard, T. Souradeep, E. Sowell, V. Spagnuolo, A. P. Spencer, M. Spera, R. Srinivasan, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, D. A. Steer, J. Steinhoff, J. Steinlechner, S. Steinlechner, S. P. Stevenson, D. J. Stops, M. Stover, K. A. Strain, L. C. Strang, G. Stratta, A. Strunk, R. Sturani, A. L. Stuver, S. Sudhagar, V. Sudhir, R. Sugimoto, H. G. Suh, A. G. Sullivan, T. Z. Summerscales, H. Sun, L. Sun, S. Sunil, A. Sur, J. Suresh, P. J. Sutton, Takamasa Suzuki, Toshikazu Suzuki, B. L. Swinkels, M. J. Szczepańczyk, P. Szewczyk, M. Tacca, H. Tagoshi, S. C. Tait, H. Takahashi, R. Takahashi, A. Takamori, S. Takano, H. Takeda, M. Takeda, C. J. Talbot, C. Talbot, H. Tanaka, Kazuyuki Tanaka, Kenta Tanaka, Taiki Tanaka, Takahiro Tanaka, A. J. Tanasijczuk, S. Tanioka, D. B. Tanner, D. Tao, L. Tao, E. N. Tapia San Martín, C. Taranto, J. D. Tasson, S. Telada, R. Tenorio, J. E. Terhune, L. Terkowski, M. P. Thirugnanasambandam, L. Thomas, M. Thomas, P. Thomas, J. E. Thompson, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, A. M. Toivonen, K. Toland, A. E. Tolley, T. Tomaru, Y. Tomigami, T. Tomura, M. Tonelli, A. Torres-Forné, C. I. Torrie, I. Tosta e Melo, D. Töyrä, A. Trapananti, F. Travasso, G. Traylor, M. Trevor, M. C. Tringali, A. Tripathee, L. Troiano, A. Trovato, L. Trozzo, R. J. Trudeau, D. S. Tsai, D. Tsai, K. W. Tsang, T. Tsang, J-S. Tsao, M. Tse, R. Tso, K. Tsubono, S. Tsuchida, L. Tsukada, D. Tsuna, T. Tsutsui, T. Tsuzuki, K. Turbang, M. Turconi, D. Tuyenbayev, A. S. Ubhi, N. Uchikata, T. Uchiyama, R. P. Udall, A. Ueda, T. Uehara, K. Ueno, G. Ueshima, C. S. Unnikrishnan, F. Uraguchi, A. L. Urban, T. Ushiba, A. Utina, H. Vahlbruch, G. Vajente, A. Vajpeyi, G. Valdes, M. Valentini, V. Valsan, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, J. Vanosky, M. H. P. M. van Putten, N. van Remortel, M. Vardaro, A. F. Vargas, V. Varma, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, J. Venneberg, G. Venugopalan, D. Verkindt, P. Verma, Y. Verma, D. Veske, F. Vetrano, A. Viceré, S. Vidyant, A. D. Viets, A. Vijaykumar, V. Villa-Ortega, J.-Y. Vinet, A. Virtuoso, S. Vitale, T. Vo, H. Vocca, E. R. G. von Reis, J. S. A. von Wrangel, C. Vorvick, S. P. Vyatchanin, L. E. Wade, M. Wade, K. J. Wagner, R. C. Walet, M. Walker, G. S. Wallace, L. Wallace, S. Walsh, J. Wang, J. Z. Wang, W. H. Wang, R. L. Ward, J. Warner, M. Was, T. Washimi, N. Y. Washington, J. Watchi, B. Weaver, S. A. Webster, M. Weinert, A. J. Weinstein, R. Weiss, C. M. Weller, F. Wellmann, L. Wen, P. Weßels, K. Wette, J. T. Whelan, D. D. White, B. F. Whiting, C. Whittle, D. Wilken, D. Williams, M. J. Williams, A. R. Williamson, J. L. Willis, B. Willke, D. J. Wilson, W. Winkler, C. C. Wipf, T. Wlodarczyk, G. Woan, J. Woehler, J. K. Wofford, I. C. F. Wong, C. Wu, D. S. Wu, H. Wu, S. Wu, D. M. Wysocki, L. Xiao, W-R. Xu, T. Yamada, H. Yamamoto, Kazuhiro Yamamoto, Kohei Yamamoto, T. Yamamoto, K. Yamashita, R. Yamazaki, F. W. Yang, L. Yang, Y. Yang, Yang Yang, Z. Yang, M. J. Yap, D. W. Yeeles, A. B. Yelikar, M. Ying, K. Yokogawa, J. Yokoyama, T. Yokozawa, J. Yoo, T. Yoshioka, Hang Yu, Haocun Yu, H. Yuzurihara, A. Zadrożny, M. Zanolin, S. Zeidler, T. Zelenova, J.-P. Zendri, M. Zevin, M. Zhan, H. Zhang, J. Zhang, L. Zhang, T. Zhang, Y. Zhang, C. Zhao, G. Zhao, Y. Zhao, Yue Zhao, Y. Zheng, R. Zhou, Z. Zhou, X. J. Zhu, Z.-H. Zhu, A. B. Zimmerman, Y. Zlochower, M. E. Zucker, and J. Zweizig
- Subjects
Physics ,QC1-999 - Abstract
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc^{−3} yr^{−1} and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc^{−3} yr^{−1}, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc^{-3} yr^{-1} at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)^{κ} with κ=2.9_{-1.8}^{+1.7} for z≲1. Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2_{-0.2}^{+0.1} to 2.0_{-0.3}^{+0.3}M_{⊙}. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3_{-0.5}^{+0.3} and 27.9_{-1.8}^{+1.9}M_{⊙}. While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M_{⊙}, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χ_{i}≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum.
