8 results on '"Isabel E. Johnson"'
Search Results
2. LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation
- Author
-
Alma L. Burlingame, Adam Frost, Alexander von Appen, Michael J. Trnka, Katharine S. Ullman, Sarah M. Pick, Isabel E. Johnson, and Dollie LaJoie
- Subjects
General Science & Technology ,Nuclear Envelope ,1.1 Normal biological development and functioning ,Spindle disassembly ,Spindle Apparatus ,macromolecular substances ,Microtubules ,Article ,ESCRT ,03 medical and health sciences ,0302 clinical medicine ,Microtubule ,Humans ,Inner membrane ,Mitosis ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,Endosomal Sorting Complexes Required for Transport ,Chemistry ,Prevention ,Membrane Proteins ,Nuclear Proteins ,Chromatin ,Transmembrane protein ,Spindle apparatus ,Cell biology ,DNA-Binding Proteins ,Hela Cells ,Generic health relevance ,Anaphase ,030217 neurology & neurosurgery ,DNA Damage ,HeLa Cells - Abstract
During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2–4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline–arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8–13 and chromatin organization14–17. Following cell division, phase separation of the transmembrane adaptor LEM2 ensures that the ESCRT machinery remodels microtubules and seals the nuclear envelope.
- Published
- 2020
- Full Text
- View/download PDF
3. PIKfyve inhibition blocks endolysosomal escape of α-synuclein fibrils and spread of α-synuclein aggregation
- Author
-
Amanda L. Woerman, Daniel R. Southworth, Merissa Chen, Sophie Bax, Elise N Munoz, Ruilin Tian, Martin Kampmann, Isabel E. Johnson, Stephanie K. See, Eric Tse, Janine Sengstack, Carlos Nowotny, Manuel D. Leonetti, and Jason E. Gestwicki
- Subjects
CRISPR interference ,Chemistry ,animal diseases ,Fibril ,nervous system diseases ,law.invention ,Cell biology ,Cytosol ,PIKFYVE ,medicine.anatomical_structure ,nervous system ,law ,Lysosome ,mental disorders ,Recombinant DNA ,medicine ,Secretion ,α synuclein - Abstract
The inter-cellular prion-like propagation of α-synuclein aggregation is emerging as an important mechanism driving the progression of neurodegenerative diseases including Parkinson’s disease and multiple system atrophy (MSA). To discover therapeutic strategies reducing the spread of α-synuclein aggregation, we performed a genome-wide CRISPR interference screen in a human cell-based model. We discovered that inhibiting PIKfyve dramatically reduced α-synuclein aggregation induced with both recombinant α-synuclein fibrils and fibrils isolated from MSA patient brain. While PIKfyve inhibition did not affect fibril uptake or α-synuclein clearance or secretion, it reduced α-synuclein trafficking from the early endosome to the lysosome, thereby limiting fibril escape from the lysosome and reducing the amount of fibrils that reach cytosolic α-synuclein to induce aggregation. These findings point to the endolysosomal transport of fibrils as a critical step in the propagation of α-synuclein aggregation and a potential therapeutic target.
- Published
- 2021
- Full Text
- View/download PDF
4. Anisotropic ESCRT-III architecture governs helical membrane tube formation
- Author
-
Adam Frost, Nathaniel Talledge, Joachim Moser von Filseck, Aurélien Roux, Luca Barberi, Martin Lenz, Isabel E. Johnson, Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de pharmacologie moléculaire et cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), and University of Geneva [Switzerland]
- Subjects
0301 basic medicine ,Secondary ,Polymers ,General Physics and Astronomy ,Model lipid bilayer ,Protein Structure, Secondary ,Membrane tension ,Protein filament ,Protein structure ,0302 clinical medicine ,Rigidity (electromagnetism) ,Cryoelectron microscopy ,Models ,lcsh:Science ,Anisotropy ,chemistry.chemical_classification ,Tube formation ,0303 health sciences ,Multidisciplinary ,Polymer ,Membrane ,ddc:540 ,Biophysical chemistry ,Protein Structure ,Materials science ,Science ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Bioengineering ,macromolecular substances ,Saccharomyces cerevisiae ,Models, Biological ,General Biochemistry, Genetics and Molecular Biology ,Article ,ESCRT ,03 medical and health sciences ,030304 developmental biology ,Endosomal Sorting Complexes Required for Transport ,Cell Membrane ,General Chemistry ,Biological ,030104 developmental biology ,chemistry ,Liposomes ,Biophysics ,Cryoelectron tomography ,lcsh:Q ,Membrane binding ,Generic health relevance ,Biological physics ,030217 neurology & neurosurgery - Abstract
ESCRT-III proteins assemble into ubiquitous membrane-remodeling polymers during many cellular processes. Here we describe the structure of helical membrane tubes that are scaffolded by bundled ESCRT-III filaments. Cryo-ET reveals how the shape of the helical membrane tube arises from the assembly of two distinct bundles of helical filaments that have the same helical path but bind the membrane with different interfaces. Higher-resolution cryo-EM of filaments bound to helical bicelles confirms that ESCRT-III filaments can interact with the membrane through a previously undescribed interface. Mathematical modeling demonstrates that the interface described above is key to the mechanical stability of helical membrane tubes and helps infer the rigidity of the described protein filaments. Altogether, our results suggest that the interactions between ESCRT-III filaments and the membrane could proceed through multiple interfaces, to provide assembly on membranes with various shapes, or adapt the orientation of the filaments towards the membrane during membrane remodeling., ESCRT-III proteins assemble into ubiquitous membrane-remodeling polymers during many cellular processes. Here, the authors use cryo-ET, cryo-EM and mathematical modeling to reveal how the shape of the helical membrane tube arises from the assembly of two distinct bundles of helical filaments.
