88 results on '"ISTRAIL S"'
Search Results
2. Whole-genome shotgun assembly and comparison of human genome assemblies
- Author
-
Istrail, S., Gabrielle Sutton, Mouchard, L., Venter, J. C., Myers, E. W., Celera Genomics (CRA), Celera Genomics, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU), Department of Computer Science (DCS), and King‘s College London
- Subjects
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2004
3. Algorithmic strategies for the SNPs haplotype assembly problem
- Author
-
Lippert, R., Schwartz, R., Lancia, Giuseppe, and Istrail, S.
- Published
- 2002
4. Practical Algorithms and Fixed-Parameter Tractability of the Single Individual Haplotyping Problem
- Author
-
Rizzi, R., Bafna, V., Istrail, S., and Lancia, Giuseppe
- Published
- 2002
5. SNPs Problems, Algorithms and Complexity
- Author
-
Lancia, Giuseppe, Bafna, V., Istrail, S., Lippert, R., and Schwartz, R.
- Published
- 2001
6. A fast and practical approach to genotype phasing and imputation on a pedigree with erroneous and incomplete information
- Author
-
Istrail, S, Mandoiu, II, Pop, M, Rajasekaran, S, Spouge, JL, Pirola, Y, DELLA VEDOVA, G, Biffani, S, Stella, A, Bonizzoni, P, PIROLA, YURI, DELLA VEDOVA, GIANLUCA, BONIZZONI, PAOLA, Istrail, S, Mandoiu, II, Pop, M, Rajasekaran, S, Spouge, JL, Pirola, Y, DELLA VEDOVA, G, Biffani, S, Stella, A, Bonizzoni, P, PIROLA, YURI, DELLA VEDOVA, GIANLUCA, and BONIZZONI, PAOLA
- Abstract
In this work, we propose the MIN-RECOMBINANT HAPLOTYPE CONFIGURATION WITH BOUNDED ERRORS problem (MRHCE), which extends the original MIN-RECOMBINANT HAPLOTYPE CONFIGURATION formulation by incorporating two common characteristics of real data: errors and missing genotypes (including untyped individuals). We describe a practical algorithm for MRHCE that is based on a reduction to the Satisfiability problem (SAT) and exploits recent advances in the constraint programming literature. An experimental analysis demonstrates the soundness of our model and the effectiveness of the algorithm under several scenarios. The analysis on real data and the comparison with state-of-the-art programs reveals that our approach couples better scalability to large and complex pedigrees with the explicit inclusion of genotyping errors into the model
- Published
- 2012
7. Characterization of distinguishing regions for Renal Cell Carcinoma discrimination
- Author
-
Istrail, S, Mandoiu, I, Pop, M, Rajasekaran, S, Spouge, J, Zoppis, I, Borsani, M, Gianazza, E, Chinello, C, Albo, G, Rocco, F, Deelder, A, Burgt, Y, Antoniotti, M, Magni, F, Mauri, G, ZOPPIS, ITALO FRANCESCO, GIANAZZA, ERICA, CHINELLO, CLIZIA, ANTONIOTTI, MARCO, MAGNI, FULVIO, MAURI, GIANCARLO, BORSANI, MASSIMILIANO, Istrail, S, Mandoiu, I, Pop, M, Rajasekaran, S, Spouge, J, Zoppis, I, Borsani, M, Gianazza, E, Chinello, C, Albo, G, Rocco, F, Deelder, A, Burgt, Y, Antoniotti, M, Magni, F, Mauri, G, ZOPPIS, ITALO FRANCESCO, GIANAZZA, ERICA, CHINELLO, CLIZIA, ANTONIOTTI, MARCO, MAGNI, FULVIO, MAURI, GIANCARLO, and BORSANI, MASSIMILIANO
- Abstract
Mass Spectrometry (MS)-based technologies represent a promising area of research in clinical analysis. They are primarily concerned with measuring the relative intensity (i.e., signals) of many protein/peptide molecules associated with their mass-to-charge ratios. These measurements provide a huge amount of information which requires adequate tools to be interpreted. Following the methodology for testing hypotheses, we investigate the proteomic signals of the most common type of Renal Cell Carcinoma, the Clear Cell variant (ccRCC) [1]. By using mutual information, we detect changes in dependence values between signals from control to case groups (ccRCC or non-ccRCC). To this end, we sample and represent each population group through graphs, thus providing the observed dependence structures (many real domains are best described by relational models [2]). This way, graphs establish abstract frames of reference in our analysis giving the opportunity to test hypotheses over their properties. In other words, changes are detected by testing graph property modifications from group to group. We report the mass-to-charge values which identify bounded regions where changes have been detected. The main interest in handling such regions is to perceive which signal ranges are associated with some specific factors of interest (e.g., studying differentially expressed peaks between cases and controls) and thus, to suggest potential biomarkers for future analysis [3]. This study has been applied to samples collected at the "Ospedale Maggiore Policlinico" Foundation (Milano, Italy) using a standardized protocol. All samples were analyzed using an UltraFlex II MALDI-TOF/TOF MS instrument and mass spectra were acquired in the m=z range of 1000-12000. The samples cohort consists of 85 control subjects and 102 Renal Cell Carcinoma patients. It was possible to classify pathological group in patients affected by clear cell (ccRCC) and other different histological subtypes (respectively 79
- Published
- 2012
8. Bgee: integrating and comparing heterogeneous transcriptome data among species
- Author
-
Istrail, S. (ed.), Pevzner, P. (ed.), Waterman, M. (ed.), Bastian, F., Parmentier, G., Roux, J., Moretti, S., Laudet, V., Robinson-Rechavi, M., Istrail, S. (ed.), Pevzner, P. (ed.), Waterman, M. (ed.), Bastian, F., Parmentier, G., Roux, J., Moretti, S., Laudet, V., and Robinson-Rechavi, M.
- Abstract
Gene expression patterns are a key feature in understanding gene function, notably in development. Comparing gene expression patterns between animals is a major step in the study of gene function as well as of animal evolution. It also provides a link between genes and phenotypes. Thus we have developed Bgee, a database designed to compare expression patterns between animals, by implementing ontologies describing anatomies and developmental stages of species, and then designing homology relationships between anatomies and comparison criteria between developmental stages. To define homology relationships between anatomical features we have developed the software Homolonto, which uses a modified ontology alignment approach to propose homology relationships between ontologies. Bgee then uses these aligned ontologies, onto which heterogeneous expression data types are mapped. These already include microarrays and ESTs.
- Published
- 2008
9. Islands of Tractability for Parsimony Haplotyping
- Author
-
Sharan, R., primary, Halldorsson, B.V., additional, and Istrail, S., additional
- Published
- 2006
- Full Text
- View/download PDF
10. Islands of tractability for parsimony haplotyping
- Author
-
Sharan, R., primary, Halldorsson, B.V., additional, and Istrail, S., additional
- Published
- 2005
- Full Text
- View/download PDF
11. QColors: An algorithm for conservative viral quasispecies reconstruction from short and non-contiguous next generation sequencing reads.
- Author
-
Huang, A., Kantor, R., DeLong, A., Schreier, L., and Istrail, S.
- Published
- 2011
- Full Text
- View/download PDF
12. Epitope prediction algorithms for peptide-based vaccine design.
- Author
-
Florea, L., Halldorsson, B., Kohlbacher, O., Schwartz, R., Hoffman, S., and Istrail, S.
- Published
- 2003
- Full Text
- View/download PDF
13. Visualization challenges for a new cyber-pharmaceutical computing paradigm.
- Author
-
Turner, R.J., Chaturvedi, K., Edwards, N.J., Fasulo, D., Halpern, A.L., Huson, D.H., Kohlbacher, O., Miller, J.R., Reinert, K., Remington, K.A., Schwartz, R., Walenz, B., Yooseph, S., and Istrail, S.
- Published
- 2001
- Full Text
- View/download PDF
14. Lattice Simulations of Aggregation Funnels for Protein Folding
- Author
-
ISTRAIL, S., primary, SCHWARTZ, R., additional, and KING, J., additional
- Published
- 1999
- Full Text
- View/download PDF
15. Algorithmic aspects of protein structure similarity.
- Author
-
Goldman, D., Istrail, S., and Papadimitriou, C.H.
- Published
- 1999
- Full Text
- View/download PDF
16. Bisimulation can't be traced.
- Author
-
Bloom, B., Istrail, S., and Meyer, A. R.
- Published
- 1988
- Full Text
- View/download PDF
17. The page number of genus g graphs is (g).
- Author
-
Heath, L. and Istrail, S.
- Published
- 1987
- Full Text
- View/download PDF
18. Nivat's Processing Systems: Decision Problems Related to Protection and Synchronization
- Author
-
Istrail, S. and Masalagiu, C.
