162 results on '"J A Acosta-Pulido"'
Search Results
2. Multiband Optical Variability of the Blazar 3C 454.3 on Diverse Timescales
- Author
-
Karan Dogra, Alok C. Gupta, C. M. Raiteri, M. Villata, Paul J. Wiita, S. O. Kurtanidze, S. G. Jorstad, R. Bachev, G. Damljanovic, C. Lorey, S. S. Savchenko, O. Vince, M. Abdelkareem, F. J. Aceituno, J. A. Acosta-Pulido, I. Agudo, G. Andreuzzi, S. A. Ata, G. V. Baida, L. Barbieri, D. A. Blinov, G. Bonnoli, G. A. Borman, M. I. Carnerero, D. Carosati, V. Casanova, W. P. Chen, Lang Cui, E. G. Elhosseiny, D. Elsaesser, J. Escudero, M. Feige, K. Gazeas, L. E. Gennadievna, T. S. Grishina, Minfeng Gu, V. A. Hagen-Thorn, F. Hemrich, H. Y. Hsiao, M. Ismail, R. Z. Ivanidze, M. D. Jovanovic, T. M. Kamel, G. N. Kimeridze, E. N. Kopatskaya, D. Kuberek, O. M. Kurtanidze, A. Kurtenkov, V. M. Larionov, L. V. Larionova, M. Liao, H. C. Lin, K. Mannheim, A. Marchini, C. Marinelli, A. P. Marscher, D. Morcuende, D. A. Morozova, S. V. Nazarov, M. G. Nikolashvili, D. Reinhart, J. O. Santos, A. Scherbantin, E. Semkov, E. V. Shishkina, L. A. Sigua, A. K. Singh, A. Sota, R. Steineke, M. Stojanovic, A. Strigachev, A. Takey, Amira A. Tawfeek, I. S. Troitskiy, Y. V. Troitskaya, An-Li Tsai, A. A. Vasilyev, K. Vrontaki, Zhongli Zhang, A. V. Zhovtan, N. Zottmann, and Wenwen Zuo
- Subjects
Active galactic nuclei ,Blazars ,Flat-spectrum radio quasars ,Markov chain Monte Carlo ,Relativistic jets ,Supermassive black holes ,Astrophysics ,QB460-466 - Abstract
Due to its peculiar and highly variable nature, the blazar 3C 454.3 has been extensively monitored by the WEBT team. Here, we present for the first time these long-term optical flux and color variability results using data acquired in B , V , R , and I bands over a time span of about two decades. We include data from WEBT collaborators and public archives such as SMARTS, Steward Observatory, and Zwicky Transient Facility. The data are binned and segmented to study the source over this long term when more regular sampling was available. During our study, the long-term spectral variability reveals a redder-when-brighter trend, which, however, stabilizes at a particular brightness cutoff of ∼14.5 mag in the I band, after which it saturates and evolves into a complex state. This trend indicates increasing dominance of jet emission over accretion disk (AD) emission until jet emission completely dominates. Plots of the variation in spectral index (following F _ν ∝ ν ^− ^α ) reveal a bimodal distribution using a one-day binning. These correlate with two extreme phases of 3C 454.3, an outburst or high-flux state and a quiescent or low-flux state, which are respectively jet- and AD-dominated. We have also conducted intraday variability studies of nine light curves and found that six of them are variable. Discrete correlation function analysis between different pairs of optical wave bands peaks at zero lags, indicating cospatial emission in different optical bands.
- Published
- 2024
- Full Text
- View/download PDF
3. Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity
- Author
-
H. Abe, S. Abe, V. A. Acciari, I. Agudo, T. Aniello, S. Ansoldi, L. A. Antonelli, A. Arbet-Engels, C. Arcaro, M. Artero, K. Asano, D. Baack, A. Babić, A. Baquero, U. Barres de Almeida, J. A. Barrio, I. Batković, J. Baxter, J. Becerra González, W. Bednarek, E. Bernardini, M. Bernardos, A. Berti, J. Besenrieder, W. Bhattacharyya, C. Bigongiari, A. Biland, O. Blanch, G. Bonnoli, Ž. Bošnjak, I. Burelli, G. Busetto, R. Carosi, M. Carretero-Castrillo, A. J. Castro-Tirado, G. Ceribella, Y. Chai, A. Chilingarian, S. Cikota, E. Colombo, J. L. Contreras, J. Cortina, S. Covino, G. D’Amico, V. D’Elia, P. Da Vela, F. Dazzi, A. De Angelis, B. De Lotto, A. Del Popolo, M. Delfino, J. Delgado, C. Delgado Mendez, D. Depaoli, F. Di Pierro, L. Di Venere, E. Do Souto Espiñeira, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, D. Elsaesser, G. Emery, J. Escudero, V. Fallah Ramazani, L. Fariña, A. Fattorini, L. Foffano, L. Font, C. Fruck, S. Fukami, Y. Fukazawa, R. J. García López, M. Garczarczyk, S. Gasparyan, M. Gaug, J. G. Giesbrecht Paiva, N. Giglietto, F. Giordano, P. Gliwny, N. Godinović, R. Grau, D. Green, J. G. Green, D. Hadasch, A. Hahn, T. Hassan, L. Heckmann, J. Herrera, D. Hrupec, M. Hütten, R. Imazawa, T. Inada, R. Iotov, K. Ishio, I. Jiménez Martínez, J. Jormanainen, D. Kerszberg, Y. Kobayashi, H. Kubo, J. Kushida, A. Lamastra, D. Lelas, F. Leone, E. Lindfors, L. Linhoff, S. Lombardi, F. Longo, R. López-Coto, M. López-Moya, A. López-Oramas, S. Loporchio, A. Lorini, E. Lyard, B. Machado de Oliveira Fraga, P. Majumdar, M. Makariev, G. Maneva, N. Mang, M. Manganaro, S. Mangano, K. Mannheim, M. Mariotti, M. Martínez, A. Mas-Aguilar, D. Mazin, S. Menchiari, S. Mender, S. Mićanović, D. Miceli, T. Miener, J. M. Miranda, R. Mirzoyan, E. Molina, H. A. Mondal, A. Moralejo, D. Morcuende, V. Moreno, T. Nakamori, C. Nanci, L. Nava, V. Neustroev, M. Nievas Rosillo, C. Nigro, K. Nilsson, K. Nishijima, T. Njoh Ekoume, K. Noda, S. Nozaki, Y. Ohtani, T. Oka, A. Okumura, J. Otero-Santos, S. Paiano, M. Palatiello, D. Paneque, R. Paoletti, J. M. Paredes, L. Pavletić, M. Persic, M. Pihet, G. Pirola, F. Podobnik, P. G. Prada Moroni, E. Prandini, G. Principe, C. Priyadarshi, W. Rhode, M. Ribó, J. Rico, C. Righi, A. Rugliancich, N. Sahakyan, T. Saito, S. Sakurai, K. Satalecka, F. G. Saturni, B. Schleicher, K. Schmidt, F. Schmuckermaier, J. L. Schubert, T. Schweizer, J. Sitarek, V. Sliusar, D. Sobczynska, A. Spolon, A. Stamerra, J. Strišković, D. Strom, M. Strzys, Y. Suda, T. Surić, H. Tajima, M. Takahashi, R. Takeishi, F. Tavecchio, P. Temnikov, K. Terauchi, T. Terzić, M. Teshima, L. Tosti, S. Truzzi, A. Tutone, S. Ubach, J. van Scherpenberg, M. Vazquez Acosta, S. Ventura, V. Verguilov, I. Viale, C. F. Vigorito, V. Vitale, I. Vovk, R. Walter, M. Will, C. Wunderlich, T. Yamamoto, D. Zarić, The MAGIC Collaboration, M. Cerruti, J. A. Acosta-Pulido, G. Apolonio, R. Bachev, M. Baloković, E. Benítez, I. Björklund, V. Bozhilov, L. F. Brown, A. Bugg, W. Carbonell, M. I. Carnerero, D. Carosati, C. Casadio, W. Chamani, W. P. Chen, R. A. Chigladze, G. Damljanovic, K. Epps, A. Erkenov, M. Feige, J. Finke, A. Fuentes, K. Gazeas, M. Giroletti, T. S. Grishina, A. C. Gupta, M. A. Gurwell,, E. Heidemann, D. Hiriart, W. J. Hou, T. Hovatta, S. Ibryamov, M. D. Joner, S. G. Jorstad, J. Kania, S. Kiehlmann, G. N. Kimeridze, E. N. Kopatskaya, M. Kopp, M. Korte, B. Kotas, S. Koyama, J. A. Kramer, L. Kunkel, S. O. Kurtanidze, O. M. Kurtanidze, A. Lähteenmäki, J. M. López, V. M. Larionov, E. G. Larionova, L. V. Larionova, C. Leto, C. Lorey, R. Mújica, G. M. Madejski, N. Marchili, A. P. Marscher, M. Minev, A. Modaressi, D. A. Morozova, T. Mufakharov, I. Myserlis, A. A. Nikiforova, M. G. Nikolashvili, E. Ovcharov, M. Perri, C. M. Raiteri, A. C. S. Readhead, A. Reimer, D. Reinhart, S. Righini, K. Rosenlehner, A. C. Sadun, S. S. Savchenko, A. Scherbantin, L. Schneider, K. Schoch, D. Seifert, E. Semkov, L. A. Sigua, C. Singh, P. Sola, Y. Sotnikova, M. Spencer, R. Steineke, M. Stojanovic, A. Strigachev, M. Tornikoski, E. Traianou, A. Tramacere, Yu. V. Troitskaya, I. S. Troitskiy, J. B. Trump, A. Tsai, A. Valcheva, A. A. Vasilyev, F. Verrecchia, M. Villata, O. Vince, K. Vrontaki, Z. R. Weaver, E. Zaharieva, and N. Zottmann
- Subjects
Active galaxies ,BL Lacertae objects ,Markarian galaxies ,Active galactic nuclei ,Blazars ,Astrophysics ,QB460-466 - Abstract
We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) γ -rays. A significant correlation (>3 σ ) between X-rays and VHE γ -rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy γ -rays and radio, with the radio lagging by more than 100 days, placing the γ -ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE γ -rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock.