- Published
- 2023
- Full Text
- View/download PDF
47. Polarity of semipolar wurtzite crystals: X-ray photoelectron diffraction from GaN{101¯1} and GaN{202¯1} surfaces
- Author
-
I. Bartoš, Oleksandr Romanyuk, P. Jiříček, and Tania Paskova
- Subjects
Diffraction ,Crystal ,Crystallography ,Materials science ,X-ray photoelectron spectroscopy ,Electron diffraction ,Polarity (physics) ,X-ray crystallography ,Wide-bandgap semiconductor ,General Physics and Astronomy ,Wurtzite crystal structure - Abstract
Polarity of semipolar GaN(101¯1) (101¯1¯) and GaN(202¯1) (202¯1¯) surfaces was determined with X-ray photoelectron diffraction (XPD) using a standard MgKα source. The photoelectron emission from N 1s core level measured in the a-plane of the crystals shows significant differences for the two crystal orientations within the polar angle range of 80–100° from the 〈0001〉 normal. It was demonstrated that XPD polar plots recorded in the a-plane are similar for each polarity of the GaN{101¯1} and GaN{202¯1} crystals if referred to 〈0001〉 crystal axes. For polarity determinations of all important GaN{h0h¯l} semipolar surfaces, the above given polar angle range is suitable.
- Published
- 2014
- Full Text
- View/download PDF
48. Valence-band photoemission fromGaAs(100)−c(4×4)
- Author
-
C. Solterbeck, T. Strasser, M. Cukr, P. Jiříček, W. Schattke, and I. Bartoš
- Subjects
Brillouin zone ,Physics ,Inverse photoemission spectroscopy ,Resonance ,Electron ,Photoelectric effect ,Atomic physics ,Translational symmetry ,Symmetry (physics) ,Surface states - Abstract
The energy distributions of photoelectrons emitted from the $c(4\ifmmode\times\else\texttimes\fi{}4)$ reconstructed GaAs(100) surface are carefully analyzed within the one-step model of photoemission, thus demonstrating that such calculations work for large unit cells. It is used for detailed interpretation of published and new angular resolved $\mathrm{He}I$ experimental data. Surface-related features are found and their localization and symmetry are determined. Backfolding of the electron energy bands and its splitting at the reduced Brillouin zone's boundaries lead to smaller energy dispersion of electron surface states and resonances. The experimentally observed longer period of a surface resonance than that corresponding to the translation symmetry of the reconstructed surface is confirmed and explained. The existence of two surface states near the upper valence-band edge is verified. One major difference between the theory and the experiment is found that cannot be explained by means of the one-step model for a perfectly reconstructed surface.
- Published
- 2001
- Full Text
- View/download PDF
49. IceCube Search for Neutrinos Coincident with Gravitational Wave Events from LIGO/Virgo Run O3
- Author
-
R. Abbasi, M. Ackermann, J. Adams, N. Aggarwal, J. A. Aguilar, M. Ahlers, M. Ahrens, J. M. Alameddine, A. A. Alves Jr., N. M. Amin, K. Andeen, T. Anderson, G. Anton, C. Argüelles, Y. Asali, Y. Ashida, S. Athanasiadou, S. Axani, X. Bai, A. Balagopal V., M. Baricevic, I. Bartos, S. W. Barwick, V. Basu, R. Bay, J. J. Beatty, K.-H. Becker, J. Becker Tjus, J. Beise, C. Bellenghi, S. Benda, S. BenZvi, D. Berley, E. Bernardini, D. Z. Besson, G. Binder, D. Bindig, E. Blaufuss, S. Blot, F. Bontempo, J. Y. Book, J. Borowka, S. Böser, O. Botner, J. Böttcher, E. Bourbeau, F. Bradascio, J. Braun, B. Brinson, S. Bron, J. Brostean-Kaiser, R. T. Burley, R. S. Busse, M. A. Campana, E. G. Carnie-Bronca, C. Chen, Z. Chen, D. Chirkin, K. Choi, B. A. Clark, L. Classen, A. Coleman, G. H. Collin, A. Connolly, J. M. Conrad, P. Coppin, P. Correa, S. T. Countryman, D. F. Cowen, R. Cross, C. Dappen, P. Dave, C. De Clercq, J. J. DeLaunay, D. Delgado López, H. Dembinski, K. Deoskar, A. Desai, P. Desiati, K. D. de Vries, G. de Wasseige, T. DeYoung, A. Diaz, J. C. Díaz-Vélez, M. Dittmer, H. Dujmovic, M. A. DuVernois, T. Ehrhardt, P. Eller, R. Engel, H. Erpenbeck, J. Evans, P. A. Evenson, K. L. Fan, A. R. Fazely, A. Fedynitch, N. Feigl, S. Fiedlschuster, A. T. Fienberg, C. Finley, L. Fischer, D. Fox, A. Franckowiak, E. Friedman, A. Fritz, P. Fürst, T. K. Gaisser, J. Gallagher, E. Ganster, A. Garcia, S. Garrappa, L. Gerhardt, A. Ghadimi, C. Glaser, T. Glauch, T. Glüsenkamp, N. Goehlke, J. G. Gonzalez, S. Goswami, D. Grant, T. Grégoire, S. Griswold, C. Günther, P. Gutjahr, C. Haack, A. Hallgren, R. Halliday, L. Halve, F. Halzen, H. Hamdaoui, M. Ha