- Subjects
Synchronization ,Compatibility ,Decidability ,Security ,Reliability ,Parallel Processing ,Process Synchronization - Published
- 1983
19. Optimal Selection of SNP Markers for Disease Association Studies
- Author
-
Halldórsson, B.V., Istrail, S., and Vega, F.M. De La
- Abstract
Abstract Genetic association studies with population samples hold the promise of uncovering the susceptibility genes underlying the heritability of complex or common disease. Most association studies rely on the use of surrogate markers, single-nucleotide polymorphism (SNP) being the most suitable due to their abundance and ease of scoring. SNP marker selection is aimed to increase the chances that at least one typed SNP would be in linkage disequilibrium (LD) with the disease causative variant, while at the same time controlling the cost of the study in terms of the number of markers genotyped and samples. Empirical studies reporting block-like segments in the genome with high LD and low haplotype diversity have motivated a marker selection strategy whereby subsets of SNPs that tag the common haplotypes of a region are picked for genotyping, avoiding typing redundant SNPs. Based on these initial observations, a plethora of tagging algorithms for selecting minimum informative subsets of SNPs has recently appeared in the literature. These differ mostly in two major aspects: the quality or correlation measure used to define tagging and the algorithm used for the minimization of the final number of tagging SNPs. In this review we describe the available tagging algorithms utilizing a 3-step unifying framework, point out their methodological and conceptual differences, and make an assessment of their assumptions, performance, and scalability.Copyright © 2004 S. Karger AG, Basel- Published
- 2004
20. A Survey of Computational Methods for Determining Haplotypes
- Author
-
Bjarni Halldórsson, Bafna, V., Edwards, N., Lippert, R., Yooseph, S., and Istrail, S.
21. Combinatorial problems arising in SNP and haplotype analysis
- Author
-
Bjarni Halldórsson, Bafna, V., Edwards, N., Lippert, R., Yooseph, S., and Istrail, S.
22. Prediction of protein secondary structure at high accuracy using a combination of many neural networks
- Author
-
Lundegaard, C., Petersen, Tn, Nielsen, M., Bohr, H., Jakob Bohr, Brunak, S., Gippert, G., Lund, O., Guerra, C., and Istrail, S.
23. Epitope prediction algorithms for peptide-based vaccine design
- Author
-
Florea, L., primary, Halldorsson, B., additional, Kohlbacher, O., additional, Schwartz, R., additional, Hoffman, S., additional, and Istrail, S., additional
- Full Text
- View/download PDF
24. Algorithmic aspects of protein structure similarity
- Author
-
Goldman, D., primary, Istrail, S., additional, and Papadimitriou, C.H., additional
- Full Text
- View/download PDF
25. Constructing generalized universal traversing sequences of polynomial size for graphs with small diameter
- Author
-
Istrail, S., primary
- Full Text
- View/download PDF
26. Visualization challenges for a new cyber-pharmaceutical computing paradigm
- Author
-
Turner, R.J., primary, Chaturvedi, K., additional, Edwards, N.J., additional, Fasulo, D., additional, Halpern, A.L., additional, Huson, D.H., additional, Kohlbacher, O., additional, Miller, J.R., additional, Reinert, K., additional, Remington, K.A., additional, Schwartz, R., additional, Walenz, B., additional, Yooseph, S., additional, and Istrail, S., additional
- Full Text
- View/download PDF
27. Constructing generalized universal traversing sequences of polynomial size for graphs with small diameter.
- Author
-
Istrail, S.
- Published
- 1990
- Full Text
- View/download PDF
28. The chimeric mapping problem: algorithmic strategies and performance evaluation on synthetic genomic data
- Author
-
Greenberg, D. and Istrail, S.
- Published
- 1994
- Full Text
- View/download PDF
29. A fast and practical approach to genotype phasing and imputation on a pedigree with erroneous and incomplete information
- Author
-
Stefano Biffani, Paola Bonizzoni, Alessandra Stella, Yuri Pirola, Gianluca Della Vedova, Istrail, S, Mandoiu, II, Pop, M, Rajasekaran, S, Spouge, JL, Pirola, Y, DELLA VEDOVA, G, Biffani, S, Stella, A, and Bonizzoni, P
- Subjects
Male ,Genotype ,Computer science ,Population ,computer.software_genre ,Reduction (complexity) ,Complete information ,Genetics ,Constraint programming ,Animals ,education ,Recombination, Genetic ,Soundness ,education.field_of_study ,Models, Genetic ,Applied Mathematics ,Computability ,Computational Biology ,INF/01 - INFORMATICA ,Missing data ,Phaser ,algorithms, haplotype inference, pedigrees, genotyping errors, missing data, recombinations ,Pedigree ,Exact algorithm ,Haplotypes ,Bounded function ,Mutation ,Scalability ,Cattle ,Female ,Data mining ,haplotype inference, recombinations, pedigrees, genotyping errors, missing genotypes, bioinformatics, algorithm design and analysis, computational biology ,Boolean satisfiability problem ,Algorithm ,computer ,Algorithms ,Imputation (genetics) ,Biotechnology - Abstract
The MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION problem (MRHC) has been highly successful in providing a sound combinatorial formulation for the important problem of genotype phasing on pedigrees. Despite several algorithmic advances that have improved the efficiency, its applicability to real data sets has been limited since it does not take into account some important phenomena such as mutations, genotyping errors, and missing data. In this work, we propose the MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION WITH BOUNDED ERRORS problem (MRHCE), which extends the original MRHC formulation by incorporating the two most common characteristics of real data: errors and missing genotypes (including untyped individuals). We describe a practical algorithm for MRHCE that is based on a reduction to the well-known Satisfiability problem (SAT) and exploits recent advances in the constraint programming literature. An experimental analysis demonstrates the biological soundness of the phasing model and the effectiveness (on both accuracy and performance) of the algorithm under several scenarios. The analysis on real data and the comparison with state-of-the-art programs reveals that our approach couples better scalability to large and complex pedigrees with the explicit inclusion of genotyping errors into the model.
- Published
- 2012
- Full Text
- View/download PDF
30. Characterization of distinguishing regions for Renal Cell Carcinoma discrimination
- Author
-
Clizia Chinello, Giancarlo Mauri, Yuri E. M. van der Burgt, Giancarlo Albo, André M. Deelder, Massimiliano Borsani, Marco Antoniotti, Fulvio Magni, Francesco Rocco, Italo Zoppis, Erica Gianazza, Istrail, S, Mandoiu, I, Pop, M, Rajasekaran, S, Spouge, J, Zoppis, I, Borsani, M, Gianazza, E, Chinello, C, Albo, G, Rocco, F, Deelder, A, Burgt, Y, Antoniotti, M, Magni, F, and Mauri, G
- Subjects
education.field_of_study ,Proteomics, Mass Spectrometry, Hypotheses Testing, Clinical Analysis, Correlation, Bipartite Graphs ,Chemistry ,Null (mathematics) ,Population ,INF/01 - INFORMATICA ,Sample (statistics) ,Mutual information ,Characterization (mathematics) ,Exact test ,Statistical significance ,Statistics ,Testing hypotheses suggested by the data ,education - Abstract
Mass Spectrometry (MS)-based technologies represent a promising area of research in clinical analysis. They are primarily concerned with measuring the relative intensity (i.e., signals) of many protein/peptide molecules associated with their mass-to-charge ratios. These measurements provide a huge amount of information which requires adequate tools to be interpreted. Following the methodology for testing hypotheses, we investigate the proteomic signals of the most common type of Renal Cell Carcinoma, the Clear Cell variant (ccRCC) [1]. By using mutual information, we detect changes in dependence values between signals from control to case groups (ccRCC or non-ccRCC). To this end, we sample and represent each population group through graphs, thus providing the observed dependence structures (many real domains are best described by relational models [2]). This way, graphs establish abstract frames of reference in our analysis giving the opportunity to test hypotheses over their properties. In other words, changes are detected by testing graph property modifications from group to group. We report the mass-to-charge values which identify bounded regions where changes have been detected. The main interest in handling such regions is to perceive which signal ranges are associated with some specific factors of interest (e.g., studying differentially expressed peaks between cases and controls) and thus, to suggest potential biomarkers for future analysis [3]. This study has been applied to samples collected at the "Ospedale Maggiore Policlinico" Foundation (Milano, Italy) using a standardized protocol. All samples were analyzed using an UltraFlex II MALDI-TOF/TOF MS instrument and mass spectra were acquired in the m=z range of 1000-12000. The samples cohort consists of 85 control subjects and 102 Renal Cell Carcinoma patients. It was possible to classify pathological group in patients affected by clear cell (ccRCC) and other different histological subtypes (respectively 79 ccRCC and 23 non-ccRCC). Table I reports the selected rejection regions (i.e., tests reject the null) at the 5% significance level. Testing hypotheses suggested by the data may induce statistical bias. For this reason, we evaluate the results to independent samples. We investigate whether test decisions are statistically independent from the region's property (i.e., distinguishing (DR) or non-distinguishing (ND) regions) when new samples are given. In other words, we want to know whether the property of a region can be statistically associated to test decisions when new samples are available. After that a new sample is provided, we verify test decisions over both the detected distinguishing regions and these regions out of the m=z bounding values previously detected. Table II summarizes the (Fisher's exact test) results confirming a significant association (a = 0.05 level) between decisions and region's property for both the class of tests. This work was supported by grants from the Italian Ministry of University and Research (PRIN n. 69373, FIRB n. RBRN07BMCT 011, FAR 2006 -- 2011), EuroKUP COST Action (BM0702) and the NEDD project ("Regione Lombardia").