- Published
- 2023
- Full Text
- View/download PDF
4. A Reemerging Bright Soft X-Ray State of the Changing-look Active Galactic Nucleus 1ES 1927+654: A Multiwavelength View
- Author
-
Ritesh Ghosh, Sibasish Laha, Eileen Meyer, Agniva Roychowdhury, Xiaolong Yang, J. A. Acosta–Pulido, Suvendu Rakshit, Shivangi Pandey, Josefa Becerra González, Ehud Behar, Luigi C. Gallo, Francesca Panessa, Stefano Bianchi, Fabio La Franca, Nicolas Scepi, Mitchell C. Begelman, Anna Lia Longinotti, Elisabeta Lusso, Samantha Oates, Matt Nicholl, S. Bradley Cenko, Brendan O’Connor, Erica Hammerstein, Jincen Jose, Krisztina Éva Gabányi, Federica Ricci, and Sabyasachi Chattopadhyay
- Subjects
Active galactic nuclei ,X-ray active galactic nuclei ,Seyfert galaxies ,Astrophysics ,QB460-466 - Abstract
1ES1927+654 is a nearby active galactic nucleus (AGN) that has shown an enigmatic outburst in optical/UV followed by X-rays, exhibiting strange variability patterns at timescales of months to years. Here we report the unusual X-ray, UV, and radio variability of the source in its postflare state (2022 January–2023 May). First, we detect an increase in the soft X-ray (0.3–2 keV) flux from 2022 May to 2023 May by almost a factor of 5, which we call the bright soft state. The hard X-ray 2–10 keV flux increased by a factor of 2, while the UV flux density did not show any significant changes (≤30%) in the same period. The integrated energy pumped into the soft and hard X-rays during this period of 11 months is ∼3.57 × 10 ^50 erg and 5.9 × 10 ^49 erg, respectively. From the energetics, it is evident that whatever is producing the soft excess (SE) is pumping out more energy than either the UV or hard X-ray source. Since the energy source presumably is ultimately the accretion of matter onto the supermassive black hole, the SE-emitting region must be receiving the majority of this energy. In addition, the source does not follow the typical disk–corona relation found in AGNs, neither in the initial flare (from 2017 to 2019) nor in the current bright soft state (2022–2023). We found that the core (
- Published
- 2023
- Full Text
- View/download PDF
5. The dual nature of blazar fast variability: Space and ground observations of S5 0716+714
- Author
-
C M Raiteri, M Villata, D Carosati, E Benítez, S O Kurtanidze, A C Gupta, D O Mirzaqulov, F D’Ammando, V M Larionov, T Pursimo, J A Acosta-Pulido, G V Baida, B Balmaverde, G Bonnoli, G A Borman, M I Carnerero, W-P Chen, V Dhiman, A Di Maggio, S A Ehgamberdiev, D Hiriart, G N Kimeridze, O M Kurtanidze, C S Lin, J M Lopez, A Marchini, K Matsumoto, R Mujica, M Nakamura, A A Nikiforova, M G Nikolashvili, D N Okhmat, J Otero-Santos, N Rizzi, T Sakamoto, E Semkov, L A Sigua, L Stiaccini, I S Troitsky, A L Tsai, A A Vasilyev, and A V Zhovtan
- Published
- 2020
- Full Text
- View/download PDF
6. Low optical polarization at the core of the optically thin jet of M87
- Author
-
A Y Fresco, J A Fernández-Ontiveros, M A Prieto, J A Acosta-Pulido, and A Merloni
- Published
- 2020
- Full Text
- View/download PDF
7. Multiwavelength behaviour of the blazar 3C 279: decade-long study from γ-ray to radio
- Author
-
V M Larionov, S G Jorstad, A P Marscher, M Villata, C M Raiteri, P S Smith, I Agudo, S S Savchenko, D A Morozova, J A Acosta-Pulido, M F Aller, H D Aller, T S Andreeva, A A Arkharov, R Bachev, G Bonnoli, G A Borman, V Bozhilov, P Calcidese, M I Carnerero, D Carosati, C Casadio, W-P Chen, G Damljanovic, A V Dementyev, A Di Paola, A Frasca, A Fuentes, J L Gómez, P Gónzalez-Morales, A Giunta, T S Grishina, M A Gurwell, V A Hagen-Thorn, T Hovatta, S Ibryamov, M Joshi, S Kiehlmann, J-Y Kim, G N Kimeridze, E N Kopatskaya, Yu A Kovalev, Y Y Kovalev, O M Kurtanidze, S O Kurtanidze, A Lähteenmäki, C Lázaro, L V Larionova, E G Larionova, G Leto, A Marchini, K Matsumoto, B Mihov, M Minev, M G Mingaliev, D Mirzaqulov, R V Muñoz Dimitrova, I Myserlis, A A Nikiforova, M G Nikolashvili, N A Nizhelsky, E Ovcharov, L D Pressburger, I A Rakhimov, S Righini, N Rizzi, K Sadakane, A C Sadun, M R Samal, R Z Sanchez, E Semkov, S G Sergeev, L A Sigua, L Slavcheva-Mihova, P Sola, Yu V Sotnikova, A Strigachev, C Thum, E Traianou, Yu V Troitskaya, I S Troitsky, P G Tsybulev, A A Vasilyev, O Vince, Z R Weaver, K E Williamson, and G V Zhekanis
- Published
- 2020
- Full Text
- View/download PDF
8. Multiwavelength observations of the extraordinary accretion event AT2021lwx
- Author
-
P Wiseman, Y Wang, S Hönig, N Castro-Segura, P Clark, C Frohmaier, M D Fulton, G Leloudas, M Middleton, T E Müller-Bravo, A Mummery, M Pursiainen, S J Smartt, K Smith, M Sullivan, J P Anderson, J A Acosta Pulido, P Charalampopoulos, M Banerji, M Dennefeld, L Galbany, M Gromadzki, C P Gutiérrez, N Ihanec, E Kankare, A Lawrence, B Mockler, T Moore, M Nicholl, F Onori, T Petrushevska, F Ragosta, S Rest, M Smith, T Wevers, R Carini, T-W Chen, K Chambers, H Gao, M Huber, C Inserra, E Magnier, L Makrygianni, M Toy, F Vincentelli, and D R Young
- Subjects
Transients ,tidal disruption events [Transients] ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Accretion, accretion discs ,active [Galaxies] ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,supermassive black holes [Quasars] - Abstract
We present observations from X-ray to mid-infrared wavelengths of the most energetic non-quasar transient ever observed, AT2021lwx. Our data show a single optical brightening by a factor $>100$ to a luminosity of $7\times10^{45}$ erg s$^{-1}$, and a total radiated energy of $1.5\times10^{53}$ erg, both greater than any known optical transient. The decline is smooth and exponential and the ultra-violet - optical spectral energy distribution resembles a black body with temperature $1.2\times10^4$ K. Tentative X-ray detections indicate a secondary mode of emission, while a delayed mid-infrared flare points to the presence of dust surrounding the transient. The spectra are similar to recently discovered optical flares in known active galactic nuclei but lack some characteristic features. The lack of emission for the previous seven years is inconsistent with the short-term, stochastic variability observed in quasars, while the extreme luminosity and long timescale of the transient disfavour the disruption of a single solar-mass star. The luminosity could be generated by the disruption of a much more massive star, but the likelihood of such an event occurring is small. A plausible scenario is the accretion of a giant molecular cloud by a dormant black hole of $10^8 - 10^9$ solar masses. AT2021lwx thus represents an extreme extension of the known scenarios of black hole accretion., 11 pages, 5 figures, Accepted for publication in MNRAS
