Bernard Mourrain, Itnuit Janovitz-Freireich, Lajos Rónyai, Agnes Szanto, Departamento de Matemáticas del Cinvestav-IPN, Centro de Investigacion y Estudios Avanzados del I.P.N, Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Computer and Automation Research Institute [Budapest] (MTA SZTAKI ), Department of Computer Science, North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC)-University of North Carolina System (UNC), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS)
International audience; Let $f_1,\ldots,f_s \in \mathbb{K}[x_1,\ldots,x_m]$ be a system of polynomials generating a zero-dimensional ideal $\I$, where $\mathbb{K}$ is an arbitrary algebraically closed field. We study the computation of ``matrices of traces" for the factor algebra $\A := \CC[x_1, \ldots , x_m]/ \I$, i.e. matrices with entries which are trace functions of the roots of $\I$. Such matrices of traces in turn allow us to compute a system of multiplication matrices $\{M_{x_i}|i=1,\ldots,m\}$ of the radical $\sqrt{\I}$. We first propose a method using Macaulay type resultant matrices of $f_1,\ldots,f_s$ and a polynomial $J$ to compute moment matrices, and in particular matrices of traces for $\A$. Here $J$ is a polynomial generalizing the Jacobian. We prove bounds on the degrees needed for the Macaulay matrix in the case when $\I$ has finitely many projective roots in $\mathbb{P}^m_\CC$. We also extend previous results which work only for the case where $\A$ is Gorenstein to the non-Gorenstein case. The second proposed method uses Bezoutian matrices to compute matrices of traces of $\A$. Here we need the assumption that $s=m$ and $f_1,\ldots,f_m$ define an affine complete intersection. This second method also works if we have higher dimensional components at infinity. A new explicit description of the generators of $\sqrt{\I}$ are given in terms of Bezoutians.