- Published
- 2012
31. Bgee: integrating and comparing heterogeneous transcriptome data among species
- Author
-
Gilles Parmentier, Sébastien Moretti, Vincent Laudet, Julien Roux, Marc Robinson-Rechavi, Frederic B. Bastian, Istrail, S. (ed.), Pevzner, P. (ed.), and Waterman, M. (ed.)
- Subjects
Genetics ,gene expression pattern ,homology ,ontology ,data integration ,Computer science ,Computational biology ,Ontology (information science) ,computer.software_genre ,Phenotype ,Homology (biology) ,Transcriptome ,DNA microarray ,computer ,Gene ,Ontology alignment ,Data integration - Abstract
Gene expression patterns are a key feature in understanding gene function, notably in development. Comparing gene expression patterns between animals is a major step in the study of gene function as well as of animal evolution. It also provides a link between genes and phenotypes. Thus we have developed Bgee, a database designed to compare expression patterns between animals, by implementing ontologies describing anatomies and developmental stages of species, and then designing homology relationships between anatomies and comparison criteria between developmental stages. To define homology relationships between anatomical features we have developed the software Homolonto, which uses a modified ontology alignment approach to propose homology relationships between ontologies. Bgee then uses these aligned ontologies, onto which heterogeneous expression data types are mapped. These already include microarrays and ESTs. Bgee is available at http://bgee.unil.ch/
- Published
- 2008
32. The Genome of the Sea Urchin Strongylocentrotus purpuratus
- Author
-
Amro Hamdoun, Virginia Brockton, Huyen Dinh, Qiang Tu, Richard O. Hynes, Maria Ina Arnone, Wratko Hlavina, L. Courtney Smith, Mariano A. Loza, David R. Burgess, Matthew P. Hoffman, Florian Raible, Qiu Autumn Yuan, Geoffrey Okwuonu, Mark Y. Tong, Jennifer Hume, Donna Maglott, Manisha Goel, Olivier Fedrigo, Manuel L. Gonzalez-Garay, Celina E. Juliano, Judith Hernandez, Gary M. Wessel, William F. Marzluff, Audrey J. Majeske, Christian Gache, Louise Duloquin, Xingzhi Song, François Lapraz, Fowler J, Alexandre Souvorov, Jared V. Goldstone, Georgia Panopoulou, Sandra Hines, Kyle M. Judkins, Clay Davis, Christine G. Elsik, Paul Kitts, Mariano Loza-Coll, Greg Wray, Taku Hibino, Eric Röttinger, Allison M. Churcher, Annamaria Locascio, Arcady Mushegian, Masashi Kinukawa, Anna Reade, Katherine M. Buckley, I. R. Gibbons, Bert Gold, Aleksandar Milosavljevic, David Epel, Victor D. Vacquier, Ling Ling Pu, Vincenzo Cavalieri, Erin L. Allgood, Lan Zhang, Lynne V. Nazareth, Constantin N. Flytzanis, Ian Bosdet, Yi-Hsien Su, Zeev Pancer, Matthew L. Rowe, Robert C. Angerer, David R. McClay, William H. Klein, Rachel F. Gray, Julian L. Wong, Shunsuke Yaguchi, Robert Bellé, Aaron J. Mackey, Herath Jayantha Gunaratne, Karl Frederik Bergeron, Bruce P. Brandhorst, Greg Murray, Avis H. Cohen, Stephanie Bell, Kristin Tessmar-Raible, Ian K. Townley, Bertrand Cosson, Thomas D. Glenn, Jongmin Nam, Cynthia A. Bradham, Michael Dean, Joseph Chacko, Anthony J. Robertson, Margherita Branno, Valeria Matranga, K. James Durbin, Esther Miranda, Lili Chen, Eran Elhaik, Robert D. Burke, Rita A. Wright, Paola Oliveri, Sandra L. Lee, Gary W. Moy, Alexander E Primus, Shawn S. McCafferty, Cristina Calestani, David A. Garfield, Erica Sodergren, Karen Wilson, Joel Smith, Marco A. Marra, Cynthia Messier, Julia Morales, Kim D. Pruitt, Rachel Thorn, Rachel Gill, John S. Taylor, Mark E. Hahn, Victor Sapojnikov, Meredith Howard-Ashby, Lynne M. Angerer, Maurice R. Elphick, Kathy R. Foltz, Anne Marie Genevière, Justin T. Reese, Blanca E. Galindo, Kim C. Worley, Andrew Leone, Glen Humphrey, Kevin Berney, Olga Ermolaeva, George Miner, David P. Terwilliger, Elly Suk Hen Chow, Lora Lewis, Dan Graur, C. Titus Brown, Gerard Manning, Kevin J. Peterson, Angela Jolivet, Michele K. Anderson, Francesca Rizzo, Ekaterina Voronina, Thierry Lepage, Giorgio Matassi, Antonio Fernandez-Guerra, Mamoru Nomura, Charles A. Whittaker, James R.R. Whittle, James A. Coffman, George M. Weinstock, Mohammed M. Idris, Ashlan M. Musante, Sebastian D. Fugmann, Katherine D. Walton, Sorin Istrail, Shu-Yu Wu, Cerrissa Hamilton, Jonah Cool, Jacqueline E. Schein, Stacey M. Curry, Athula Wikramanayke, Seth Carbonneau, Blair J. Rossetti, Christopher E. Killian, Melissa J. Landrum, Amanda P. Rawson, Jenifer C. Croce, Ryan C. Range, Rahul Satija, John J. Stegeman, Yufeng Shen, Cavit Agca, Terry Gaasterland, Rocky Cheung, Takae Kiyama, Nikki Adams, Jonathan P. Rast, Robert Piotr Olinski, Andrew Cree, Mark Scally, Shuguang Liang, David A. Parker, Rebecca Thomason, Gretchen E. Hofmann, Michelle M. Roux, Ronghui Xu, Robert A. Obar, Enrique Arboleda, Odile Mulner-Lorillon, Shannon Dugan-Rocha, David J. Bottjer, Gabriele Amore, Manoj P. Samanta, Waraporn Tongprasit, Véronique Duboc, La Ronda Jackson, Fred H. Wilt, Viktor Stolc, Anna T. Neill, Michael Raisch, Pei Yun Lee, Jia L. Song, Margaret Morgan, Brian T. Livingston, Sofia Hussain, Zheng Wei, Bryan J. Cole, Tonya F. Severson, Victor V. Solovyev, Finn Hallböök, Donna M. Muzny, Christine A. Byrum, Albert J. Poustka, Xiuqian Mu, Andrew R. Jackson, Shin Heesun, Euan R. Brown, Nansheng Chen, Patrick Cormier, Ralph Haygood, Pedro Martinez, R. Andrew Cameron, D. Wang, Wendy S. Beane, Eric H. Davidson, Christie Kovar, Hemant Kelkar, Charles A. Ettensohn, Sham V. Nair, Robert L. Morris, Stefan C. Materna, Michael C. Thorndyke, Richard A. Gibbs, Dan O Mellott, Department of Physiology and Biophysics, Stony Brook University [The State University of New York] ( SBU ), Astronomy Unit ( AU ), Queen Mary University of London ( QMUL ), Urban and Industrial Air Quality Group, CSIRO Energy Technology, Commonwealth Scientific and Industrial Research Organisation Energy Technology ( CSIRO Energy Technology ), Commonwealth Scientific and Industrial Research Organisation, Center for Polymer Studies ( CPS ), Boston University [Boston] ( BU ), Physics Department [Boston] ( BU-Physics ), Max Planck Institute for Psycholinguistics, Max-Planck-Institut, Department of Biology [Norton], Wheaton College [Norton], Mathematical Institute [Oxford] ( MI ), University of Oxford [Oxford], Centre for the Analysis of Time Series ( CATS ), London School of Economics and Political Science ( LSE ), Thomas Jefferson National Accelerator Facility ( Jefferson Lab ), Thomas Jefferson National Accelerator Facility, Laboratoire d'Energétique et de Mécanique Théorique Appliquée ( LEMTA ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Evolution, Génomes et Spéciation ( LEGS ), Centre National de la Recherche Scientifique ( CNRS ), Department of Geology, University of Illinois at Urbana-Champaign [Urbana], Department of Electrical and Computer Engineering [Portland] ( ECE ), Portland State University [Portland] ( PSU ), Saint-Gobain Crystals [USA], SAINT-GOBAIN, Institute for Animal Health ( IAH ), Biotechnology and Biological Sciences Research Council, Center for Agricultural Resources Research, Chinese Academy of Sciences [Changchun Branch] ( CAS ), Ipsen Inc. [Milford] ( Ipsen ), IPSEN, Department of Physics [Berkeley], University of California [Berkeley], Institute for Climate and Atmospheric Science [Leeds] ( ICAS ), University of Leeds, Chung-Ang University ( CAU ), Chung-Ang University [Seoul], Antarctic Climate and Ecosystems Cooperative Research Center ( ACE-CRC ), Institute of Aerodynamics and Fluid Mechanics ( AER ), Technische Universität München [München] ( TUM ), Mer et santé ( MS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Imperial College London, Radio and Atmospheric Sciences Division, National Physical Laboratory [Teddington] ( NPL ), International Research Institute for Climate and Society ( IRI ), Earth Institute at Columbia University, Columbia University [New York]-Columbia University [New York], Soils Group, The Macaulay Institute, Department of Haematology, University of Cambridge [UK] ( CAM ), School of Biology and Biochemistry, Queen's University, Leslie Hill Institute for Plant Conservation ( PCU ), University of Cape Town, Institute for Microelectronics and Microsystems/ Istituto per la Microelettronica e Microsistemi ( IMM ), Consiglio Nazionale delle Ricerche ( CNR ), Laboratoire d'acoustique de l'université du Mans ( LAUM ), Le Mans Université ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Interactive Systems Labs ( ISL ), Carnegie Mellon University [Pittsburgh] ( CMU ), Dalian Institute of Chemical Physics ( DICP ), Architectures, Languages and Compilers to Harness the End of Moore Years ( ALCHEMY ), Laboratoire de Recherche en Informatique ( LRI ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ), Clean Air Task Force ( CATF ), Clean Air Task Force, Space Physics Laboratory, Indian Space Research Organisation ( ISRO ), Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Microbiology and Immunology, College of Medicine and Health Sciences-Sultan Qaboos University, European Molecular Biology Laboratory [Heidelberg] ( EMBL ), Department of Biostatistics, University of Michigan [Ann Arbor], Department of Radiation Oncology [Michigan] ( Radonc ), Department of Physics and Astronomy [Leicester], University of Leicester, Informatique, Biologie Intégrative et Systèmes Complexes ( IBISC ), Université d'Évry-Val-d'Essonne ( UEVE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut für Meteorologie und Klimaforschung ( IMK ), Karlsruher Institut für Technologie ( KIT ), Physics Department [UNB], University of New Brunswick ( UNB ), Laboratoire Parole et Langage ( LPL ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Bioprojet, Laboratoire de Matériaux à Porosité Contrôlée ( LMPC ), Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique ( CNRS ), School of Information Engineering [USTB] ( SIE ), University of Science and Technology Beijing [Beijing] ( USTB ), Laboratory for Atmospheric and Space Physics [Boulder] ( LASP ), University of Colorado Boulder [Boulder], Department of Applied Mathematics [Sheffield], University of Sheffield [Sheffield], School of Mathematics and Statistics [Sheffield] ( SoMaS ), Laboratoire de Mécanique de Lille - FRE 3723 ( LML ), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique ( CNRS ), Computer Science Department [UCLA] ( CSD ), University of California at Los Angeles [Los Angeles] ( UCLA ), Développement et évolution ( DE ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biologie du Développement de Villefranche sur mer ( LBDV ), Laboratoire Pierre Aigrain ( LPA ), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris ( FRDPENS ), Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics and Statistics [Mac Gill], McGill University, Departamento de Botánica [Comahue], Universidad nacional del Comahue, Bioénergétique Cellulaire et Pathologique ( BECP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Environnements et Paléoenvironnements OCéaniques ( EPOC ), Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -École pratique des hautes études ( EPHE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Jacques Monod ( IJM ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratori Nazionali del Sud ( LNS ), National Institute for Nuclear Physics ( INFN ), Departament de Matemàtiques [Barcelona], Universitat Autònoma de Barcelona [Barcelona] ( UAB ), Max-Planck-Institut für Kohlenforschung (coal research), Institute of Oceanology [CAS] ( IOCAS ), National Chiao Tung University ( NCTU ), Department of Hydrology and Water Resources ( HWR ), University of Arizona, Centre for Educational Technology, Environment Department [York], University of York [York, UK], State Key Laboratory of Nuclear Physics and Technology ( SKL-NPT ), Peking University [Beijing], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa], NASA Ames Research Center ( ARC ), Department of Materials, Digital Language & Knowledge Contents Research Association ( DICORA ), Hankuk University of Foreign Studies, Department of Physics [Coventry], University of Warwick [Coventry], Space Science and Technology Department [Didcot] ( RAL Space ), STFC Rutherford Appleton Laboratory ( RAL ), Science and Technology Facilities Council ( STFC ) -Science and Technology Facilities Council ( STFC ), Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), H M Nautical Almanac Office [RAL] ( HMNAO ), Rutherford Appleton Laboratory, United Kingdom Met Office [Exeter], University College of London [London] ( UCL ), Department of Pathology and Laboratory Medicine [UCLA], University of California at Los Angeles [Los Angeles] ( UCLA ) -School of Medicine, School of Earth and Environmental Sciences [Seoul] ( SEES ), Seoul National University [Seoul], Department of Chemistry, Seoul Women's University, MicroMachines Centre ( MMC ), Nanyang Technological University [Singapour], Regroupement Québécois sur les Matériaux de Pointe ( RQMP ), École Polytechnique de Montréal ( EPM ) -Université de Sherbrooke [Sherbrooke]-McGill University-Université de Montréal-Fonds Québécois de Recherche sur la Nature et les Technologies ( FQRNT ), Département de Physique [Montréal], Université de Montréal, School of Earth and Environment [Leeds] ( SEE ), Centre for Ecology and Hydrology ( CEH ), Natural Environment Research Council ( NERC ), Norwegian Institute for Water Research ( NIVA ), Norwegian Institute for Water Research, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Astronomy Unit [London] (AU), Queen Mary University of London (QMUL), Commonwealth Scientific and Industrial Research Organisation Energy Technology (CSIRO Energy Technology), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Biochemistry and Molecular Biology [Houston], The University of Texas Medical School at Houston, Mathematical Institute [Oxford] (MI), University of Oxford, Centre for the Analysis of Time Series (CATS), London School of Economics and Political Science (LSE), Thomas Jefferson National Accelerator Facility (Jefferson Lab), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Evolution, Génomes et Spéciation (LEGS), Centre National de la Recherche Scientifique (CNRS), University of Illinois System-University of Illinois System, Department of Electrical and Computer Engineering [Portland] (ECE), Portland State University [Portland] (PSU), Saint-Gobain, Institute for Animal Health (IAH), Biotechnology and Biological Sciences Research Council (BBSRC), Chinese Academy of Sciences [Changchun Branch] (CAS), Ipsen Inc. [Milford] (Ipsen), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Chung-Ang University (CAU), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Institute of Aerodynamics and Fluid Mechanics (AER), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), National Physical Laboratory [Teddington] (NPL), International Research Institute for Climate and Society (IRI), Macaulay Institute, University of Cambridge [UK] (CAM), Queen's University [Kingston, Canada], Leslie Hill Institute for Plant Conservation (PCU), Istituto per la Microelettronica e Microsistemi [Catania] (IMM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Interactive Systems Labs (ISL), Carnegie Mellon University [Pittsburgh] (CMU), Dalian Institute of Chemical Physics (DICP), Architectures, Languages and Compilers to Harness the End of Moore Years (ALCHEMY), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Clean Air Task Force (CATF), Indian Space Research Organisation (ISRO), Centre d'études et de recherches appliquées à la gestion (CERAG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS), Sultan Qaboos University (SQU)-College of Medicine and Health Sciences [Baylor], Baylor University-Baylor University, European Molecular Biology Laboratory [Heidelberg] (EMBL), University of Michigan System-University of Michigan System, Department of Radiation Oncology [Michigan] (Radonc), Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), University of New Brunswick (UNB), Laboratoire Parole et Langage (LPL), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Matériaux à Porosité Contrôlée (LMPC), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), School of Information Engineering [USTB] (SIE), University of Science and Technology Beijing [Beijing] (USTB), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], School of Mathematics and Statistics [Sheffield] (SoMaS), Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Computer Science Department [UCLA] (CSD), University of California [Los Angeles] (UCLA), Développement et évolution (DE), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Montréal], McGill University = Université McGill [Montréal, Canada], Departamento de Botánica [Bariloche], Centro Regional Universitario Bariloche [Bariloche] (CRUB), Universidad Nacional del Comahue [Neuquén] (UNCOMA)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Bioénergétique Cellulaire et Pathologique (BECP), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratori Nazionali del Sud (LNS), Istituto Nazionale di Fisica Nucleare (INFN), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Max-Planck-Institut für Kohlenforschung (Coal Research), Max-Planck-Gesellschaft, CAS Institute of Oceanology (IOCAS), Chinese Academy of Sciences [Beijing] (CAS), National Chiao Tung University (NCTU), Department of Hydrology and Water Resources (HWR), State Key Laboratory of Nuclear Physics and Technology (SKL-NPT), University of Iowa [Iowa City], NASA Ames Research Center (ARC), Digital Language & Knowledge Contents