- Published
- 2023
- Full Text
- View/download PDF
9. Investigating the multiwavelength behaviour of the flat spectrum radio quasar CTA 102 during 2013–2017
- Author
-
F D’Ammando, C M Raiteri, M Villata, J A Acosta-Pulido, I Agudo, A A Arkharov, R Bachev, G V Baida, E Benítez, G A Borman, W Boschin, V Bozhilov, M S Butuzova, P Calcidese, M I Carnerero, D Carosati, C Casadio, N Castro-Segura, W-P Chen, G Damljanovic, A Di Paola, J Echevarría, N V Efimova, Sh A Ehgamberdiev, C Espinosa, A Fuentes, A Giunta, J L Gómez, T S Grishina, M A Gurwell, D Hiriart, H Jermak, B Jordan, S G Jorstad, M Joshi, G N Kimeridze, E N Kopatskaya, K Kuratov, O M Kurtanidze, S O Kurtanidze, A Lähteenmäki, V M Larionov, E G Larionova, L V Larionova, C Lázaro, C S Lin, M P Malmrose, A P Marscher, K Matsumoto, B McBreen, R Michel, B Mihov, M Minev, D O Mirzaqulov, S N Molina, J W Moody, D A Morozova, S V Nazarov, A A Nikiforova, M G Nikolashvili, J M Ohlert, N Okhmat, E Ovcharov, F Pinna, T A Polakis, C Protasio, T Pursimo, F J Redondo-Lorenzo, N Rizzi, G Rodriguez-Coira, K Sadakane, A C Sadun, M R Samal, S S Savchenko, E Semkov, L Sigua, B A Skiff, L Slavcheva-Mihova, P S Smith, I A Steele, A Strigachev, J Tammi, C Thum, M Tornikoski, Yu V Troitskaya, I S Troitsky, A A Vasilyev, O Vince, T Hovatta, S Kiehlmann, W Max-Moerbeck, A C S Readhead, R Reeves, T J Pearson, T Mufakharov, Yu V Sotnikova, and M G Mingaliev
- Published
- 2019
- Full Text
- View/download PDF
10. The beamed jet and quasar core of the distant blazar 4C 71.07
- Author
-
C M Raiteri, M Villata, M I Carnerero, J A Acosta-Pulido, D O Mirzaqulov, V M Larionov, P Romano, S Vercellone, I Agudo, A A Arkharov, U Bach, R Bachev, S Baitieri, G A Borman, W Boschin, V Bozhilov, M S Butuzova, P Calcidese, D Carosati, C Casadio, W-P Chen, G Damljanovic, A Di Paola, V T Doroshenko, N V Efimova, Sh A Ehgamberdiev, M Giroletti, J L Gómez, T S Grishina, S Ibryamov, H Jermak, S G Jorstad, G N Kimeridze, S A Klimanov, E N Kopatskaya, O M Kurtanidze, S O Kurtanidze, A Lähteenmäki, E G Larionova, A P Marscher, B Mihov, M Minev, S N Molina, J W Moody, D A Morozova, S V Nazarov, A A Nikiforova, M G Nikolashvili, E Ovcharov, S Peneva, S Righini, N Rizzi, A C Sadun, M R Samal, S S Savchenko, E Semkov, L A Sigua, L Slavcheva-Mihova, I A Steele, A Strigachev, M Tornikoski, Yu V Troitskaya, I S Troitsky, and O Vince
- Published
- 2019
- Full Text
- View/download PDF
11. A compact jet at the infrared heart of the prototypical low-luminosity AGN in NGC 1052
- Author
-
J A Fernández-Ontiveros, N López-Gonzaga, M A Prieto, J A Acosta-Pulido, E Lopez-Rodriguez, D Asmus, and K R W Tristram
- Published
- 2019
- Full Text
- View/download PDF
12. Multiwavelength periodicity search in a sample of γ-ray bright blazars
- Author
-
J Otero-Santos, P Peñil, J A Acosta-Pulido, J Becerra González, C M Raiteri, M I Carnerero, and M Villata
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a long-term periodicity search in a sample of $\gamma$-ray blazars within a multiwavelength context. These blazars have been selected from the Steward Observatory sample as part of its optical monitoring program between 2008 and 2018. We study 15 sources with a temporal coverage in their optical total and polarized emission sufficiently large ($>9$ years) to perform a reliable long-term periodicity analysis. We collect data from several observatories to extend the coverage, enabling the search of longer periods. In addition, data are also gathered in the high-energy ($E>100$ MeV) $\gamma$-ray band from the $\textit{Fermi}$ Large Area Telescope; and in the 15-GHz radio band from the Owens Valley Radio Observatory. We identify 5 promising candidates to host quasi-periodic emission, AO 0235+164, PKS 1222+216, Mrk 501, BL Lacertae and 1ES 2344+514 with periods in one or more bands and statistical significances $\sim$3$\sigma$ after trial factor correction. AO 0235+164 shows a period of $\sim$8.2 years in the R band; PKS 1222+216 has a quasi-periodic modulation in its total and polarized optical emission of $\sim$1.6 years; Mrk 501 displays a $\sim$5-year quasi-periodicity in optical and radio wavelengths; BL Lacertae presents a period of $\sim$1.8 years in its polarized emission; and 1ES 2344+514 shows a hint of a $\sim$5.5-year period in its optical R band. We interpret these results in the framework of the most common models and scenarios, namely the presence of a binary supermassive black hole system; or geometrical effects like helical or precessing jets., Comment: Accepted for publication in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
13. The outbursting protostar 2MASS 22352345 + 7517076 and its environment
- Author
-
M Kun, P Ábrahám, J A Acosta Pulido, A Moór, and T Prusti
- Published
- 2018
- Full Text
- View/download PDF
14. Rapid quasi-periodic oscillations in the relativistic jet of BL Lacertae
- Author
-
S. G. Jorstad, A. P. Marscher, C. M. Raiteri, M. Villata, Z. R. Weaver, H. Zhang, L. Dong, J. L. Gómez, M. V. Perel, S. S. Savchenko, V. M. Larionov, D. Carosati, W. P. Chen, O. M. Kurtanidze, A. Marchini, K. Matsumoto, F. Mortari, P. Aceti, J. A. Acosta-Pulido, T. Andreeva, G. Apolonio, C. Arena, A. Arkharov, R. Bachev, M. Banfi, G. Bonnoli, G. A. Borman, V. Bozhilov, M. I. Carnerero, G. Damljanovic, S. A. Ehgamberdiev, D. Elsässer, A. Frasca, D. Gabellini, T. S. Grishina, A. C. Gupta, V. A. Hagen-Thorn, M. K. Hallum, M. Hart, K. Hasuda, F. Hemrich, H. Y. Hsiao, S. Ibryamov, T. R. Irsmambetova, D. V. Ivanov, M. D. Joner, G. N. Kimeridze, S. A. Klimanov, J. Knött, E. N. Kopatskaya, S. O. Kurtanidze, A. Kurtenkov, T. Kuutma, E. G. Larionova, S. Leonini, H. C. Lin, C. Lorey, K. Mannheim, G. Marino, M. Minev, D. O. Mirzaqulov, D. A. Morozova, A. A. Nikiforova, M. G. Nikolashvili, E. Ovcharov, R. Papini, T. Pursimo, I. Rahimov, D. Reinhart, T. Sakamoto, F. Salvaggio, E. Semkov, D. N. Shakhovskoy, L. A. Sigua, R. Steineke, M. Stojanovic, A. Strigachev, Y. V. Troitskaya, I. S. Troitskiy, A. Tsai, A. Valcheva, A. A. Vasilyev, O. Vince, L. Waller, E. Zaharieva, R. Chatterjee, Ministerio de Ciencia e Innovación (España), and European Commission
