1. Sanguiin H-6 Fractionated from Cloudberry (Rubus chamaemorus) Seeds Can Prevent the Methicillin-Resistant Staphylococcus aureus Biofilm Development during Wound Infection
- Author
-
John Jairo Aguilera-Correa, Sara Fernández-López, Iskra Dennisse Cuñas-Figueroa, Sandra Pérez-Rial, Hanna-Leena Alakomi, Liisa Nohynek, Kirsi-Marja Oksman-Caldentey, Juha-Pekka Salminen, Jaime Esteban, Juan Cuadros, Riitta Puupponen-Pimiä, Ramon Perez-Tanoira, and Teemu J. Kinnari
- Subjects
methicillin-resistant S. aureus ,biofilm ,cloudberry ,Rubus ,ellagitannin ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.
- Published
- 2021
- Full Text
- View/download PDF