Research Association (DICORA), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), H M Nautical Almanac Office [RAL] (HMNAO), University College of London [London] (UCL), University of California (UC)-University of California (UC)-School of Medicine, School of Earth and Environmental Sciences [Seoul] (SEES), Seoul National University [Seoul] (SNU), MicroMachines Centre (MMC), Regroupement Québécois sur les Matériaux de Pointe (RQMP), École Polytechnique de Montréal (EPM)-Université de Sherbrooke (UdeS)-McGill University = Université McGill [Montréal, Canada]-Université de Montréal (UdeM)-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal (UdeM), Centre for Ecology and Hydrology (CEH), Natural Environment Research Council (NERC), Norwegian Institute for Water Research (NIVA), SEA URCHIN GENOME SEQUENCING CONSORTIUM, SODERGREN E, WEINSTOCK GM, DAVIDSON EH, CAMERON RA, GIBBS RA, ANGERER RC, ANGERER LM, ARNONE MI, BURGESS DR, BURKE RD, COFFMAN JA, DEAN M, ELPHICK MR, ETTENSOHN CA, FOLTZ KR, HAMDOUN A, HYNES RO, KLEIN WH, MARZLUFF W, MCCLAY DR, MORRIS RL, MUSHEGIAN A, RAST JP, SMITH LC, THORNDYKE MC, VACQUIER VD, WESSEL GM, WRAY G, ZHANG L, ELSIK CG, ERMOLAEVA O, HLAVINA W, HOFMANN G, KITTS P, LANDRUM MJ, MACKEY AJ, MAGLOTT D, PANOPOULOU G, POUSTKA AJ, PRUITT K, SAPOJNIKOV V, SONG X, SOUVOROV A, SOLOVYEV V, WEI Z, WHITTAKER CA, WORLEY K, DURBIN KJ, SHEN Y, FEDRIGO O, GARFIELD D, HAYGOOD R, PRIMUS A, SATIJA R, SEVERSON T, GONZALEZ-GARAY ML, JACKSON AR, MILOSAVLJEVIC A, TONG M, KILLIAN CE, LIVINGSTON BT, WILT FH, ADAMS N, BELLE R, CARBONNEAU S, CHEUNG R, CORMIER P, COSSON B, CROCE J, FERNANDEZ-GUERRA A, GENEVIERE AM, GOEL M, KELKAR H, MORALES J, MULNER-LORILLON O, ROBERTSON AJ, GOLDSTONE JV, COLE B, EPEL D, GOLD B, HAHN ME, HOWARD-ASHBY M, SCALLY M, STEGEMAN JJ, ALLGOOD EL, COOL J, JUDKINS KM, MCCAFFERTY SS, MUSANTE AM, OBAR RA, RAWSON AP, ROSSETTI BJ, GIBBONS IR, HOFFMAN MP, LEONE A, ISTRAIL S, MATERNA SC, SAMANTA MP, STOLC V, TONGPRASIT W, TU Q, BERGERON KF, BRANDHORST BP, WHITTLE J, BERNEY K, BOTTJER DJ, CALESTANI C, PETERSON K, CHOW E, YUAN QA, ELHAIK E, GRAUR D, REESE JT, BOSDET I, HEESUN S, MARRA MA, SCHEIN J, ANDERSON MK, BROCKTON V, BUCKLEY KM, COHEN AH, FUGMANN SD, HIBINO T, LOZA-COLL M, MAJESKE AJ, MESSIER C, NAIR SV, PANCER Z, TERWILLIGER DP, AGCA C, ARBOLEDA E, CHEN N, CHURCHER AM, HALLBOOK F, HUMPHREY GW, IDRIS MM, KIYAMA T, LIANG S, MELLOTT D, MU X, MURRAY G, OLINSKI RP, RAIBLE F, ROWE M, TAYLOR JS, TESSMAR-RAIBLE K, WANG D, WILSON KH, YAGUCHI S, GAASTERLAND T, GALINDO BE, GUNARATNE HJ, JULIANO C, KINUKAWA M, MOY GW, NEILL AT, NOMURA M, RAISCH M, READE A, ROUX MM, SONG JL, SU YH, TOWNLEY IK, VORONINA E, WONG JL, AMORE G, BRANNO M, BROWN ER, CAVALIERI, V, DUBOC V, DULOQUIN L, FLYTZANIS C, GACHE C, LAPRAZ F, LEPAGE T, LOCASCIO A, MART, University of California-University of California, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), University of California-University of California-School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF), University of Manchester Institute of Science and Technology (UMIST), Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), Baylor College of Medicine (BCM), Baylor University, Laboratoire de Traitement de l'Information Medicale (LaTIM), Université européenne de Bretagne - European University of Brittany (UEB)-Université de Brest (UBO)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Duke University [Durham], Instituto Andaluz de Geofísica y Prevención de Desastres Sísmicos [Granada] (IAGPDS), Universidad de Granada (UGR), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), University of New South Wales [Sydney] (UNSW), Celera Genomics (CRA), Celera Genomics, Paléobiodiversité et paléoenvironnements, Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma Tor Vergata [Roma], Unité de recherches forestières (BORDX PIERR UR ), Institut National de la Recherche Agronomique (INRA), Deptartment of Neuroscience, Uppsala University, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology (NIGPAS-CAS), Chinese Academy of Sciences [Nanjing Branch]-Chinese Academy of Sciences [Nanjing Branch], Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, Université Paris Diderot - Paris 7 (UPD7), Department of Physical and Environmental Sciences [Toronto], University of Toronto at Scarborough, inconnu temporaire UPEMLV, Inconnu, Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric Sciences [Seattle], University of Washington [Seattle], National Institute of Advanced Industrial Science and Technology (AIST), Department of Pharmacy, Università degli studi di Genova = University of Genoa (UniGe), Interdisciplinary Arts and Sciences Department, St. Vincent's Hospital, Sydney, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical Engineering (DEE-POSTECH), Pohang University of Science and Technology (POSTECH), Centre Suisse d'Electronique et de Microtechnique SA [Neuchatel] (CSEM), Centre Suisse d'Electronique et Microtechnique SA (CSEM), Human Genome Sequencing Center [Houston] (HGSC), Brookhaven National Laboratory, Meteorological Service of Canada, 4905 Dufferin Street, Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Mines-Télécom [Paris] (IMT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherches Forestières, Department of Physical and Environmental Sciences, University of Toronto [Scarborough, Canada], National Institute for Nuclear Physics (INFN), University of Genoa (UNIGE), Institut de Recherche pour le Développement (IRD)-Institut Universitaire Européen de la Mer (IUEM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Laboratoire d'Energétique et de Mécanique Théorique Appliquée (LEMTA ), Technische Universität München [München] (TUM), Queen's University [Kingston], Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Grenoble Alpes (UGA), Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille, Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Universitat Autònoma de Barcelona [Barcelona] (UAB), École Polytechnique de Montréal (EPM)-Université de Sherbrooke [Sherbrooke]-Université de Montréal [Montréal]-McGill University-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal [Montréal], U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paul Cézanne - Aix-Marseille 3-Centre National de la Recherche Scientifique (CNRS)-Avignon Université (AU)-Université de Provence - Aix-Marseille 1, Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,MESH: Signal Transduction ,MESH: Sequence Analysis, DNA ,MESH : Transcription Factors ,MESH : Calcification, Physiologic ,Genome ,MESH : Proteins ,0302 clinical medicine ,MESH : Embryonic Development ,MESH: Gene Expression Regulation, Developmental ,Innate ,MESH: Embryonic Development ,Developmental ,Nervous System Physiological Phenomena ,MESH: Animals ,MESH: Proteins ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Complement Activation ,ComputingMilieux_MISCELLANEOUS ,MESH: Evolution, Molecular ,MESH : Strongylocentrotus purpuratus ,Genetics ,0303 health sciences ,MESH: Nervous System Physiological Phenomena ,Multidisciplinary ,biology ,Medicine (all) ,MESH: Immunologic Factors ,Gene Expression Regulation, Developmental ,Genome project ,MESH: Transcription Factors ,MESH : Immunity, Innate ,MESH : Complement Activation ,MESH: Genes ,Bacterial artificial chromosome (BAC)DeuterostomesStrongylocentrotus purpuratusVertebrate innovations ,Echinoderm ,MESH : Nervous System Physiological Phenomena ,embryonic structures ,MESH: Cell Adhesion Molecules ,MESH : Genes ,MESH: Immunity, Innate ,Sequence Analysis ,Signal Transduction ,MESH: Computational Biology ,Genome evolution ,MESH: Complement Activation ,Sequence analysis ,Evolution ,MESH: Strongylocentrotus purpuratus ,MESH : Male ,Embryonic Development ,MESH : Immunologic Factors ,Article ,MESH: Calcification, Physiologic ,Calcification ,MESH : Cell Adhesion Molecules ,Evolution, Molecular ,03 medical and health sciences ,Calcification, Physiologic ,Animals ,Immunologic Factors ,MESH: Genome ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,MESH : Evolution, Molecular ,Physiologic ,Gene ,Strongylocentrotus purpuratus ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,MESH : Signal Transduction ,Bacterial artificial chromosome ,Immunity ,Molecular ,Computational Biology ,Proteins ,Cell Adhesion Molecules ,Genes ,Immunity, Innate ,Transcription Factors ,Sequence Analysis, DNA ,DNA ,biology.organism_classification ,MESH: Male ,Gene Expression Regulation ,MESH : Animals ,MESH : Gene Expression Regulation, Developmental ,MESH : Genome ,030217 neurology & neurosurgery ,MESH : Computational Biology ,MESH : Sequence Analysis, DNA - Abstract
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus , a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