- Subjects
High-energy astrophysics ,Multidisciplinary ,Astrophysical magnetic fields, High-energy astrophysics, Time-domain astronomy ,Time-domain astronomy ,Astrophysical magnetic fields - Abstract
Full list of authors: Jorstad, S. G.; Marscher, A. P.; Raiteri, C. M.; Villata, M.; Weaver, Z. R.; Zhang, H.; Dong, L.; Gomez, J. L.; Perel, M., V; Savchenko, S. S.; Larionov, V. M.; Carosati, D.; Chen, W. P.; Kurtanidze, O. M.; Marchini, A.; Matsumoto, K.; Mortari, F.; Aceti, P.; Acosta-Pulido, J. A.; Andreeva, T.; Apolonio, G.; Arena, C.; Arkharov, A.; Bachev, R.; Bonnoli, G.; Borman, G. A.; Bozhilov, V; Carnerero, M., I; Damljanovic, G.; Ehgamberdiev, S. A.; Elsasser, D.; Frasca, A.; Gabellini, D.; Grishina, T. S.; Gupta, A. C.; Hagen-Thorn, V. A.; Hallum, M. K.; Hart, M.; Hasuda, K.; Hemrich, F.; Hsiao, H. Y.; Ibryamov, S.; Irsmambetova, T. R.; Ivanov, D., V; Joner, M. D.; Kimeridze, G. N.; Klimanov, S. A.; Knoett, J.; Kopatskaya, E. N.; Kurtanidze, S. O.; Kurtenkov, A.; Kuutma, T.; Larionova, E. G.; Leonini, S.; Lin, H. C.; Lorey, C.; Mannheim, K.; Marino, G.; Minev, M.; Mirzaqulov, D. O.; Morozova, D. A.; Nikiforova, A. A.; Nikolashvili, M. G.; Ovcharov, E.; Papini, R.; Pursimo, T.; Rahimov, I; Reinhart, D.; Sakamoto, T.; Salvaggio, F.; Semkov, E.; Shakhovskoy, D. N.; Sigua, L. A.; Steineke, R.; Stojanovic, M.; Strigachev, A.; Troitskaya, Y., V; Troitskiy, I. S.; Tsai, A.; Valcheva, A.; Vasilyev, A. A.; Vince, O.; Waller, L.; Zaharieva, E.; Chatterjee, R., Blazars are active galactic nuclei (AGN) with relativistic jets whose non-thermal radiation is extremely variable on various timescales1,2,3. This variability seems mostly random, although some quasi-periodic oscillations (QPOs), implying systematic processes, have been reported in blazars and other AGN. QPOs with timescales of days or hours are especially rare4 in AGN and their nature is highly debated, explained by emitting plasma moving helically inside the jet5, plasma instabilities6,7 or orbital motion in an accretion disc7,8. Here we report results of intense optical and γ-ray flux monitoring of BL Lacertae (BL Lac) during a dramatic outburst in 2020 (ref. 9). BL Lac, the prototype of a subclass of blazars10, is powered by a 1.7 × 108 MSun (ref. 11) black hole in an elliptical galaxy (distance = 313 megaparsecs (ref. 12)). Our observations show QPOs of optical flux and linear polarization, and γ-ray flux, with cycles as short as approximately 13 h during the highest state of the outburst. The QPO properties match the expectations of current-driven kink instabilities6 near a recollimation shock about 5 parsecs (pc) from the black hole in the wake of an apparent superluminal feature moving down the jet. Such a kink is apparent in a microwave Very Long Baseline Array (VLBA) image. © 2022 Springer Nature Limited., The research reported here is based on work supported in part by US National Science Foundation grants AST-2108622 and AST-2107806, and NASA Fermi GI grants 80NSSC20K1567, 80NSSC21K1917 and 80NSSC21K1951; by Shota Rustaveli National Science Foundation of Georgia under contract FR-19-6174; by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 18-10/2017, DN 18-13/2017, KP-06-H28/3 (2018), KP-06-H38/4 (2019) and KP-06-KITAJ/2 (2020), and by National RI Roadmap Project D01-383/18.12.2020 of the Ministry of Education and Science of the Republic of Bulgaria; by JSPS KAKENHI grant #19K03930 of Japan; by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract 451-03-9/2021-14/200002) and observing grant support from the Institute of Astronomy and Rozhen NAO BAS through the bilateral joint research project ‘Gaia Celestial Reference Frame (CRF) and fast variable astronomical objects’; by the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015 and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF). H.Z. is supported by the NASA Postdoctoral Program at Goddard Space Flight Center, administered by ORAU. M.V.P. is partially supported by the Russian Foundation for Basic Research grant 20-02-00490. G.B. acknowledges support from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and from the Spanish ‘Ministerio de Ciencia e Innovacíon’ (MICINN) through grant PID2019-107847RB-C44. M.D.J. thanks the Brigham Young University Department of Physics and Astronomy for continued support of the extragalactic monitoring programme under way at the West Mountain Observatory. R.C. thanks ISRO for support under the AstroSat archival data utilization programme and BRNS for support through a project grant (sanction no. 57/14/10/2019-BRNS). The measurements at the Hans Haffner Observatory, Hettstadt, Germany, were supported by Baader Planetarium, Mammendorf, Germany. This study was based (in part) on observations conducted using the 1.8-m Perkins Telescope Observatory (PTO) in Arizona, USA, which is owned and operated by Boston University. These results made use of the Lowell Discovery Telescope (LDT) at Lowell Observatory. Lowell Observatory is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy, and operates the LDT in partnership with Boston University, the University of Maryland and the University of Toledo. This paper is partly based on observations made with the IAC-80 operated on the island of Tenerife by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide and on observations made with the LCOGT telescopes, one of whose nodes is located at the Observatorios de Canarias del IAC on the island of Tenerife in the Observatorio del Teide. This paper is partly based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. The VLBA is an instrument of the NRAO, USA. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
- Published
- 2022
- Full Text
- View/download PDF
15. Disentangling the nature of the prototype radio weak BL Lac: Contemporaneous multifrequency observations of WISE J141046.00+740511.2
- Author
-
E. J. Marchesini, V. Reynaldi, F. Vieyro, J. Saponara, I. Andruchow, I. E. López, P. Benaglia, S. A. Cellone, N. Masetti, F. Massaro, H. A. Peña-Herazo, V. Chavushyan, J. A. Combi, J. A. Acosta-Pulido, B. Agís González, N. Castro-Segura, Ministerio de Ciencia e Innovación (España), European Commission, Agencia Nacional de Promoción Científica y Tecnológica (Argentina), and Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,X-rays: galaxies ,Gamma rays: galaxies ,Space and Planetary Science ,Galaxies: jets ,FOS: Physical sciences ,Astronomy and Astrophysics ,Galaxies: active ,BL Lacertae objects: general ,Astrophysics - High Energy Astrophysical Phenomena ,Galaxies: nuclei - Abstract
