1. Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells
- Author
-
Nataël Sorel, Francisco Díaz-Pascual, Boris Bessot, Hanem Sadek, Chloé Mollet, Myriam Chouteau, Marco Zahn, Irene Gil-Farina, Parisa Tajer, Marja van Eggermond, Dagmar Berghuis, Arjan C. Lankester, Isabelle André, Richard Gabriel, Marina Cavazzana, Kasrin Pike-Overzet, Frank J. T. Staal, and Chantal Lagresle-Peyrou
- Subjects
gene therapy (GT) ,recombination activating gene 1 (RAG1) ,severe combined immunodeficiency (SCID) ,Biology (General) ,QH301-705.5 - Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID.
- Published
- 2024
- Full Text
- View/download PDF