Minh, K. Hanson, J. Hardin, A. A. Harnisch, P. Hatch, A. Haungs, K. Helbing, J. Hellrung, F. Henningsen, L. Heuermann, S. Hickford, C. Hill, G. C. Hill, K. D. Hoffman, K. Hoshina, W. Hou, T. Huber, K. Hultqvist, M. Hünnefeld, R. Hussain, K. Hymon, S. In, N. Iovine, A. Ishihara, M. Jansson, G. S. Japaridze, M. Jeong, M. Jin, B. J. P. Jones, D. Kang, W. Kang, X. Kang, A. Kappes, D. Kappesser, L. Kardum, T. Karg, M. Karl, A. Karle, U. Katz, M. Kauer, J. L. Kelley, A. Kheirandish, K. Kin, J. Kiryluk, S. R. Klein, A. Kochocki, R. Koirala, H. Kolanoski, T. Kontrimas, L. Köpke, C. Kopper, D. J. Koskinen, P. Koundal, M. Kovacevich, M. Kowalski, T. Kozynets, E. Krupczak, E. Kun, N. Kurahashi, N. Lad, C. Lagunas Gualda, M. J. Larson, F. Lauber, J. P. Lazar, J. W. Lee, K. Leonard, A. Leszczyńska, M. Lincetto, Q. R. Liu, M. Liubarska, E. Lohfink, C. Love, C. J. Lozano Mariscal, L. Lu, F. Lucarelli, A. Ludwig, W. Luszczak, Y. Lyu, W. Y. Ma, J. Madsen, K. B. M. Mahn, Y. Makino, S. Mancina, W. Marie Sainte, I. C. Mariş, S. Márka, Z. Márka, M. Marsee, I. Martinez-Soler, R. Maruyama, T. McElroy, F. McNally, J. V. Mead, K. Meagher, S. Mechbal, A. Medina, M. Meier, S. Meighen-Berger, Y. Merckx, J. Micallef, D. Mockler, T. Montaruli, R. W. Moore, R. Morse, M. Moulai, T. Mukherjee, R. Naab, R. Nagai, U. Naumann, J. Necker, M. Neumann, H. Niederhausen, M. U. Nisa, S. C. Nowicki, A. Obertacke Pollmann, M. Oehler, B. Oeyen, A. Olivas, R. Orsoe, J. Osborn, E. O’Sullivan, H. Pandya, D. V. Pankova, N. Park, G. K. Parker, E. N. Paudel, L. Paul, C. Pérez de los Heros, L. Peters, J. Peterson, S. Philippen, S. Pieper, A. Pizzuto, M. Plum, Y. Popovych, A. Porcelli, M. Prado Rodriguez, B. Pries, G. T. Przybylski, C. Raab, J. Rack-Helleis, M. Rameez, K. Rawlins, Z. Rechav, A. Rehman, P. Reichherzer, G. Renzi, E. Resconi, S. Reusch, W. Rhode, M. Richman, B. Riedel, E. J. Roberts, S. Robertson, S. Rodan, G. Roellinghoff, M. Rongen, C. Rott, T. Ruhe, L. Ruohan, D. Ryckbosch, D. Rysewyk Cantu, I. Safa, J. Saffer, D. Salazar-Gallegos, P. Sampathkumar, S. E. Sanchez Herrera, A. Sandrock, M. Santander, S. Sarkar, K. Satalecka, M. Schaufel, H. Schieler, S. Schindler, B. Schlueter, T. Schmidt, J. Schneider, F. G. Schröder, L. Schumacher, G. Schwefer, S. Sclafani, D. Seckel, S. Seunarine, A. Sharma, S. Shefali, N. Shimizu, M. Silva, A. C. Silva Oliveira, B. Skrzypek, B. Smithers, R. Snihur, J. Soedingrekso, A. Sogaard, D. Soldin, C. Spannfellner, G. M. Spiczak, C. Spiering, M. Stamatikos, T. Stanev, R. Stein, T. Stezelberger, T. Stürwald, T. Stuttard, A. G. Sullivan, G. W. Sullivan, I. Taboada, S. Ter-Antonyan, W. G. Thompson, J. Thwaites, S. Tilav, K. Tollefson, C. Tönnis, S. Toscano, D. Tosi, A. Trettin, C. F. Tung, R. Turcotte, J. P. Twagirayezu, B. Ty, M. A. Unland Elorrieta, K. Upshaw, N. Valtonen-Mattila, J. Vandenbroucke, N. van Eijndhoven, D. Vannerom, J. van Santen, J. Vara, J. Veitch-Michaelis, S. Verpoest, D. Veske, C. Walck, W. Wang, T. B. Watson, C. Weaver, P. Weigel, A. Weindl, J. Weldert, C. Wendt, J. Werthebach, M. Weyrauch, N. Whitehorn, C. H. Wiebusch, N. Willey, D. R. Williams, M. Wolf, G. Wrede, J. Wulff, X. W. Xu, J. P. Yanez, E. Yildizci, S. Yoshida, S. Yu, T. Yuan, Z. Zhang, P. Zhelnin, and The IceCube Collaboration
- Subjects
Neutrino astronomy ,Neutrino telescopes ,Gravitational waves ,Multi-messenger Astrophysics ,Gravitational wave astronomy ,High energy astrophysics ,Astrophysics ,QB460-466 - Abstract
Using data from the IceCube Neutrino Observatory, we searched for high-energy neutrino emission from the gravitational-wave events detected by the advanced LIGO and Virgo detectors during their third observing run. We did a low-latency follow-up on the public candidate events released during the detectors’ third observing run and an archival search on the 80 confident events reported in the GWTC-2.1 and GWTC-3 catalogs. An extended search was also conducted for neutrino emission on longer timescales from neutron star containing mergers. Follow-up searches on the candidate optical counterpart of GW190521 were also conducted. We used two methods; an unbinned maximum likelihood analysis and a Bayesian analysis using astrophysical priors, both of which were previously used to search for high-energy neutrino emission from gravitational-wave events. No significant neutrino emission was observed by any analysis, and upper limits were placed on the time-integrated neutrino flux as well as the total isotropic equivalent energy emitted in high-energy neutrinos.