- Published
- 2006
- Full Text
- View/download PDF
33. Michael Waterman's Contributions to Computational Biology and Bioinformatics.
- Author
-
Pevzner P, Vingron M, Reidys C, Sun F, and Istrail S
- Subjects
- Genome, Humans, Sequence Alignment, Algorithms, Computational Biology
- Abstract
On the occasion of Dr. Michael Waterman's 80th birthday, we review his major contributions to the field of computational biology and bioinformatics including the famous Smith-Waterman algorithm for sequence alignment, the probability and statistics theory related to sequence alignment, algorithms for sequence assembly, the Lander-Waterman model for genome physical mapping, combinatorics and predictions of ribonucleic acid structures, word counting statistics in molecular sequences, alignment-free sequence comparison, and algorithms for haplotype block partition and tagSNP selection related to the International HapMap Project. His books Introduction to Computational Biology: Maps, Sequences and Genomes for graduate students and Computational Genome Analysis: An Introduction geared toward undergraduate students played key roles in computational biology and bioinformatics education. We also highlight his efforts of building the computational biology and bioinformatics community as the founding editor of the Journal of Computational Biology and a founding member of the International Conference on Research in Computational Molecular Biology (RECOMB).
- Published
- 2022
- Full Text
- View/download PDF
34. Proteinarium: Multi-sample protein-protein interaction analysis and visualization tool.
- Author
-
Armanious D, Schuster J, Tollefson GA, Agudelo A, DeWan AT, Istrail S, Padbury J, and Uzun A
- Subjects
- Cluster Analysis, Computer Graphics, Female, Humans, Male, Pregnancy, Premature Birth, Prostatic Hyperplasia genetics, Prostatic Hyperplasia metabolism, Protein Interaction Maps, Transcriptome, Protein Interaction Mapping methods, Software
- Abstract
We posit the likely architecture of complex diseases is that subgroups of patients share variants in genes in specific networks which are sufficient to give rise to a shared phenotype. We developed Proteinarium, a multi-sample protein-protein interaction (PPI) tool, to identify clusters of patients with shared gene networks. Proteinarium converts user defined seed genes to protein symbols and maps them onto the STRING interactome. A PPI network is built for each sample using Dijkstra's algorithm. Pairwise similarity scores are calculated to compare the networks and cluster the samples. A layered graph of PPI networks for the samples in any cluster can be visualized. To test this newly developed analysis pipeline, we reanalyzed publicly available data sets, from which modest outcomes had previously been achieved. We found significant clusters of patients with unique genes which enhanced the findings in the original study., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
35. Combinatorial and statistical prediction of gene expression from haplotype sequence.
- Author
-
Alpay BA, Demetci P, Istrail S, and Aguiar D
- Subjects
- Gene Expression, Haplotypes, Phenotype, Quantitative Trait Loci, Genome-Wide Association Study, Polymorphism, Single Nucleotide
- Abstract
Motivation: Genome-wide association studies (GWAS) have discovered thousands of significant genetic effects on disease phenotypes. By considering gene expression as the intermediary between genotype and disease phenotype, expression quantitative trait loci studies have interpreted many of these variants by their regulatory effects on gene expression. However, there remains a considerable gap between genotype-to-gene expression association and genotype-to-gene expression prediction. Accurate prediction of gene expression enables gene-based association studies to be performed post hoc for existing GWAS, reduces multiple testing burden, and can prioritize genes for subsequent experimental investigation., Results: In this work, we develop gene expression prediction methods that relax the independence and additivity assumptions between genetic markers. First, we consider gene expression prediction from a regression perspective and develop the HAPLEXR algorithm which combines haplotype clusterings with allelic dosages. Second, we introduce the new gene expression classification problem, which focuses on identifying expression groups rather than continuous measurements; we formalize the selection of an appropriate number of expression groups using the principle of maximum entropy. Third, we develop the HAPLEXD algorithm that models haplotype sharing with a modified suffix tree data structure and computes expression groups by spectral clustering. In both models, we penalize model complexity by prioritizing genetic clusters that indicate significant effects on expression. We compare HAPLEXR and HAPLEXD with three state-of-the-art expression prediction methods and two novel logistic regression approaches across five GTEx v8 tissues. HAPLEXD exhibits significantly higher classification accuracy overall; HAPLEXR shows higher prediction accuracy on approximately half of the genes tested and the largest number of best predicted genes (r2>0.1) among all methods. We show that variant and haplotype features selected by HAPLEXR are smaller in size than competing methods (and thus more interpretable) and are significantly enriched in functional annotations related to gene regulation. These results demonstrate the importance of explicitly modeling non-dosage dependent and intragenic epistatic effects when predicting expression., Availability and Implementation: Source code and binaries are freely available at https://github.com/rapturous/HAPLEX., Supplementary Information: Supplementary data are available at Bioinformatics online., (© The Author(s) 2020. Published by Oxford University Press.)
- Published
- 2020
- Full Text
- View/download PDF
36. Preface Special Issue: RECOMB 2018.
- Author
-
Istrail S
- Published
- 2020
- Full Text
- View/download PDF
37. Eric Davidson's Regulatory Genome for Computer Science: Causality, Logic, and Proof Principles of the Genomic cis -Regulatory Code.
- Author
-
Istrail S
- Subjects
- Binding Sites genetics, Databases, Genetic, Gene Regulatory Networks, Semantics, Transcription Factors metabolism, Computational Biology, Gene Expression Regulation, Genetic Code, Genome, Logic, Regulatory Sequences, Nucleic Acid genetics
- Published
- 2019
- Full Text
- View/download PDF
38. How Does the Regulatory Genome Work?
- Author
-
Istrail S and Peter IS
- Subjects
- Animals, Endoderm embryology, Endoderm metabolism, Gene Expression Regulation, Developmental, Mesoderm embryology, Mesoderm metabolism, Gene Regulatory Networks, Genome
- Abstract
The regulatory genome controls genome activity throughout the life of an organism. This requires that complex information processing functions are encoded in, and operated by, the regulatory genome. Although much remains to be learned about how the regulatory genome works, we here discuss two cases where regulatory functions have been experimentally dissected in great detail and at the systems level, and formalized by computational logic models. Both examples derive from the sea urchin embryo, but assess two distinct organizational levels of genomic information processing. The first example shows how the regulatory system of a single gene, endo16 , executes logic operations through individual transcription factor binding sites and cis -regulatory modules that control the expression of this gene. The second example shows information processing at the gene regulatory network (GRN) level. The GRN controlling development of the sea urchin endomesoderm has been experimentally explored at an almost complete level. A Boolean logic model of this GRN suggests that the modular logic functions encoded at the single-gene level show compositionality and suffice to account for integrated function at the network level. We discuss these examples both from a biological-experimental point of view and from a computer science-informational point of view, as both illuminate principles of how the regulatory genome works.