This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. The γ-ray emitting source WISE J141046.00+740511.2 has been associated with a Fermi-LAT detection by crossmatching with Swift/XRT data. It has shown all the canonical observational characteristics of a BL Lac source, including a power-law, featureless optical spectrum. However, it was only recently detected at radio frequencies and its radio flux is significantly low. Aims. Given that a radio detection is fundamental to associate lower-energy counterparts to Fermi-LAT sources, we aim to unambiguously classify this source by performing a multiwavelength analysis based on contemporaneous data. Methods. By using multifrequency observations at the Jansky Very Large Array, Giant Metrewave Radio Telescope, Gran Telescopio Canarias, Gemini, William Herschel Telescope and Liverpool observatories, together with Fermi-LAT and Swift data, we carried out two kinds of analyses. On one hand, we studied several known parameters that account for the radio loudness or weakness characterization and their application to blazars (in general) and to our source (in particular). And, on the other hand, we built and analyzed the observed spectral energy distribution (SED) of this source to try to explain its peculiar characteristics. Results. The multiwavelength analysis indicates that WISE J141046.00+740511.2 is a blazar of the high-frequency peaked (HBL) type that emits highly polarized light and that is likely located at a low redshift. In addition, the one-zone model parameters that best fit its SED are those of an extreme HBL (EHBL); this blazar type has been extensively predicted in theory to be lacking in the radio emission that is otherwise typical of canonical γ-ray blazars. Conclusions. We confirm that WISE J141046.00+740511.2 is indeed a highly polarized BL Lac of the HBL type. Further studies will be conducted to explain the atypical low radio flux detected for this source. © The Authors 2023., F.L.V. acknowledges support from the Argentine agency CONICET (PIP 2021-0554). V.R., I.A. and S.A.C. acknowledge the support from Universidad Nacional de La Plata through grant 11/G153. P.B. and J.S. acknowledge support from ANPCyT PICT 2017-0773. E.J.M. would like to acknowledge, on behalf of all the authors, all the observing facilities and instruments that are mentioned in the following, as well as the staff involved in data acquisition. This work is based on observations obtained at the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (USA), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). In this research we utilised data acquired by the Gran Telescopio Canarias. GTC is a Spanish initiative led by the Instituto de Astrofísica de Canarias (IAC). The project is actively supported by the Spanish Government and the Local Government from the Canary Islands through the European Funds for Regional Development (FEDER) provided by the European Union. The project also includes the participation of Mexico (Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), and the US University of Florida. This work includes data acquired at the Giant Metrewave Radio Telescope, which is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research in Pune, India. This article uses data taken by operating the Karl G. Jansky Very Large Array, a part of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We acknowledge the Liverpool Telescope, which is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias with financial support from the UK Science and Technology Facilities Council, for the provided data. This article includes data acquired by the William Herschel Telescope, which is operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. This work was partially supported by CONACyT (Consejo Nacional de Ciencia y Tecnología) research grant 280789 (Mexico). N.C.S. acknowledges support by the Science and Technology Facilities Council (STFC), and from STFC grant ST/M001326/1. J.A.C. is a María Zambrano researcher fellow funded by the European Union -NextGenerationEU- (UJAR02MZ). This work received financial support from PICT-2017-2865 (ANPCyT) and PIP 0113 (CONICET). J.A.C. was also supported by grant PID2019-105510GB-C32/AEI/10.13039/501100011033 from the Agencia Estatal de Investigación of the Spanish Ministerio de Ciencia, Innovación y Universidades, and by Consejería de Economía, Innovación, Ciencia y Empleo of Junta de Andalucía as research group FQM-322, as well as FEDER funds. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).
- Published
- 2023
16. The Afterglow and Kilonova of the Short GRB 160821B
- Author
-
E. Troja, A. J. Castro-Tirado, J Becerra Gonzalez, Y. Hu, G. S. Ryan, S. B. Cenko, R. Ricci, G. Novara, R. Sanchez-Ramirez, J. A. Acosta-Pulido, K. D. Ackley, M. D. Caballero Garcıa, S. S. Eikenberry, S. Guziy, S. Jeong, A. Y. Lien, I. Marquez, S. B. Pandey, I. H. Park, T. Sakamoto, J. C. Tello, I. V. Sokolov, V. V. Sokolov, A. Tiengo, A. F. Valeev, B. B. Zhang, and S. Veilleux
- Subjects
Astronomy - Abstract
GRB 160821B is a short duration gamma-ray burst (GRB) detected and localized by the Neil Gehrels Swift Observatory in the outskirts of a spiral galaxy at z = 0.1613, at a projected physical offset of 16 kpc from the galaxy’s center. We present X-ray, optical/nIR, and radio observations of its counterpart and model them with two distinct components of emission: a standard afterglow, arising from the interaction of the relativistic jet with the surrounding medium, and a kilonova, powered by the radioactive decay of the sub-relativistic ejecta. Broadband modelling of the afterglow data reveals a weak reverse shock propagating backward into the jet, and a likely jet-break at 3.5 d. This is consistent with a structured jet seen slightly off-axis (θview ∼ θcore) while expanding into a low-density medium (n ≈ 10−3 cm−3). Analysis of the kilonova properties suggests a rapid evolution towards red colours, similar toAT2017gfo, and a low-nIR luminosity, possibly due to the presence of a long-lived neutron star. The global properties of the environment, the inferred low mass (Mej <~ 0.006 Msun) and velocities (vej >~ 0.05c) of lanthanide-rich ejecta are consistent with a binary neutron star merger progenitor.