- Published
- 2023
- Full Text
- View/download PDF
50. Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB during the LIGO–Virgo Observing Run O3a
- Author
-
R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, T. Andrić, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, S. Appert, Koji Arai, Koya Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arène, N. Aritomi, N. Arnaud, S. M. Aronson, K. G. Arun, H. Asada, Y. Asali, G. Ashton, Y. Aso, M. Assiduo, S. M. Aston, P. Astone, F. Aubin, C. Austin, S. Babak, F. Badaracco, M. K. M. Bader, C. Badger, S. Bae, Y. Bae, A. M. Baer, S. Bagnasco, Y. Bai, L. Baiotti, J. Baird, R. Bajpai, M. Ball, G. Ballardin, S. W. Ballmer, A. Balsamo, G. Baltus, S. Banagiri, D. Bankar, J. C. Barayoga, C. Barbieri, B. C. Barish, D. Barker, P. Barneo, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, M. Bawaj, J. C. Bayley, A. C. Baylor, M. Bazzan, B. Bécsy, V. M. Bedakihale, M. Bejger, I. Belahcene, V. Benedetto, D. Beniwal, T. F. Bennett, J. D. Bentley, M. BenYaala, F. Bergamin, B. K. Berger, S. Bernuzzi, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, D. Beveridge, R. Bhandare, U. Bhardwaj, D. Bhattacharjee, S. Bhaumik, I. A. Bilenko, G. Billingsley, S. Bini, I. A. Birney, O. Birnholtz, S. Biscans, M. Bischi, S. Biscoveanu, A. Bisht, B. Biswas, M. Bitossi, M.-A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, F. Bobba, N. Bode, M. Boer, G. Bogaert, M. Boldrini, L. D. Bonavena, F. Bondu, E. Bonilla, R. Bonnand, P. Booker, B. A. Boom, R. Bork, V. Boschi, N. Bose, S. Bose, V. Bossilkov, V. Boudart, Y. Bouffanais, A. Boumerdassi, A. Bozzi, C. Bradaschia, P. R. Brady, A. Bramley, A. Branch, M. Branchesi, J. E. Brau, M. Breschi, T. Briant, J. H. Briggs, A. Brillet, M. Brinkmann, P. Brockill, A. F. Brooks, J. Brooks, D. D. Brown, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, J. Buchanan, T. Bulik, H. J. Bulten, A. Buonanno, R. Buscicchio, D. Buskulic, C. Buy, R. L. Byer, L. Cadonati, G. Cagnoli, C. Cahillane, J. Calderón Bustillo, J. D. Callaghan, T. A. Callister, E. Calloni, J. Cameron, J. B. Camp, M. Canepa, S. Canevarolo, M. Cannavacciuolo, K. C. Cannon, H. Cao, Z. Cao, E. Capocasa, E. Capote, G. Carapella, F. Carbognani, J. B. Carlin, M. F. Carney, M. Carpinelli, G. Carrillo, G. Carullo, T. L. Carver, J. Casanueva Diaz, C. Casentini, G. Castaldi, S. Caudill, M. Cavaglià, F. Cavalier, R. Cavalieri, M. Ceasar, G. Cella, P. Cerdá-Durán, E. Cesarini, W. Chaibi, K. Chakravarti, S. Chalathadka Subrahmanya, E. Champion, C.-H. Chan, C. Chan, C. L. Chan, K. Chan, M. Chan, K. Chandra, P. Chanial, S. Chao, P. Charlton, E. A. Chase, E. Chassande-Mottin, C. Chatterjee, Debarati Chatterjee, Deep Chatterjee, M. Chaturvedi, S. Chaty, C. Chen, H. Y. Chen, J. Chen, K. Chen, X. Chen, Y.-B. Chen, Y.-R. Chen, Z. Chen, H. Cheng, C. K. Cheong, H. Y. Cheung, H. Y. Chia, F. Chiadini, C-Y. Chiang, G. Chiarini, R. Chierici, A. Chincarini, M. L. Chiofalo, A. Chiummo, G. Cho, H. S. Cho, R. K. Choudhary, S. Choudhary, N. Christensen, H. Chu, Q. Chu, Y-K. Chu, S. Chua, K. W. Chung, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, A. A. Ciobanu, R. Ciolfi, F. Cipriano, A. Cirone, F. Clara, E. N. Clark, J. A. Clark, L. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, E. Codazzo, P.-F. Cohadon, D. E. Cohen, L. Cohen, M. Colleoni, C. G. Collette, A. Colombo, M. Colpi, C. M. Compton, M. Constancio Jr., L. Conti, S. J. Cooper, P. Corban, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, K. R. Corley, N. Cornish, D. Corre, A. Corsi, S. Cortese, C. A. Costa, R. Cotesta, M. W. Coughlin, J.