- Published
- 2020
- Full Text
- View/download PDF
5. Conserved lipid and small molecule modulation of COQ8 reveals regulation of the ancient UbiB family
- Author
-
Matteo Dal Peraro, Craig A. Bingman, Emily M. Wilkerson, Paul D. Hutchins, Jonathan A. Stefely, Adam Jochem, David J. Pagliarini, Joshua J. Coon, Jaime L. Stark, John L. Markley, Molly T. McDevitt, Deniz Aydin, Zachary A. Kemmerer, Isabel E. Johnson, and Andrew G. Reidenbach
- Subjects
0303 health sciences ,Saccharomyces cerevisiae ,food and beverages ,Endogeny ,Biology ,Biochemical Activity ,010402 general chemistry ,biology.organism_classification ,01 natural sciences ,Small molecule ,0104 chemical sciences ,Cell biology ,03 medical and health sciences ,chemistry.chemical_compound ,Biochemistry ,Biosynthesis ,chemistry ,Coenzyme Q – cytochrome c reductase ,Cardiolipin ,Function (biology) ,030304 developmental biology - Abstract
SummaryHuman COQ8A (ADCK3) andSaccharomyces cerevisiaeCoq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activityin vivo. Here we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis.
- Published
- 2017
- Full Text
- View/download PDF
6. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity
- Author
-
Catherine E. Minogue, David J. Pagliarini, Floriana Licitra, Anna Isabel Schlagowski, Danielle C. Lohman, Fabien Pierrel, Laurence Reutenauer, Isabel E. Johnson, Joffrey Zoll, Andrew G. Reidenbach, Natarajan Kannan, Pankaj Kumar Singh, Zachary A. Kemmerer, Xiao Guo, Emily M. Wilkerson, Alexander S. Hebert, Jonathan A. Stefely, Matteo Dal Peraro, Paul D. Hutchins, Zheng Ruan, Matthew J. P. Rush, Craig A. Bingman, Nicholas W. Kwiecien, Pavel J. Sindelar, Joshua J. Coon, Adam Jochem, Tiphaine Jaeg-Ehret, Brendan J. Floyd, Anais Grangeray, Arne Ulbrich, Michael S. Westphall, Hélène Puccio, Leila Laredj, Maya Chergova, Philippe Isope, Deniz Aydin, Elyse C. Freiberger, Ulrika Forsman, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Instituto de Quimica - Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS), Centre for Materials Research, UCL, University College of London [London] (UCL), Department of Chemistry, UCL, Christopher Ingold Laboratories, Central European University [Budapest, Hongrie] (CEU), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Génie et Microbiologie des Procédés Alimentaires (GMPA), National Engineering Research Center for Information Technology in Agriculture [Beijing] (NERCITA), Institute for Biomedicine of Aging, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC), Global Health Institute - Institut d'Infectiologie [Lausanne], Ecole Polytechnique Fédérale de Lausanne (EPFL), Mitochondrie, stress oxydant et protection musculaire (MSP), Université de Strasbourg (UNISTRA), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Chimie des Processus Biologiques (LCPB), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Engineering Science, University of Oxford [Oxford], Département Neurotransmission et sécrétion neuroendocrine, Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Central European University (CEU), Global Health Institute, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-IMAG-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut des Neurosciences Cellulaires et Intégratives (INCI)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), University of Oxford, Institut des Neurosciences Cellulaires et Intégratives (INCI), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), AgroParisTech-Institut National de la Recherche Agronomique (INRA), and Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