- Published
- 2019
- Full Text
- View/download PDF
17. The optical behaviour of BL Lacertae at its maximum brightness levels: a blend of geometry and energetics
- Author
-
C M Raiteri, M Villata, S G Jorstad, A P Marscher, J A Acosta Pulido, D Carosati, W P Chen, M D Joner, S O Kurtanidze, C Lorey, A Marchini, K Matsumoto, D O Mirzaqulov, S S Savchenko, A Strigachev, O Vince, P Aceti, G Apolonio, C Arena, A Arkharov, R Bachev, N Bader, M Banfi, G Bonnoli, G A Borman, V Bozhilov, L F Brown, W Carbonell, M I Carnerero, G Damljanovic, V Dhiman, S A Ehgamberdiev, D Elsaesser, M Feige, D Gabellini, D Galán, G Galli, H Gaur, K Gazeas, T S Grishina, A C Gupta, V A Hagen-Thorn, M K Hallum, M Hart, K Hasuda, K Heidemann, B Horst, W-J Hou, S Ibryamov, R Z Ivanidze, M D Jovanovic, G N Kimeridze, S Kishore, S Klimanov, E N Kopatskaya, O M Kurtanidze, P Kushwaha, D J Lane, E G Larionova, S Leonini, H C Lin, K Mannheim, G Marino, M Minev, A Modaressi, D A Morozova, F Mortari, S V Nazarov, M G Nikolashvili, J Otero Santos, E Ovcharov, R Papini, V Pinter, C A Privitera, T Pursimo, D Reinhart, J Roberts, F D Romanov, K Rosenlehner, T Sakamoto, F Salvaggio, K Schoch, E Semkov, J Seufert, D Shakhovskoy, L A Sigua, C Singh, R Steineke, M Stojanovic, T Tripathi, Y V Troitskaya, I S Troitskiy, A Tsai, A Valcheva, A A Vasilyev, K Vrontaki, Z R Weaver, J H F Wooley, E Zaharieva, and A V Zhovtan
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
In 2021 BL Lacertae underwent an extraordinary activity phase, which was intensively followed by the Whole Earth Blazar Telescope (WEBT) Collaboration. We present the WEBT optical data in the BVRI bands acquired at 36 observatories around the world. In mid 2021 the source showed its historical maximum, with R = 11.14. The light curves display many episodes of intraday variability, whose amplitude increases with source brightness, in agreement with a geometrical interpretation of the long-term flux behaviour. This is also supported by the long-term spectral variability, with an almost achromatic trend with brightness. In contrast, short-term variations are found to be strongly chromatic and are ascribed to energetic processes in the jet. We also analyse the optical polarimetric behaviour, finding evidence of a strong correlation between the intrinsic fast variations in flux density and those in polarisation degree, with a time delay of about 13 h. This suggests a common physical origin. The overall behaviour of the source can be interpreted as the result of two mechanisms: variability on time scales greater than several days is likely produced by orientation effects, while either shock waves propagating in the jet, or magnetic reconnection, possibly induced by kink instabilities in the jet, can explain variability on shorter time scales. The latter scenario could also account for the appearance of quasi-periodic oscillations, with periods from a few days to a few hours, during outbursts, when the jet is more closely aligned with our line of sight and the time scales are shortened by relativistic effects., Comment: 15 pages, 16 figures, submitted to MNRAS
- Published
- 2023
- Full Text
- View/download PDF
18. Optical spectral characterization of the gamma-ray blazars S4 0954+65, TXS 1515−273, and RX J0812.0+0237
- Author
-
R. Clavero, J. Otero-Santos, Walter Boschin, J. A. Carballo-Bello, Lilian Domínguez-Palmero, J. A. Acosta-Pulido, and J. Becerra González
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,education.field_of_study ,Photon ,Stellar population ,010308 nuclear & particles physics ,Population ,Gamma ray ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Redshift ,Extragalactic background light ,Astrophysical jet ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,education ,Blazar ,010303 astronomy & astrophysics - Abstract
The study of gamma-ray blazars is usually hindered due to the lack of information on their redshifts and on their low energy photon fields. This information is key to understand the effect on the gamma-ray absorption due to either extragalactic background light and/or intrinsic absorption and emission processes. All this information has also an impact on the determination of the location of the emitting region within the relativistic jets. In this work a new optical spectroscopic characterization is presented for three gamma-ray blazars: S4 0954+65, TXS 1515-273 and RX J0812.0+0237. For all the three targets the redshift determination is successful, and for the first time in the case of TXS 1515-273 and RX J0812.0+0237. Their classification as BL~Lac type is confirmed based on these new optical spectra. For S4 0954+65 (z=$0.3694\pm0.0011$) an estimation on the disk, broad line region and torus luminosities is performed based on the observed optical emission lines. The results from this study are compatible with the nature of S4 0954+65 as a transitional blazar. In the case of TXS 1515-273 ($z=0.1281\pm 0.0004$), although its optical spectrum is dominated by the continuum emission from the jet, applying the pPXF technique, the stellar population can be unveiled and is compatible with an old and metallic population. It is also the case of RX J0812.0+0237 ($z=0.1721\pm 0.0002$). Moreover, this work confirms that the optical spectrum from RX J0812.0+0237 is compatible with an extreme blazar classification., Submitted to MNRAS
- Published
- 2021
- Full Text
- View/download PDF
19. A statistical study of the optical spectral variability in gamma-ray blazars
- Author
-
J Otero-Santos, J A Acosta-Pulido, J Becerra González, A Luashvili, N Castro Segura, O González-Martín, C M Raiteri, and M I Carnerero
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
Blazars optical emission is generally dominated by relativistic jets, although the host galaxy, accretion disk and broad line region (BLR) may also contribute significantly. Disentangling their contributions has been challenging for years due to the dominance of the jet. To quantify the contributions to the spectral variability, we use the statistical technique for dimensionality reduction Non-Negative Matrix Factorization on a spectroscopic data set of 26 $\gamma$-ray blazars. This technique allows to model large numbers of spectra in terms of a reduced number of components.We use a priori knowledge to obtain components associated to meaningful physical processes. The sources are classified according to their optical spectrum as host-galaxy dominated BL Lac objects (BL Lacs), BL Lacs, or Flat Spectrum Radio Quasars (FSRQs). Host-galaxy sources show less variability, as expected, and bluer-when-brighter trends, as the other BL Lacs. For FSRQs, more complicated colour-flux behaviours are observed: redder-when-brighter for low states saturating above a certain level and, in some cases, turning to bluer-when-brighter. We are able to reproduce the variability observed during 10 years using only 2 to 4 components, depending on the type. The simplest scenario corresponds to host-galaxy blazars, whose spectra are reconstructed using the stellar population and a power law for the jet. BL Lac spectra are reproduced using from 2 to 4 power laws. Different components can be associated to acceleration/cooling processes taking place in the jet. The reconstruction of FSRQs also incorporates a QSO-like component to account for the BLR, plus a very steep power law, associated to the accretion disk., Comment: Accepted for publication in MNRAS
- Published
- 2022
20. Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737
- Author
-
G. Speranza, C. Ramos Almeida, J. A. Acosta-Pulido, R. A. Riffel, C. Tadhunter, J. C. S. Pierce, A. Rodríguez-Ardila, M. Coloma Puga, M. Brusa, B. Musiimenta, D. M. Alexander, A. Lapi, F. Shankar, and C. Villforth
- Subjects