-P. Coulon, S. T. Countryman, B. Cousins, P. Couvares, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, J. D. E. Creighton, T. D. Creighton, A. W. Criswell, M. Croquette, S. G. Crowder, J. R. Cudell, T. J. Cullen, A. Cumming, R. Cummings, L. Cunningham, E. Cuoco, M. Curyło, P. Dabadie, T. Dal Canton, S. Dall’Osso, G. Dálya, A. Dana, L. M. DaneshgaranBajastani, B. D’Angelo, S. Danilishin, S. D’Antonio, K. Danzmann, C. Darsow-Fromm, A. Dasgupta, L. E. H. Datrier, S. Datta, V. Dattilo, I. Dave, M. Davier, G. S. Davies, D. Davis, M. C. Davis, E. J. Daw, R. Dean, D. DeBra, M. Deenadayalan, J. Degallaix, M. De Laurentis, S. Deléglise, V. Del Favero, F. De Lillo, N. De Lillo, W. Del Pozzo, L. M. DeMarchi, F. De Matteis, V. D’Emilio, N. Demos, T. Dent, A. Depasse, R. De Pietri, R. De Rosa, C. De Rossi, R. DeSalvo, R. De Simone, S. Dhurandhar, M. C. Díaz, M. Diaz-Ortiz Jr., N. A. Didio, T. Dietrich, L. Di Fiore, C. Di Fronzo, C. Di Giorgio, F. Di Giovanni, M. Di Giovanni, T. Di Girolamo, A. Di Lieto, B. Ding, S. Di Pace, I. Di Palma, F. Di Renzo, A. K. Divakarla, A. Dmitriev, Z. Doctor, L. D’Onofrio, F. Donovan, K. L. Dooley, S. Doravari, I. Dorrington, M. Drago, J. C. Driggers, Y. Drori, J.-G. Ducoin, P. Dupej, O. Durante, D. D’Urso, P.-A. Duverne, S. E. Dwyer, C. Eassa, P. J. Easter, M. Ebersold, T. Eckhardt, G. Eddolls, B. Edelman, T. B. Edo, O. Edy, A. Effler, S. Eguchi, J. Eichholz, S. S. Eikenberry, M. Eisenmann, R. A. Eisenstein, A. Ejlli, E. Engelby, Y. Enomoto, L. Errico, R. C. Essick, H. Estellés, D. Estevez, Z. Etienne, T. Etzel, M. Evans, T. M. Evans, B. E. Ewing, V. Fafone, H. Fair, S. Fairhurst, A. M. Farah, S. Farinon, B. Farr, W. M. Farr, N. W. Farrow, E. J. Fauchon-Jones, G. Favaro, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, E. Fenyvesi, D. L. Ferguson, A. Fernandez-Galiana, I. Ferrante, T. A. Ferreira, F. Fidecaro, P. Figura, I. Fiori, M. Fishbach, R. P. Fisher, R. Fittipaldi, V. Fiumara, R. Flaminio, E. Floden, H. Fong, J. A. Font, B. Fornal, P. W. F. Forsyth, A. Franke, S. Frasca, F. Frasconi, C. Frederick, J. P. Freed, Z. Frei, A. Freise, R. Frey, P. Fritschel, V. V. Frolov, G. G. Fronzé, Y. Fujii, Y. Fujikawa, M. Fukunaga, M. Fukushima, P. Fulda, M. Fyffe, H. A. Gabbard, B. U. Gadre, J. R. Gair, J. Gais, S. Galaudage, R. Gamba, D. Ganapathy, A. Ganguly, D. Gao, S. G. Gaonkar, B. Garaventa, C. García-Núñez, C. García-Quirós, F. Garufi, B. Gateley, S. Gaudio, V. Gayathri, G.-G. Ge, G. Gemme, A. Gennai, J. George, O. Gerberding, L. Gergely, P. Gewecke, S. Ghonge, Abhirup Ghosh, Archisman Ghosh, Shaon Ghosh, Shrobana Ghosh, B. Giacomazzo, L. Giacoppo, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, M. Giesler, P. Giri, F. Gissi, J. Glanzer, A. E. Gleckl, P. Godwin, E. Goetz, R. Goetz, N. Gohlke, B. Goncharov, G. González, A. Gopakumar, M. Gosselin, R. Gouaty, D. W. Gould, B. Grace, A. Grado, M. Granata, V. Granata, A. Grant, S. Gras, P. Grassia, C. Gray, R. Gray, G. Greco, A. C. Green, R. Green, A. M. Gretarsson, E. M. Gretarsson, D. Griffith, W. Griffiths, H. L. Griggs, G. Grignani, A. Grimaldi, S. J. Grimm, H. Grote, S. Grunewald, P. Gruning, D. Guerra, G. M. Guidi, A. R. Guimaraes, G. Guixé, H. K. Gulati, H.-K. Guo, Y. Guo, Anchal Gupta, Anuradha Gupta, P. Gupta, E. K. Gustafson, R. Gustafson, F. Guzman, S. Ha, L. Haegel, A. Hagiwara, S. Haino, O. Halim, E. D. Hall, E. Z. Hamilton, G. Hammond, W.-B. Han, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. Hannuksela, H. Hansen, T. J. Hansen, J. Hanson, T. Harder, T. Hardwick, K. Haris, J. Harms, G. M. Harry, I. W. Harry, D. Hartwig, K. Hasegawa, B. Haskell, R. K. Hasskew, C.-J. Haster, K. Hattori, K. Haughian, H. Hayakawa, K. Hayama, F. J. Hayes, J. Healy, A. Heidmann, A. Heidt, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, P. Hello, A. F. Helmling-Cornell, G. Hemming, M. Hendry, I. S. Heng, E. Hennes, J. Hennig, M. H. Hennig, A. G. Hernandez, F. Hernandez Vivanco, M. Heurs, S. Hild, P. Hill, Y. Himemoto, A. S. Hines, Y. Hiranuma, N. Hirata, E. Hirose, S. Hochheim, D. Hofman, J. N. Hohmann, D. G. Holcomb, N. A. Holland, I. J. Hollows, Z. J. Holmes, K. Holt, D. E. Holz, Z. Hong, P. Hopkins, J. Hough, S. Hourihane, E. J. Howell, C. G. Hoy, D. Hoyland, A. Hreibi, B-H. Hsieh, Y. Hsu, G-Z. Huang, H-Y. Huang, P. Huang, Y-C. Huang, Y.-J. Huang, Y. Huang, M. T. Hübner, A. D. Huddart, B. Hughey, D. C. Y. Hui, V. Hui, S. Husa, S. H. Huttner, R. Huxford, T. Huynh-Dinh, S. Ide, B. Idzkowski, A. Iess, B. Ikenoue, S. Imam, K. Inayoshi, C. Ingram, Y. Inoue, K. Ioka, M. Isi, K. Isleif, K. Ito, Y. Itoh, B. R. Iyer, K. Izumi, V. JaberianHamedan, T. Jacqmin, S. J. Jadhav, S. P. Jadhav, A. L. James, A. Z. Jan, K. Jani, J. Janquart, K. Janssens, N. N. Janthalur, P. Jaranowski, D. Jariwala, R. Jaume, A. C. Jenkins, K. Jenner, C. Jeon, M. Jeunon, W. Jia, H.