1. Validation of the Berlese-funnel technique for thrips extraction
- Author
-
H, Casteels, J, Witters, G, De Bondt, and J, Desamblanx
- Subjects
Plant Leaves ,Limit of Detection ,Flight, Animal ,Temperature ,Animals ,Acer ,Equipment Design ,Orchidaceae ,Pest Control, Biological ,Insect Control - Abstract
In order to get the accreditation EN ISO/IEC 17025 for Thrips palmi the Berlese-funnel technique, which is used for the isolation of quarantine insects out of plant material, was validated. Following parameters were investigated: cleaning of the funnel, temperature during isolation, detection limit and duration of the isolation period. Thrips fuscipennis was collected from heavily infected rosehip and used as target organism. Besides orchids, artificially contaminated maple leaves (Acer pseudoplatanus) were used for the validation. Results showed that thrips and other organisms can be present alive or dead in the funnel after removing the treated plants and can contaminate the next sample or isolate. Cleaning of the funnel with a vacuum cleaner and compressed-air apparatus is necessary before running a new extraction. Contamination of the recipient is also possible from the environment. This can be avoided by closing the opening between the funnel and the recipient. To reach an optimal temperature for isolation of the thrips a 60 Watt bulb is necessary. The results showed that the maximum temperature doesn't reach a temperature above 51 degrees C, the average temperatures were situated between 35, 74 degrees C and 39, 38 degrees C. A 40 Watt bulb doesn't create enough heat to guarantee an efficient isolation of the thrips; the average temperature was 34, 74 degrees C and the maximum temperature 36, 80 degrees C. Based on the results we can conclude that an isolation time of 20 hours is necessary to obtain accurate data. Dependent on the number of thrips in the artificially infected samples 87 to 95% is isolated after 20 hours. The detection limit is 1 thrips with a probability of 95% being isolated after 20 hours.
- Published
- 2010