Galaxy: evolution ,Astrophysics::High Energy Astrophysical Phenomena ,quasars: supermassive black holes ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,quasars: emission lines ,Settore FIS/05 - Astronomia e Astrofisica ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies: nuclei ,galaxies: kinematics and dynamics ,Astrophysics::Galaxy Astrophysics - Abstract
We analyze Near-Infrared Integral Field Spectrograph (NIFS) observations of the type-2 quasar (QSO2) SDSS J094521.33+173753.2 to investigate its warm molecular and ionized gas kinematics. This QSO2 has a bolometric luminosity of 10$^{45.7}$ erg s$^{-1}$ and a redshift of z = 0.128. The K-band spectra provided by NIFS cover a range of 1.99-2.40 $\mu$m where low-ionization (Pa$\alpha$ and Br$\delta$), high ionization ([S XI]$\lambda$1.920 $\mu$m and [Si~VI]$\lambda$1.963 $\mu$m) and warm molecular lines (from H$_2$ 1-0S(5) to 1-0S(1)) are detected, allowing us to study the multi-phase gas kinematics. Our analysis reveals gas in ordinary rotation in all the emission lines detected and also outflowing gas in the case of the low- and high-ionization emission lines. In the case of the nuclear spectrum, which corresponds to a circular aperture of 0.3\arcsec~(686 pc) in diameter, the warm molecular lines can be characterized using a single Gaussian component of full width at half maximum (FWHM)= 350-400 km s$^{-1}$, while Pa$\alpha$, Br$\delta$, and [Si~VI] are best fitted with two blue-shifted Gaussian components of FWHM$\sim$800 and 1700 km s$^{-1}$, in addition to a narrow component of $\sim$300 km s$^{-1}$. We interpret the blue-shifted broad components as outflowing gas, which reaches the highest velocities, of up to $-$840 km s$^{-1}$, in the south-east direction (PA$\sim$125$^{\circ}$), extending up to a distance of $\sim$3.4 kpc from the nucleus. The ionized outflow has a maximum mass outflow rate of $\dot{\text{{M}}}_{\text{{out, max}}}$=42-51 M$_\odot$ yr$^{-1}$, and its kinetic power represents 0.1$\%$ of the quasar bolometric luminosity., Comment: 24 pages, 20 figures and 5 tables. Accepted for publication in A&A
- Published
- 2022
21. Absence of nuclear polycyclic aromatic hydrocarbon emission from a compact starburst: The case of the type-2 quasar Mrk 477
- Author
-
C. Ramos Almeida, D. Esparza-Arredondo, O. González-Martín, I. García-Bernete, M. Pereira-Santaella, A. Alonso-Herrero, J. A. Acosta-Pulido, P. S. Bessiere, N. A. Levenson, C. N. Tadhunter, D. Rigopoulou, M. Martínez-Paredes, S. Cazzoli, B. García-Lorenzo, Ministerio de Ciencia e Innovación (España), and European Commission
- Subjects
Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Galaxies: evolution ,FOS: Physical sciences ,Quasars: individual: Mrk 477 ,Astronomy and Astrophysics ,Galaxies: active ,Astrophysics - Astrophysics of Galaxies ,Galaxies: nuclei ,ISM: lines and bands - Abstract
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited., Mrk 477 is the closest type-2 quasar, at a distance of 163 Mpc. This makes it an ideal laboratory for studying the interplay between nuclear activity and star formation with a great level of detail and signal-to-noise. In this Letter we present new mid-infrared (mid-IR) imaging and spectroscopic data with an angular resolution of 0.4″ (∼300 pc) obtained with the Gran Telescopio Canarias instrument CanariCam. The N-band (8–13 μm) spectrum of the central ∼400 pc of the galaxy reveals [S IV]λ10.51 μm emission, but no 8.6 or 11.3 μm polycyclic aromatic hydrocarbon (PAH) features, which are commonly used as tracers of recent star formation. This is in stark contrast with the presence of a nuclear starburst of ∼300 pc in size, an age of 6 Myr, and a mass of 1.1×108 M⊙, as constrained from ultraviolet Hubble Space Telescope observations. Considering this, we argue that even the more resilient, neutral molecules that mainly produce the 11.3 μm PAH band are most likely being destroyed in the vicinity of the active nucleus despite the relatively large X-ray column density, log NH = 23.5 cm−2, and modest X-ray luminosity, 1.5×1043 erg s−1. This highlights the importance of being cautious when using PAH features as star formation tracers in the central region of galaxies to evaluate the impact of feedback from active galactic nuclei. © The Authors 2023., Based on observations made with the GTC, installed at the Spanish Observatorio del Roque de los Muchachos of the IAC, on the island of La Palma. CASSIS is a product of the IRS instrument team, supported by NASA and JPL, by the “Programme National de Physique Stellaire” (PNPS) of CNRS/INSU co-funded by CEA and CNES and through the “Programme National Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES. CRA acknowledges the hospitality of the Kavli Institute for Cosmology of the University of Cambridge, where this manuscript was written, in August 2022. This stay was funded by the Spanish MICINN through the Spanish State Research Agency, under Severo Ochoa Centres of Excellence Programme 2020-2023 (CEX2019-000920-S). CRA and PSB acknowledge support from the projects “Quantifying the impact of quasar feedback on galaxy evolution”, with reference EUR2020-112266, funded by MICINN-AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR, and from the Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant “Quasar feedback and molecular gas reservoirs”, with reference ProID2020010105, ACCISI/FEDER, UE. AAH acknowledges financial support from grant PID2021-124665NB-I00 funded by the Spanish Ministry of Science and Innovation. SC acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the IAA (SEV-2017-0709). We finally thank the referee for his constructive report, and the GTC staff for their constant support., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).
- Published
- 2022
- Full Text
- View/download PDF
22. A Radio, Optical, UV, and X-Ray View of the Enigmatic Changing-look Active Galactic Nucleus 1ES 1927+654 from Its Pre- to Postflare States
- Author
-
Sibasish Laha, Eileen Meyer, Agniva Roychowdhury, Josefa Becerra Gonzalez, J. A. Acosta–Pulido, Aditya Thapa, Ritesh Ghosh, Ehud Behar, Luigi C. Gallo, Gerard A. Kriss, Francesca Panessa, Stefano Bianchi, Fabio La Franca, Nicolas Scepi, Mitchell C. Begelman, Anna Lia Longinotti, Elisabeta Lusso, Samantha Oates, Matt Nicholl, S. Bradley Cenko, Laha, Sibasish, Meyer, Eileen, Roychowdhury, Agniva, Becerra Gonzalez, Josefa, Acosta–pulido, J. A., Thapa, Aditya, Ghosh, Ritesh, Behar, Ehud, Gallo, Luigi C., Kriss, Gerard A., Panessa, Francesca, Bianchi, Stefano, La Franca, Fabio, Scepi, Nicola, Begelman, Mitchell C., Longinotti, Anna Lia, Lusso, Elisabeta, Oates, Samantha, Nicholl, Matt, and Cenko, S. Bradley
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Active Galactic Nuclei, Black Holes ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The nearby type-II AGN 1ES1927+654 went through a violent changing-look (CL) event beginning December 2017 during which the optical and UV fluxes increased by four magnitudes over a few months, and broad emission lines newly appeared in the optical/UV. By July 2018 the X-ray coronal emission had completely vanished, only to reappear a few months later. In this work we report the evolution of the radio, optical, UV and X-rays from the pre-flare state through mid-2021 with new and archival data from the Very Long Baseline Array (VLBA), the European VLBI Network, the Very Large Array (VLA), the Telescopio Nazionale Galileo (TNG), Gran Telescopio Canarias (GTC), The Neil Gehrels Swift observatory and XMM-Newton. The main results from our work are: (1) The source has returned to its pre-CL state in optical, UV, and X-ray; the disk-corona relation has been re-established as has been in the pre-CL state, with an $\alpha_{\rm OX}\sim 1.02$. The optical spectra are dominated by narrow emission lines. (2) The UV light curve follows a shallower slope of $\propto t^{-0.91\pm 0.04}$ compared to that predicted by a tidal disruption event. We conjecture that a magnetic flux inversion event is the possible cause for this enigmatic event. (3) The compact radio emission which we tracked in the pre-CL (2014), during CL (2018) and post-CL(2021) at spatial scales $, Comment: Resubmitted to ApJ following minor comments from the referee