-B. Jin, G. R. Johns, A. W. Jones, D. I. Jones, J. D. Jones, P. Jones, R. Jones, R. J. G. Jonker, L. Ju, P. Jung, K. Jung, J. Junker, V. Juste, K. Kaihotsu, T. Kajita, M. Kakizaki, C. V. Kalaghatgi, V. Kalogera, B. Kamai, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, J. B. Kanner, Y. Kao, S. J. Kapadia, D. P. Kapasi, S. Karat, C. Karathanasis, S. Karki, R. Kashyap, M. Kasprzack, W. Kastaun, S. Katsanevas, E. Katsavounidis, W. Katzman, T. Kaur, K. Kawabe, K. Kawaguchi, N. Kawai, T. Kawasaki, F. Kéfélian, D. Keitel, J. S. Key, S. Khadka, F. Y. Khalili, S. Khan, E. A. Khazanov, N. Khetan, M. Khursheed, N. Kijbunchoo, C. Kim, J. C. Kim, J. Kim, K. Kim, W. S. Kim, Y.-M. Kim, C. Kimball, N. Kimura, M. Kinley-Hanlon, R. Kirchhoff, J. S. Kissel, N. Kita, H. Kitazawa, L. Kleybolte, S. Klimenko, A. M. Knee, T. D. Knowles, E. Knyazev, P. Koch, G. Koekoek, Y. Kojima, K. Kokeyama, S. Koley, P. Kolitsidou, M. Kolstein, K. Komori, V. Kondrashov, A. K. H. Kong, A. Kontos, N. Koper, M. Korobko, K. Kotake, M. Kovalam, D. B. Kozak, C. Kozakai, R. Kozu, V. Kringel, N. V. Krishnendu, A. Królak, G. Kuehn, F. Kuei, P. Kuijer, A. Kumar, P. Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, C. Kuo, H-S. Kuo, Y. Kuromiya, S. Kuroyanagi, K. Kusayanagi, S. Kuwahara, K. Kwak, P. Lagabbe, D. Laghi, E. Lalande, T. L. Lam, A. Lamberts, M. Landry, B. B. Lane, R. N. Lang, J. Lange, B. Lantz, I. La Rosa, A. Lartaux-Vollard, P. D. Lasky, M. Laxen, A. Lazzarini, C. Lazzaro, P. Leaci, S. Leavey, Y. K. Lecoeuche, H. K. Lee, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. Lee, J. Lehmann, A. Lemaître, M. Leonardi, N. Leroy, N. Letendre, C. Levesque, Y. Levin, J. N. Leviton, K. Leyde, A. K. Y. Li, B. Li, J. Li, K. L. Li, T. G. F. Li, X. Li, C-Y. Lin, F-K. Lin, F-L. Lin, H. L. Lin, L. C.-C. Lin, F. Linde, S. D. Linker, J. N. Linley, T. B. Littenberg, G. C. Liu, J. Liu, K. Liu, X. Liu, F. Llamas, M. Llorens-Monteagudo, R. K. L. Lo, A. Lockwood, L. T. London, A. Longo, D. Lopez, M. Lopez Portilla, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, T. P. Lott, J. D. Lough, C. O. Lousto, G. Lovelace, J. F. Lucaccioni, H. Lück, D. Lumaca, A. P. Lundgren, L.-W. Luo, J. E. Lynam, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, I. Magaña Hernandez, C. Magazzù, R. M. Magee, R. Maggiore, M. Magnozzi, S. Mahesh, E. Majorana, C. Makarem, I. Maksimovic, S. Maliakal, A. Malik, N. Man, V. Mandic, V. Mangano, J. L. Mango, G. L. Mansell, M. Manske, M. Mantovani, M. Mapelli, F. Marchesoni, M. Marchio, F. Marion, Z. Mark, S. Márka, Z. Márka, C. Markakis, A. S. Markosyan, A. Markowitz, E. Maros, A. Marquina, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, M. Martinez, V. A. Martinez, V. Martinez, K. Martinovic, D. V. Martynov, E. J. Marx, H. Masalehdan, K. Mason, E. Massera, A. Masserot, T. J. Massinger, M. Masso-Reid, S. Mastrogiovanni, A. Matas, M. Mateu-Lucena, F. Matichard, M. Matiushechkina, N. Mavalvala, J. J. McCann, R. McCarthy, D. E. McClelland, P. K. McClincy, S. McCormick, L. McCuller, G. I. McGhee, S. C. McGuire, C. McIsaac, J. McIver, T. McRae, S. T. McWilliams, D. Meacher, M. Mehmet, A. K. Mehta, Q. Meijer, A. Melatos, D. A. Melchor, G. Mendell, A. Menendez-Vazquez, C. S. Menoni, R. A. Mercer, L. Mereni, K. Merfeld, E. L. Merilh, J. D. Merritt, M. Merzougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Meylahn, A. Mhaske, A. Miani, H. Miao, I. Michaloliakos, C. Michel, Y. Michimura, H. Middleton, L. Milano, A. L. Miller, A. Miller, B. Miller, M. Millhouse, J. C. Mills, E. Milotti, O. Minazzoli, Y. Minenkov, N. Mio, Ll. M. Mir, M. Miravet-Tenés, C. Mishra, T. Mishra, T. Mistry, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, A. Miyamoto, Y. Miyazaki, K. Miyo, S. Miyoki, Geoffrey Mo, E. Moguel, K. Mogushi, S. R. P. Mohapatra, S. R. Mohite, I. Molina, M. Molina-Ruiz, M. Mondin, M. Montani, C. J. Moore, D. Moraru, F. Morawski, A. More, C. Moreno, G. Moreno, Y. Mori, S. Morisaki, Y. Moriwaki, B. Mours, C. M. Mow-Lowry, S. Mozzon, F. Muciaccia, Arunava Mukherjee, D. Mukherjee, Soma Mukherjee, Subroto Mukherjee, Suvodip Mukherjee, N. Mukund, A. Mullavey, J. Munch, E. A. Muñiz, P. G. Murray, R. Musenich, S. Muusse, S. L. Nadji, K. Nagano, S. Nagano, A. Nagar, K. Nakamura, H. Nakano, M. Nakano, R. Nakashima, Y. Nakayama, V. Napolano, I. Nardecchia, T. Narikawa, L. Naticchioni, B. Nayak, R. K. Nayak, R. Negishi, B. F. Neil, J. Neilson, G. Nelemans, T. J. N. Nelson, M. Nery, P. Neubauer, A. Neunzert, K. Y. Ng, S. W. S. Ng, C. Nguyen, P. Nguyen, T. Nguyen, L. Nguyen Quynh, W.