1. Cryptochrome magnetoreception: Time course of photoactivation from non-equilibrium coarse-grained molecular dynamics
- Author
-
Jessica L. Ramsay, Fabian Schuhmann, Ilia A. Solov’yov, and Daniel R. Kattnig
- Subjects
Cryptochrome ,Magnetoreception ,Radical pair mechanism ,Protein dynamics ,Coarse-grained molecular dynamics ,Network model ,Biotechnology ,TP248.13-248.65 - Abstract
Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate. This signal transduction pathway has been the subject of previous all-atom molecular dynamics (MD) simulations, but insights were limited to short timescales and equilibrium structures. To address this, we developed a non-equilibrium coarse-grained MD simulation approach, exploring cryptochrome’s photo-reduction over 20 replicates of 20 µs each. Our results revealed significant structural changes across the protein, with an overall time constant of 3 µs. The C-terminal (CT) region responded on a timescale of 4.7 µs, followed by the EEE-motif, while the phosphate binding loop (PBL) showed slower dynamics (9 µs). Network analysis highlighted direct pathways connecting the tryptophan tetrad to the CT, and distant pathways involving the EEE and PBL regions. The CT-dynamics are significantly impacted by a rearrangement of tryptophan residues in the central electron transfer chain. Our findings underscore the importance of considering longer timescales when studying cryptochrome magnetoreception and highlight the potential of non-equilibrium coarse-grained MD simulations as a powerful tool to unravel protein photoactivation reactions.
- Published
- 2024
- Full Text
- View/download PDF