1. A Compliant Document Image Classification System based on One-Class Classifier
- Author
-
Saddok Kebairi, Jean-Yves Ramel, Vincent Poulain d'Andecy, Sabine Barrat, Nicolas Sidere, Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Informatique, Image et Interaction - EA 2118 (L3I), Université de La Rochelle (ULR), Itesoft R&D, ITESOFT, Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Subjects
0209 industrial biotechnology ,One-class classification ,Contextual image classification ,Computer science ,business.industry ,Feature vector ,Feature extraction ,Feature selection ,Pattern recognition ,Linear classifier ,02 engineering and technology ,Quadratic classifier ,Machine learning ,computer.software_genre ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,020901 industrial engineering & automation ,0202 electrical engineering, electronic engineering, information engineering ,Document image classification ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,Classifier (UML) ,computer - Abstract
International audience; Document image classification in a professional context requires to respect some constraints such as dealing with a large variability of documents and/or number of classes. Whereas most methods deal with all classes at the same time, we answer this problem by presenting a new compliant system based on the specialization of the features and the parametrization of the classifier separately, class per class. We first compute a generalized vector of features based on global image characterization and structural primitives. Then, for each class, the feature vector is specialized by ranking the features according a stability score. Finally, a one-class K-nn classifier is trained using these specific features. Conducted experiments reveal good classification rates, proving the ability of our system to deal with a large range of documents classes.
- Published
- 2016
- Full Text
- View/download PDF