-T. Ni, S. A. Nichols, A. Nishizawa, S. Nissanke, E. Nitoglia, F. Nocera, M. Norman, C. North, S. Nozaki, L. K. Nuttall, J. Oberling, B. D. O’Brien, Y. Obuchi, J. O’Dell, E. Oelker, W. Ogaki, G. Oganesyan, J. J. Oh, K. Oh, S. H. Oh, M. Ohashi, N. Ohishi, M. Ohkawa, F. Ohme, H. Ohta, M. A. Okada, Y. Okutani, K. Okutomi, C. Olivetto, K. Oohara, C. Ooi, R. Oram, B. O’Reilly, R. G. Ormiston, N. D. Ormsby, L. F. Ortega, R. O’Shaughnessy, E. O’Shea, S. Oshino, S. Ossokine, C. Osthelder, S. Otabe, D. J. Ottaway, H. Overmier, A. E. Pace, G. Pagano, M. A. Page, G. Pagliaroli, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, H. Pan, K. Pan, P. K. Panda, H. Pang, P. T. H. Pang, C. Pankow, F. Pannarale, B. C. Pant, F. H. Panther, F. Paoletti, A. Paoli, A. Paolone, A. Parisi, H. Park, J. Park, W. Parker, D. Pascucci, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Patel, M. Pathak, B. Patricelli, A. S. Patron, S. Patrone, S. Paul, E. Payne, M. Pedraza, M. Pegoraro, A. Pele, F. E. Peña Arellano, S. Penn, A. Perego, A. Pereira, T. Pereira, C. J. Perez, C. Périgois, C. C. Perkins, A. Perreca, S. Perriès, J. Petermann, D. Petterson, H. P. Pfeiffer, K. A. Pham, K. S. Phukon, O. J. Piccinni, M. Pichot, M. Piendibene, F. Piergiovanni, L. Pierini, V. Pierro, G. Pillant, M. Pillas, F. Pilo, L. Pinard, I. M. Pinto, M. Pinto, B. J. Piotrzkowski, K. Piotrzkowski, M. Pirello, M. D. Pitkin, E. Placidi, L. Planas, W. Plastino, C. Pluchar, R. Poggiani, E. Polini, D. Y. T. Pong, S. Ponrathnam, P. Popolizio, E. K. Porter, R. Poulton, J. Powell, M. Pracchia, T. Pradier, A. K. Prajapati, K. Prasai, R. Prasanna, G. Pratten, M. Principe, G. A. Prodi, L. Prokhorov, P. Prosposito, L. Prudenzi, A. Puecher, M. Punturo, F. Puosi, P. Puppo, M. Pürrer, H. Qi, V. Quetschke, R. Quitzow-James, F. J. Raab, G. Raaijmakers, H. Radkins, N. Radulesco, P. Raffai, S. X. Rail, S. Raja, C. Rajan, K. E. Ramirez, T. D. Ramirez, A. Ramos-Buades, J. Rana, P. Rapagnani, U. D. Rapol, A. Ray, V. Raymond, N. Raza, M. Razzano, J. Read, L. A. Rees, T. Regimbau, L. Rei, S. Reid, S. W. Reid, D. H. Reitze, P. Relton, A. Renzini, P. Rettegno, M. Rezac, F. Ricci, D. Richards, J. W. Richardson, L. Richardson, G. Riemenschneider, K. Riles, S. Rinaldi, K. Rink, M. Rizzo, N. A. Robertson, R. Robie, F. Robinet, A. Rocchi, S. Rodriguez, L. Rolland, J. G. Rollins, M. Romanelli, R. Romano, C. L. Romel, A. Romero-Rodríguez, I. M. Romero-Shaw, J. H. Romie, S. Ronchini, L. Rosa, C. A. Rose, D. Rosińska, M. P. Ross, S. Rowan, S. J. Rowlinson, S. Roy, Santosh Roy, Soumen Roy, D. Rozza, P. Ruggi, K. Ryan, S. Sachdev, T. Sadecki, J. Sadiq, N. Sago, S. Saito, Y. Saito, K. Sakai, Y. Sakai, M. Sakellariadou, Y. Sakuno, O. S. Salafia, L. Salconi, M. Saleem, F. Salemi, A. Samajdar, E. J. Sanchez, J. H. Sanchez, L. E. Sanchez, N. Sanchis-Gual, J. R. Sanders, A. Sanuy, T. R. Saravanan, N. Sarin, B. Sassolas, H. Satari, S. Sato, T. Sato, O. Sauter, R. L. Savage, T. Sawada, D. Sawant, H. L. Sawant, S. Sayah, D. Schaetzl, M. Scheel, J. Scheuer, M. Schiworski, P. Schmidt, S. Schmidt, R. Schnabel, M. Schneewind, R. M. S. Schofield, A. Schönbeck, B. W. Schulte, B. F. Schutz, E. Schwartz, J. Scott, S. M. Scott, M. Seglar-Arroyo, T. Sekiguchi, Y. Sekiguchi, D. Sellers, A. S. Sengupta, D. Sentenac, E. G. Seo, V. Sequino, A. Sergeev, Y. Setyawati, T. Shaffer, M. S. Shahriar, B. Shams, L. Shao, A. Sharma, P. Sharma, P. Shawhan, N. S. Shcheblanov, S. Shibagaki, M. Shikauchi, R. Shimizu, T. Shimoda, K. Shimode, H. Shinkai, T. Shishido, A. Shoda, D. H. Shoemaker, D. M. Shoemaker, S. ShyamSundar, M. Sieniawska, D. Sigg, L. P. Singer, D. Singh, N. Singh, A. Singha, A. M. Sintes, V. Sipala, V. Skliris, B. J. J. Slagmolen, T. J. Slaven-Blair, J. Smetana, J. R. Smith, R. J. E. Smith, J. Soldateschi, S. N. Somala, K. Somiya, E. J. Son, K. Soni, S. Soni, V. Sordini, F. Sorrentino, N. Sorrentino, H. Sotani, R. Soulard, T. Souradeep, E. Sowell, V. Spagnuolo, A. P. Spencer, M. Spera, R. Srinivasan, A. K. Srivastava, V. Srivastava, K. Staats, C. Stachie, D. A. Steer, J. Steinlechner, S. Steinlechner, D. J. Stops, M. Stover, K. A. Strain, L. C. Strang, G. Stratta, A. Strunk, R. Sturani, A. L. Stuver, S. Sudhagar, V. Sudhir, R. Sugimoto, H. G. Suh, T. Z. Summerscales, H. Sun, L. Sun, S. Sunil, A. Sur, J. Suresh, P. J. Sutton, Takamasa