1. Anisotropic composite polymer for high magnetic force in microfluidic systems
- Author
-
J. Degouttes, S. Mekkaoui, Anne-Laure Deman, Véronique Dupuis, Jean-François Chateaux, D. Le Roy, Daya S. Dhungana, Alexandre Tamion, INL - Lab-On-Chip et Instrumentation (INL - LOCI), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Lab-On-Chip et Instrumentation ( INL - LOCI ), Institut des Nanotechnologies de Lyon ( INL ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon ( CPE ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'analyse et d'architecture des systèmes [Toulouse] ( LAAS ), Centre National de la Recherche Scientifique ( CNRS ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Institut National Polytechnique [Toulouse] ( INP ), Institut Lumière Matière [Villeurbanne] ( ILM ), Université Claude Bernard Lyon 1 ( UCBL ), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Materials science ,Microfluidics ,Composite number ,magnetophoretic force ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,microstructuration/local magnetic gradients ,Materials Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,magnetic anisotropy ,Microchannel ,010401 analytical chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Magnetic flux ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Magnetic anisotropy ,composite polymer ,Magnetic nanoparticles ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Microfabrication - Abstract
International audience; Anisotropic carbonyl iron-PolyDiMethylSiloxane (PDMS) composites were developed and implemented in microfluidic devices to serve as magnetic flux concentrators. These original materials provide technological solutions for heterogeneous integration with PDMS. Besides microfabrication advantages, they offer interesting modular magnetic properties. Applying an external magnetic field during the PDMS reticulation leads to the formation of 1D-agglomerates of magnetic particles, organized in the non-magnetic polymer matrix. This induces an increase of susceptibility as compared to composites with randomly dispersed particles. In this report, we explored the gain in reachable magnetophoretic forces in operating microfluidic devices, from the study of magnetic micro-beads motion injected in the microchannel. We show that even at relatively large distances from the magnetically-functionalized channel wall, the anisotropic composite leads to a factor two increase in the magnetophoretic force. Finally, further investigations based on finite element description suggest that the measured benefit of anisotropic composite polymers does not only rely on the global susceptibility increase but also on the local magnetic field gradients originating from the microstructure.
- Published
- 2017