1. Validating the accuracy of deep learning for the diagnosis of pneumonia on chest x-ray against a robust multimodal reference diagnosis: a post hoc analysis of two prospective studies
- Author
-
Jeremy Hofmeister, Nicolas Garin, Xavier Montet, Max Scheffler, Alexandra Platon, Pierre-Alexandre Poletti, Jérôme Stirnemann, Marie-Pierre Debray, Yann-Erick Claessens, Xavier Duval, and Virginie Prendki
- Subjects
Artificial intelligence ,Chest x-ray ,Deep learning ,Diagnosis ,Pneumonia ,Medical physics. Medical radiology. Nuclear medicine ,R895-920 - Abstract
Abstract Background Artificial intelligence (AI) seems promising in diagnosing pneumonia on chest x-rays (CXR), but deep learning (DL) algorithms have primarily been compared with radiologists, whose diagnosis can be not completely accurate. Therefore, we evaluated the accuracy of DL in diagnosing pneumonia on CXR using a more robust reference diagnosis. Methods We trained a DL convolutional neural network model to diagnose pneumonia and evaluated its accuracy in two prospective pneumonia cohorts including 430 patients, for whom the reference diagnosis was determined a posteriori by a multidisciplinary expert panel using multimodal data. The performance of the DL model was compared with that of senior radiologists and emergency physicians reviewing CXRs and that of radiologists reviewing computed tomography (CT) performed concomitantly. Results Radiologists and DL showed a similar accuracy on CXR for both cohorts (p ≥ 0.269): cohort 1, radiologist 1 75.5% (95% confidence interval 69.1–80.9), radiologist 2 71.0% (64.4–76.8), DL 71.0% (64.4–76.8); cohort 2, radiologist 70.9% (64.7–76.4), DL 72.6% (66.5–78.0). The accuracy of radiologists and DL was significantly higher (p ≤ 0.022) than that of emergency physicians (cohort 1 64.0% [57.1–70.3], cohort 2 63.0% [55.6–69.0]). Accuracy was significantly higher for CT (cohort 1 79.0% [72.8–84.1], cohort 2 89.6% [84.9–92.9]) than for CXR readers including radiologists, clinicians, and DL (all p-values
- Published
- 2024
- Full Text
- View/download PDF