- Published
- 2019
- Full Text
- View/download PDF
39. Eric Davidson: Master of the universe.
- Author
-
Istrail S
- Subjects
- Animals, Friends, Gene Regulatory Networks, History, 20th Century, History, 21st Century, Sea Urchins, Developmental Biology history
- Published
- 2016
- Full Text
- View/download PDF
40. Global Comparison of Drug Resistance Mutations After First-Line Antiretroviral Therapy Across Human Immunodeficiency Virus-1 Subtypes.
- Author
-
Huang A, Hogan JW, Luo X, DeLong A, Saravanan S, Wu Y, Sirivichayakul S, Kumarasamy N, Zhang F, Phanuphak P, Diero L, Buziba N, Istrail S, Katzenstein DA, and Kantor R
- Abstract
Background. Human immunodeficiency virus (HIV)-1 drug resistance mutations (DRMs) often accompany treatment failure. Although subtype differences are widely studied, DRM comparisons between subtypes either focus on specific geographic regions or include populations with heterogeneous treatments. Methods. We characterized DRM patterns following first-line failure and their impact on future treatment in a global, multi-subtype reverse-transcriptase sequence dataset. We developed a hierarchical modeling approach to address the high-dimensional challenge of modeling and comparing frequencies of multiple DRMs in varying first-line regimens, durations, and subtypes. Drug resistance mutation co-occurrence was characterized using a novel application of a statistical network model. Results. In 1425 sequences, 202 subtype B, 696 C, 44 G, 351 circulating recombinant forms (CRF)01_AE, 58 CRF02_AG, and 74 from other subtypes mutation frequencies were higher in subtypes C and CRF01_AE compared with B overall. Mutation frequency increased by 9%-20% at reverse transcriptase positions 41, 67, 70, 184, 215, and 219 in subtype C and CRF01_AE vs B. Subtype C and CRF01_AE exhibited higher predicted cross-resistance (+12%-18%) to future therapy options compared with subtype B. Topologies of subtype mutation networks were mostly similar. Conclusions. We find clear differences in DRM outcomes following first-line failure, suggesting subtype-specific ecological or biological factors that determine DRM patterns.
- Published
- 2015
- Full Text
- View/download PDF
41. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.
- Author
-
McDowell IC, Nikapitiya C, Aguiar D, Lane CE, Istrail S, and Gomez-Chiarri M
- Subjects
- Animals, Gene Expression Regulation, Ostreidae microbiology, Ostreidae genetics, Rhodobacteraceae pathogenicity, Transcriptome
- Abstract
The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.
- Published
- 2014
- Full Text
- View/download PDF
42. Tumor haplotype assembly algorithms for cancer genomics.
- Author
-
Aguiar D, Wong WS, and Istrail S
- Subjects
- Computational Biology, DNA Copy Number Variations, Genome, Human, Genomics statistics & numerical data, Humans, Models, Genetic, Polyploidy, Translocation, Genetic, Algorithms, Haplotypes, Neoplasms genetics
- Abstract
The growing availability of inexpensive high-throughput sequence data is enabling researchers to sequence tumor populations within a single individual at high coverage. But, cancer genome sequence evolution and mutational phenomena like driver mutations and gene fusions are difficult to investigate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity, tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While computational and experimental haplotype phasing of diploid genomes has seen much progress in recent years, haplotype assembly in cancer genomes remains uncharted territory. In this work, we describe HapCompass-Tumor a computational modeling and algorithmic framework for haplotype assembly of copy number variable cancer genomes containing haplotypes at different frequencies and complex variation. We extend our polyploid haplotype assembly model and present novel algorithms for (1) complex variations, including copy number changes, as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass graph which constrain the space of haplotype assembly solutions. The model and algorithm are implemented in the software package HapCompass-Tumor which is available for download from http://www.brown.edu/Research/Istrail_Lab/.
- Published
- 2014
43. Pathway-based analysis of genomic variation data.
- Author
-
Atias N, Istrail S, and Sharan R
- Subjects
- Genotype, Humans, Models, Genetic, Phenotype, Polymorphism, Single Nucleotide, Computational Biology methods, Gene Regulatory Networks, Genome-Wide Association Study methods, Signal Transduction genetics
- Abstract
A holy grail of genetics is to decipher the mapping from genotype to phenotype. Recent advances in sequencing technologies allow the efficient genotyping of thousands of individuals carrying a particular phenotype in an effort to reveal its genetic determinants. However, the interpretation of these data entails tackling significant statistical and computational problems that stem from the complexity of human phenotypes and the huge genotypic search space. Recently, an alternative pathway-level analysis has been employed to combat these problems. In this review we discuss these developments, describe the challenges involved and outline possible solutions and future directions for improvement., (Copyright © 2013 Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
44. Intellectual disability is associated with increased runs of homozygosity in simplex autism.
- Author
-
Gamsiz ED, Viscidi EW, Frederick AM, Nagpal S, Sanders SJ, Murtha MT, Schmidt M, Triche EW, Geschwind DH, State MW, Istrail S, Cook EH Jr, Devlin B, and Morrow EM
- Subjects
- Child, Chromosomes, Human genetics, Female, Genetic Diseases, Inborn genetics, Genetic Predisposition to Disease genetics, Genetics, Population methods, Homozygote, Humans, Intelligence Tests, Male, Pedigree, Phenotype, Sex Factors, Child Development Disorders, Pervasive genetics, Genetic Association Studies methods, Intellectual Disability genetics
- Abstract
Intellectual disability (ID), often attributed to autosomal-recessive mutations, occurs in 40% of autism spectrum disorders (ASDs). For this reason, we conducted a genome-wide analysis of runs of homozygosity (ROH) in simplex ASD-affected families consisting of a proband diagnosed with ASD and at least one unaffected sibling. In these families, probands with an IQ ≤ 70 show more ROH than their unaffected siblings, whereas probands with an IQ > 70 do not show this excess. Although ASD is far more common in males than in females, the proportion of females increases with decreasing IQ. Our data do support an association between ROH burden and autism diagnosis in girls; however, we are not able to show that this effect is independent of low IQ. We have also discovered several autism candidate genes on the basis of finding (1) a single gene that is within an ROH interval and that is recurrent in autism or (2) a gene that is within an autism ROH block and that harbors a homozygous, rare deleterious variant upon analysis of exome-sequencing data. In summary, our data suggest a distinct genetic architecture for participants with autism and co-occurring intellectual disability and that this architecture could involve a role for recessively inherited loci for this autism subgroup., (Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
45. Haplotype assembly in polyploid genomes and identical by descent shared tracts.
- Author
-
Aguiar D and Istrail S
- Subjects
- Algorithms, Genomics methods, Humans, Genome, Human, Haplotypes, Polyploidy, Sequence Analysis, DNA methods
- Abstract
Motivation: Genome-wide haplotype reconstruction from sequence data, or haplotype assembly, is at the center of major challenges in molecular biology and life sciences. For complex eukaryotic organisms like humans, the genome is vast and the population samples are growing so rapidly that algorithms processing high-throughput sequencing data must scale favorably in terms of both accuracy and computational efficiency. Furthermore, current models and methodologies for haplotype assembly (i) do not consider individuals sharing haplotypes jointly, which reduces the size and accuracy of assembled haplotypes, and (ii) are unable to model genomes having more than two sets of homologous chromosomes (polyploidy). Polyploid organisms are increasingly becoming the target of many research groups interested in the genomics of disease, phylogenetics, botany and evolution but there is an absence of theory and methods for polyploid haplotype reconstruction., Results: In this work, we present a number of results, extensions and generalizations of compass graphs and our HapCompass framework. We prove the theoretical complexity of two haplotype assembly optimizations, thereby motivating the use of heuristics. Furthermore, we present graph theory-based algorithms for the problem of haplotype assembly using our previously developed HapCompass framework for (i) novel implementations of haplotype assembly optimizations (minimum error correction), (ii) assembly of a pair of individuals sharing a haplotype tract identical by descent and (iii) assembly of polyploid genomes. We evaluate our methods on 1000 Genomes Project, Pacific Biosciences and simulated sequence data., Availability and Implementation: HapCompass is available for download at http://www.brown.edu/Research/Istrail_Lab/., Supplementary Information: Supplementary data are available at Bioinformatics online.