Suzuki, Toshikazu Suzuki, B. L. Swinkels, M. J. Szczepańczyk, P. Szewczyk, M. Tacca, H. Tagoshi, S. C. Tait, H. Takahashi, R. Takahashi, A. Takamori, S. Takano, H. Takeda, M. Takeda, C. J. Talbot, C. Talbot, H. Tanaka, Kazuyuki Tanaka, Kenta Tanaka, Taiki Tanaka, Takahiro Tanaka, A. J. Tanasijczuk, S. Tanioka, D. B. Tanner, D. Tao, L. Tao, E. N. Tapia San Martin, E. N. Tapia San Martín, C. Taranto, J. D. Tasson, S. Telada, R. Tenorio, J. E. Terhune, L. Terkowski, M. P. Thirugnanasambandam, M. Thomas, P. Thomas, J. E. Thompson, S. R. Thondapu, K. A. Thorne, E. Thrane, Shubhanshu Tiwari, Srishti Tiwari, V. Tiwari, A. M. Toivonen, K. Toland, A. E. Tolley, T. Tomaru, Y. Tomigami, T. Tomura, M. Tonelli, A. Torres-Forné, C. I. Torrie, I. Tosta e Melo, D. Töyrä, A. Trapananti, F. Travasso, G. Traylor, M. Trevor, M. C. Tringali, A. Tripathee, L. Troiano, A. Trovato, L. Trozzo, R. J. Trudeau, D. S. Tsai, D. Tsai, K. W. Tsang, T. Tsang, J-S. Tsao, M. Tse, R. Tso, K. Tsubono, S. Tsuchida, L. Tsukada, D. Tsuna, T. Tsutsui, T. Tsuzuki, K. Turbang, M. Turconi, D. Tuyenbayev, A. S. Ubhi, N. Uchikata, T. Uchiyama, R. P. Udall, A. Ueda, T. Uehara, K. Ueno, G. Ueshima, C. S. Unnikrishnan, F. Uraguchi, A. L. Urban, T. Ushiba, A. Utina, H. Vahlbruch, G. Vajente, A. Vajpeyi, G. Valdes, M. Valentini, V. Valsan, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, L. van der Schaaf, J. V. van Heijningen, J. Vanosky, M. H. P. M. van Putten, N. van Remortel, M. Vardaro, A. F. Vargas, V. Varma, M. Vasúth, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, J. Venneberg, G. Venugopalan, D. Verkindt, P. Verma, Y. Verma, D. Veske, F. Vetrano, A. Viceré, S. Vidyant, A. D. Viets, A. Vijaykumar, V. Villa-Ortega, J.-Y. Vinet, A. Virtuoso, S. Vitale, T. Vo, H. Vocca, E. R. G. von Reis, J. S. A. von Wrangel, C. Vorvick, S. P. Vyatchanin, L. E. Wade, M. Wade, K. J. Wagner, R. C. Walet, M. Walker, G. S. Wallace, L. Wallace, S. Walsh, J. Wang, J. Z. Wang, W. H. Wang, R. L. Ward, J. Warner, M. Was, T. Washimi, N. Y. Washington, K. Watada, J. Watchi, B. Weaver, S. A. Webster, M. Weinert, A. J. Weinstein, R. Weiss, C. M. Weller, F. Wellmann, L. Wen, P. Weßels, K. Wette, J. T. Whelan, D. D. White, B. F. Whiting, C. Whittle, D. Wilken, D. Williams, M. J. Williams, A. R. Williamson, J. L. Willis, B. Willke, D. J. Wilson, W. Winkler, C. C. Wipf, T. Wlodarczyk, G. Woan, J. Woehler, J. K. Wofford, I. C. F. Wong, C. Wu, D. S. Wu, H. Wu, S. Wu, D. M. Wysocki, L. Xiao, W-R. Xu, T. Yamada, H. Yamamoto, Kazuhiro Yamamoto, Kohei Yamamoto, T. Yamamoto, K. Yamashita, R. Yamazaki, F. W. Yang, L. Yang, Y. Yang, Yang Yang, Z. Yang, M. J. Yap, D. W. Yeeles, A. B. Yelikar, M. Ying, K. Yokogawa, J. Yokoyama, T. Yokozawa, J. Yoo, T. Yoshioka, Hang Yu, Haocun Yu, H. Yuzurihara, A. Zadrożny, M. Zanolin, S. Zeidler, T. Zelenova, J.-P. Zendri, M. Zevin, M. Zhan, H. Zhang, J. Zhang, L. Zhang, T. Zhang, Y. Zhang, C. Zhao, G. Zhao, Y. Zhao, Yue Zhao, R. Zhou, Z. Zhou, X. J. Zhu, Z.-H. Zhu, A. B. Zimmerman, M. E. Zucker, J. Zweizig, M. Bhardwaj, P. J. Boyle, T. Cassanelli, F. Dong, E. Fonseca, V. Kaspi, C. Leung, K. W. Masui, B. W. Meyers, D. Michilli, C. Ng, A. B. Pearlman, E. Petroff, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S. Ransom, P. Scholz, K. Shin, K. Smith, I. Stairs, S. P. Tendulkar, A. V. Zwaniga, The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collaboration, and The CHIME/FRB Collaboration
- Subjects
Gravitational wave astronomy ,Radio transient sources ,Astrophysics ,QB460-466 - Abstract
We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 10 ^51 –10 ^57 erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.