0301 basic medicine ,Male ,Models, Molecular ,Proteomics ,Time Factors ,Protein Conformation ,Ubiquinone ,Purkinje cell ,0302 clinical medicine ,Cerebellum ,Chlorocebus aethiops ,Mice, Knockout ,Exercise Tolerance ,Behavior, Animal ,Kinase ,food and beverages ,medicine.anatomical_structure ,Phenotype ,Biochemistry ,COS Cells ,Female ,medicine.symptom ,Protein Binding ,Ataxia ,Saccharomyces cerevisiae Proteins ,Cerebellar Ataxia ,Saccharomyces cerevisiae ,Biology ,Motor Activity ,Transfection ,Article ,Mitochondrial Proteins ,03 medical and health sciences ,Structure-Activity Relationship ,Seizures ,medicine ,Animals ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Genetic Predisposition to Disease ,Muscle Strength ,Kinase activity ,Protein kinase A ,Maze Learning ,Muscle, Skeletal ,Molecular Biology ,Cerebellar ataxia ,HEK 293 cells ,Recognition, Psychology ,Cell Biology ,Lipid Metabolism ,Mice, Inbred C57BL ,Disease Models, Animal ,030104 developmental biology ,HEK293 Cells ,Rotarod Performance Test ,030217 neurology & neurosurgery ,ADCK3 - Abstract
International audience; The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease.
- Published
- 2016
- Full Text
- View/download PDF
7. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family
- Author
-
Paul D. Hutchins, Adam Jochem, Joshua J. Coon, Thiru R. Reddy, Matteo Dal Peraro, Craig A. Bingman, Emily M. Wilkerson, Alexander S. Hebert, Jonathan A. Stefely, Molly T. McDevitt, Deniz Aydin, Zachary A. Kemmerer, Andrew G. Reidenbach, Jaime L. Stark, Isabel E. Johnson, John L. Markley, and David J. Pagliarini
- Subjects
Models, Molecular ,0301 basic medicine ,Saccharomyces cerevisiae Proteins ,Ubiquinone ,ATPase ,Clinical Biochemistry ,Saccharomyces cerevisiae ,Biology ,Biochemistry ,Article ,Mitochondrial Proteins ,Small Molecule Libraries ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Biosynthesis ,Drug Discovery ,Cardiolipin ,Humans ,Molecular Biology ,Adenosine Triphosphatases ,Pharmacology ,Molecular Structure ,Kinase ,food and beverages ,Biochemical Activity ,biology.organism_classification ,Lipids ,Cell biology ,030104 developmental biology ,chemistry ,Coenzyme Q – cytochrome c reductase ,Mutation ,biology.protein ,Molecular Medicine ,030217 neurology & neurosurgery ,Function (biology) - Abstract
Human COQ8A (ADCK3) and Saccharomyces cerevisiae Coq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activity in vivo. Here, we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small-molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis.
- Published
- 2018
- Full Text
- View/download PDF
8. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis
- Author
-
Jonathan A. Stefely, Brendan J. Floyd, David Lee, Grant E. Barber, Arne Ulbrich, Sheng Li, Russell L. Wrobel, Craig A. Bingman, Catherine E. Minogue, Jaclyn M. Saunders, Andrew G. Reidenbach, Joshua J. Coon, David J. Pagliarini, Adam Jochem, Krishnadev Oruganty, Isabel E. Johnson, and Natarajan Kannan
- Subjects
Models, Molecular ,Protein Folding ,Ubiquinone ,Molecular Sequence Data ,Gene Expression ,Saccharomyces cerevisiae ,Biology ,Crystallography, X-Ray ,Cofactor ,Protein Structure, Secondary ,Article ,Mitochondrial Proteins ,Lipid biosynthesis ,Escherichia coli ,Transferase ,Humans ,Amino Acid Sequence ,Kinase activity ,Phosphorylation ,Protein kinase A ,Molecular Biology ,Peptide sequence ,Autophosphorylation ,Cell Biology ,Recombinant Proteins ,Mitochondria ,Protein Structure, Tertiary ,Biochemistry ,Mutation ,biology.protein ,Protein folding ,Sequence Alignment - Abstract
Summary The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.