- Published
- 2013
- Full Text
- View/download PDF
46. A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emerging model systems.
- Author
-
Tulin S, Aguiar D, Istrail S, and Smith J
- Abstract
Background: The de novo assembly of transcriptomes from short shotgun sequences raises challenges due to random and non-random sequencing biases and inherent transcript complexity. We sought to define a pipeline for de novo transcriptome assembly to aid researchers working with emerging model systems where well annotated genome assemblies are not available as a reference. To detail this experimental and computational method, we used early embryos of the sea anemone, Nematostella vectensis, an emerging model system for studies of animal body plan evolution. We performed RNA-seq on embryos up to 24 h of development using Illumina HiSeq technology and evaluated independent de novo assembly methods. The resulting reads were assembled using either the Trinity assembler on all quality controlled reads or both the Velvet and Oases assemblers on reads passing a stringent digital normalization filter. A control set of mRNA standards from the National Institute of Standards and Technology (NIST) was included in our experimental pipeline to invest our transcriptome with quantitative information on absolute transcript levels and to provide additional quality control., Results: We generated >200 million paired-end reads from directional cDNA libraries representing well over 20 Gb of sequence. The Trinity assembler pipeline, including preliminary quality control steps, resulted in more than 86% of reads aligning with the reference transcriptome thus generated. Nevertheless, digital normalization combined with assembly by Velvet and Oases required far less computing power and decreased processing time while still mapping 82% of reads. We have made the raw sequencing reads and assembled transcriptome publically available., Conclusions: Nematostella vectensis was chosen for its strategic position in the tree of life for studies into the origins of the animal body plan, however, the challenge of reference-free transcriptome assembly is relevant to all systems for which well annotated gene models and independently verified genome assembly may not be available. To navigate this new territory, we have constructed a pipeline for library preparation and computational analysis for de novo transcriptome assembly. The gene models defined by this reference transcriptome define the set of genes transcribed in early Nematostella development and will provide a valuable dataset for further gene regulatory network investigations.
- Published
- 2013
- Full Text
- View/download PDF
47. Pathway-based genetic analysis of preterm birth.
- Author
-
Uzun A, Dewan AT, Istrail S, and Padbury JF
- Subjects
- Databases, Genetic, Epistasis, Genetic, Female, Genetic Predisposition to Disease, Humans, Infant, Newborn, Polymorphism, Single Nucleotide, Pregnancy, Premature Birth physiopathology, Genome-Wide Association Study, Metabolic Networks and Pathways genetics, Premature Birth genetics
- Abstract
Preterm birth in the United States is now 12%. Multiple genes, gene networks, and variants have been associated with this disease. Using a custom database for preterm birth (dbPTB) with a refined set of genes extensively curated from literature and biological databases, we analyzed GWAS of preterm birth for complete genotype data on nearly 2000 preterm and term mothers. We used both the curated genes and a genome-wide approach to carry out a pathway-based analysis. There were 19 significant pathways, which withstood FDR correction for multiple testing that were identified using both the curated genes and the genome-wide approach. The analysis based on the curated genes was more significant than genome-wide in 15 out of 19 pathways. This approach demonstrates the use of a validated set of genes, in the analysis of otherwise unsuccessful GWAS data, to identify gene-gene interactions in a way that enhances statistical power and discovery., (Copyright © 2013 Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
48. DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism.
- Author
-
Aguiar D, Halldórsson BV, Morrow EM, and Istrail S
- Subjects
- Computational Biology methods, DNA Copy Number Variations, Genotype, Humans, Inheritance Patterns, Phenotype, Sequence Deletion, Algorithms, Autistic Disorder genetics, Genome-Wide Association Study, Polymorphism, Single Nucleotide
- Abstract
Motivation: The understanding of the genetic determinants of complex disease is undergoing a paradigm shift. Genetic heterogeneity of rare mutations with deleterious effects is more commonly being viewed as a major component of disease. Autism is an excellent example where research is active in identifying matches between the phenotypic and genomic heterogeneities. A considerable portion of autism appears to be correlated with copy number variation, which is not directly probed by single nucleotide polymorphism (SNP) array or sequencing technologies. Identifying the genetic heterogeneity of small deletions remains a major unresolved computational problem partly due to the inability of algorithms to detect them., Results: In this article, we present an algorithmic framework, which we term DELISHUS, that implements three exact algorithms for inferring regions of hemizygosity containing genomic deletions of all sizes and frequencies in SNP genotype data. We implement an efficient backtracking algorithm-that processes a 1 billion entry genome-wide association study SNP matrix in a few minutes-to compute all inherited deletions in a dataset. We further extend our model to give an efficient algorithm for detecting de novo deletions. Finally, given a set of called deletions, we also give a polynomial time algorithm for computing the critical regions of recurrent deletions. DELISHUS achieves significantly lower false-positive rates and higher power than previously published algorithms partly because it considers all individuals in the sample simultaneously. DELISHUS may be applied to SNP array or sequencing data to identify the deletion spectrum for family-based association studies., Availability: DELISHUS is available at http://www.brown.edu/Research/Istrail_Lab/.
- Published
- 2012
- Full Text
- View/download PDF
49. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data.
- Author
-
Aguiar D and Istrail S
- Subjects
- Alleles, Haplotypes, High-Throughput Nucleotide Sequencing, Humans, Polymorphism, Single Nucleotide, Algorithms, Chromosome Mapping methods, Computational Biology methods, Genome, Human, Sequence Analysis, DNA methods
- Abstract
Genome assembly methods produce haplotype phase ambiguous assemblies due to limitations in current sequencing technologies. Determining the haplotype phase of an individual is computationally challenging and experimentally expensive. However, haplotype phase information is crucial in many bioinformatics workflows such as genetic association studies and genomic imputation. Current computational methods of determining haplotype phase from sequence data--known as haplotype assembly--have difficulties producing accurate results for large (1000 genomes-type) data or operate on restricted optimizations that are unrealistic considering modern high-throughput sequencing technologies. We present a novel algorithm, HapCompass, for haplotype assembly of densely sequenced human genome data. The HapCompass algorithm operates on a graph where single nucleotide polymorphisms (SNPs) are nodes and edges are defined by sequence reads and viewed as supporting evidence of co-occurring SNP alleles in a haplotype. In our graph model, haplotype phasings correspond to spanning trees. We define the minimum weighted edge removal optimization on this graph and develop an algorithm based on cycle basis local optimizations for resolving conflicting evidence. We then estimate the amount of sequencing required to produce a complete haplotype assembly of a chromosome. Using these estimates together with metrics borrowed from genome assembly and haplotype phasing, we compare the accuracy of HapCompass, the Genome Analysis ToolKit, and HapCut for 1000 Genomes Project and simulated data. We show that HapCompass performs significantly better for a variety of data and metrics. HapCompass is freely available for download (www.brown.edu/Research/Istrail_Lab/).
- Published
- 2012
- Full Text
- View/download PDF
50. Global analysis of sequence diversity within HIV-1 subtypes across geographic regions.
- Author
-
Huang A, Hogan JW, Istrail S, Delong A, Katzenstein DA, and Kantor R
- Abstract
AIMS: HIV-1 sequence diversity can affect host immune responses and phenotypic characteristics such as antiretroviral drug resistance. Current HIV-1 sequence diversity classification uses phylogeny-based methods to identify subtypes and recombinants, which may overlook distinct subpopulations within subtypes. While local epidemic studies have characterized sequence-level clustering within subtypes using phylogeny, identification of new genotype - phenotype associations are based on mutational correlations at individual sequence positions. We perform a systematic, global analysis of position-specific pol gene sequence variation across geographic regions within HIV-1 subtypes to characterize subpopulation differences that may be missed by standard subtyping methods and sequence-level phylogenetic clustering analyses. MATERIALS #ENTITYSTARTX00026; METHODS: Analysis was performed on a large, globally diverse, cross-sectional pol sequence dataset. Sequences were partitioned into subtypes and geographic subpopulations within subtypes. For each subtype, we identified positions that varied according to geography using VESPA (viral epidemiology signature pattern analysis) to identify sequence signature differences and a likelihood ratio test adjusted for multiple comparisons to characterize differences in amino acid (AA) frequencies, including minority mutations. Synonymous nonsynonymous analysis program (SNAP) was used to explore the role of evolutionary selection witihin subtype C. RESULTS: In 7693 protease (PR) and reverse transcriptase (RT) sequences from untreated patients in multiple geographic regions, 11 PR and 11 RT positions exhibited sequence signature differences within subtypes. Thirty six PR and 80 RT positions exhibited within-subtype geography-dependent differences in AA distributions, including minority mutations, at both conserved and variable loci. Among subtype C samples from India and South Africa, nine PR and nine RT positions had significantly different AA distributions, including one PR and five RT positions that differed in consensus AA between regions. A selection analysis of subtype C using SNAP demonstrated that estimated rates of nonsynonymous and synonymous mutations are consistent with the possibility of positive selection across geographic subpopulations within subtypes. CONCLUSION: We characterized systematic genotypic pol differences across geographic regions within subtypes that are not captured by the subtyping nomenclature. Awareness of such differences may improve the interpretation of future studies determining the phenotypic consequences of genetic backgrounds.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.