- Published
- 2022
23. Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017
- Author
-
Katsuaki Asano, I. Jiménez, A. Fuentes, C. M. Raiteri, D. Dominis Prester, E. Molina, E. Colombo, Y. V. Troitskaya, Nikola Godinovic, Sidika Merve Colak, Jenni Jormanainen, Yuki Iwamura, Alessandra Lamastra, Lab Saha, Antoniya Valcheva, Sunay Ibryamov, Elena G. Larionova, B. De Lotto, Evgeni Ovcharov, D. Zarić, Kazuma Ishio, David A. Green, M. Villata, D. Horan, Givi N. Kimeridze, Alexander Hahn, S. Nozaki, M. Perri, Michael D. Joner, D. Neise, S. Loporchio, R. J. García López, Marcello Giroletti, Victor A. Acciari, V. Fallah Ramazani, Tomohiko Oka, Daniela Dorner, Narek Sahakyan, J. Kushida, M. Kopp, Lorenzo Bellizzi, Noah Biederbeck, Joseph Moody, M. Gaug, L. Schneider, A. López-Oramas, Daniel Morcuende, N. Rizzi, Jose Luis Contreras, G. Vanzo, Rodolfo Carosi, L. Maraschi, Andrés Baquero, M. I. Carnerero, R. Iotov, Mosè Mariotti, A. Paravac, John Hoang, Ashwani Pandey, Z. R. Weaver, Francesco Longo, F. D'Ammando, S. Paiano, Elina Lindfors, Moritz Hütten, J. Herrera, Koji Noda, Abelardo Moralejo, Laura Eisenberger, E. Moretti, Julian Sitarek, Marcos López-Moya, Wlodek Bednarek, L. Di Venere, Ashot Chilingarian, U. Barres de Almeida, Elisa Bernardini, I. Agudo, M. Feige, R. Z. Ivanidze, O. A. Merkulova, D. Depaoli, M. Spencer, Massimo Persic, J. van Scherpenberg, Pratik Majumdar, L. Kunkel, K. Nishijima, Stefano Ansoldi, Juan Cortina, Kai Phillip Schmidt, A. Berti, Riccardo Paoletti, Saverio Lombardi, Daniel Mazin, M. V. Fonseca, Damir Lelas, R. J. C. Vera, Sanae Inoue, Giacomo D'Amico, Dominik Baack, C. Perennes, A. A. Nikiforova, Yating Chai, Stefan Cikota, G. M. Madejski, A. Arbet Engels, Daniel Kerszberg, Manuel Artero, E. Do Souto Espiñeira, Tomislav Terzić, J. Becerra González, Martin Makariev, R. Mirzoyan, Yoshiki Ohtani, G. A. Borman, Pawel Gliwny, Jose Miguel Miranda, A. De Angelis, Vitaly Neustroev, Wara Chamani, Oscar Blanch, T. S. Grishina, Martin Will, M. Vazquez Acosta, Nicola Giglietto, L. V. Larionova, Lea Heckmann, Francesco Gabriele Saturni, Jorge Otero-Santos, R. A. Chigladze, M. Balbo, N. Marchili, D. Hadasch, P. G. Prada Moroni, A. A. Vasilyev, M. G. Nikolashvili, Jordi Delgado, V. Ramakrishnan, Christian Fruck, G. Busetto, Victoria Moreno, Luca Tosti, A. Rugliancich, C. Nigro, Marina Manganaro, Valeri M. Larionov, M. Balokovic, Manuel Delfino, A. Strigachev, J. M. Paredes, Manash R. Samal, Stefano Covino, I. Vovk, H. C. Lin, Ž. Bošnjak, Stefano Menchiari, Rumen Bachev, Marc Ribó, Dorota Sobczyńska, Carolin Wunderlich, Bernd Schleicher, M. Minev, Antonio Stamerra, Maria-Isabel Bernardos, I. S. Troitskiy, Merja Tornikoski, E. N. Kopatskaya, Shunsuke Sakurai, Camilla Maggio, Chiara Righi, F. Verrecchia, P. Temnikov, S. G. Jorstad, T. Schweizer, Hidetoshi Kubo, Lluis Font, A. Y. Lien, Toshiaki Inada, A. Scherbantin, Lorand A. Sigua, G. Maneva, Stefano Truzzi, B. Machado de Oliveira Fraga, V. Bozhilov, M. Palatiello, Alessandro Marchini, Chaitanya Priyadarshi, Alessia Spolon, Léa Jouvin, Konstancja Satalecka, Tomoki Saito, Giovanni Ceribella, Michele Doro, S. O. Kurtanidze, Carlo Vigorito, Pablo Peñil, D. Strom, Giacomo Bonnoli, Adrian Biland, Ana Babić, Alicia Fattorini, D. Hildebrand, Satoshi Fukami, G. Ferrara, Y. Kajiwara, Matteo Cerruti, P. Da Vela, Vassil Verguilov, Lovro Pavletić, C. Delgado Mendez, Emilia Järvelä, S. Mićanović, Sergey S. Savchenko, Ivica Puljak, M. Noethe, Simone Mender, Francesco Dazzi, V. Vitale, Manuela Mallamaci, Ivana Batković, F. Leone, M. I. Martínez, J. Rico, Alan P. Marscher, C. Lorey, S. Ventura, Tjark Miener, Anne Lähteenmäki, David Paneque, Masahiro Teshima, Jarred Gershon Green, Wrijupan Bhattacharyya, Kari Nilsson, R. Walter, M. Strzys, D. Reinhart, E. Zaharieva, Wen Ping Chen, Vitalii Sliusar, Jürgen Besenrieder, Francesco Giordano, Antonio Tutone, Thomas Bretz, J. Buss, Alok C. Gupta, Simona Righini, O. M. Kurtanidze, Ciro Bigongiari, O. Vince, D. Elsaesser, C. Leto, M. Garczarczyk, Sargis Gasparyan, J. Kania, Dario Hrupec, R. López-Coto, Wolfgang Rhode, I. Snidaric, D. A. Morozova, Vladimir A. Hagen-Thorn, Mitsunari Takahashi, J. A. Acosta-Pulido, E. Prandini, Marie Karjalainen, D. Miceli, Goran Damljanović, Evgeni Semkov, Alice Donini, L. A. Antonelli, J. A. Barrio, Y. Suda, D. Carosati, V. D'Elia, Fabrizio Tavecchio, A. C. Sadun, Tihomir Surić, C. Casadio, Karl Mannheim, Santiago Ubach, Y. Kobayashi, F. Di Pierro, European Commission, European Research Council, Ministerio de Ciencia e Innovación (España), Generalitat de Catalunya, Federal Ministry of Education and Research (Germany), German Research Foundation, Swiss National Science Foundation, Croatian Science Foundation, Ministry of Education, Science and Technological Development (Serbia), Bulgarian National Science Fund, National Aeronautics and Space Administration (US), Acciari, V. A., Ansoldi, S., Antonelli, L. A., Arbet Engels, A., Artero, M., Asano, K., Babi??, A., Baquero, A., Barres de Almeida, U., Barrio, J. A., Batkovi??, I., Becerra Gonz??lez, J., Bednarek, W., Bellizzi, L., Bernardini, E., Bernardos, M., Berti, A., Besenrieder, J., Bhattacharyya, W., Bigongiari, C., Blanch, O., Bo??njak, ??., Busetto, G., Carosi, R., Ceribella, G., Cerruti, M., Chai, Y., Chilingarian, A., Cikota, S., Colak, S. M., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D???amico, G., D???elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Delfino, M., Delgado, J., Delgado Mendez, C., Depaoli, D., Di Pierro, F., Di Venere, L., Do Souto Espi??eira, E., Dominis Prester, D., Donini, A., Doro, M., Fallah Ramazani, V., Fattorini, A., Ferrara, G., Fonseca, M. V., Font, L., Fruck, C., Fukami, S., Garc??a L??pez, R. J., Garczarczyk, M., Gasparyan, S., Gaug, M., Giglietto, N., Giordano, F., Gliwny, P., Godinovi??, N., Green, J. G., Green, D., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hoang, J., Hrupec, D., H??tten, M., Inada, T., Inoue, S., Ishio, K., Iwamura, Y., Jim??nez, I., Jormanainen, J., Jouvin, L., Kajiwara, Y., Karjalainen, M., Kerszberg, D., Kobayashi, Y., Kubo, H., Kushida, J., Lamastra, A., Lelas, D., Leone, F., Lindfors, E., Lombardi, S., Longo, F., L??pez-Coto, R., L??pez-Moya, M., L??pez-Oramas, A., Loporchio, S., Machado de Oliveira Fraga, B., Maggio, C., Majumdar, P., Makariev, M., Mallamaci, M., Maneva, G., Manganaro, M., Maraschi, L., Mariotti, M., Mart??nez, M., Mazin, D., Menchiari, S., Mender, S., Mi??anovi??, S., Miceli, D., Miener, T., Minev, M., Miranda, J. M., Mirzoyan, R., Molina, E., Moralejo, A., Morcuende, D., Moreno, V., Moretti, E., Neustroev, V., Nigro, C., Nilsson, K., Nishijima, K., Noda, K., Nozaki, S., Ohtani, Y., Oka, T., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavleti??, L., Pe??il, P., Perennes, C., Persic, M., Prada Moroni, P. G., Prandini, E., Priyadarshi, C., Puljak, I., Rib??, M., Rico, J., Righi, C., Rugliancich, A., Saha, L., Sahakyan, N., Saito, T., Sakurai, S., Satalecka, K., Saturni, F. G., Schmidt, K., Schweizer, T., Sitarek, J., nidari??, I., Sobczynska, D., Spolon, A., Stamerra, A., Strom, D., Strzys, M., Suda, Y., Suri??, T., Takahashi, M., Tavecchio, F., Temnikov, P., Terzi??, T., Teshima, M., Tosti, L., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Vanzo, G., Vazquez Acosta, M., Ventura, S., Verguilov, V., Vigorito, C. F., Vitale, V., Vovk, I., Will, M., Wunderlich, C., Zari??, D., Baack, D., Balbo, M., Biederbeck, N., Biland, A., Bretz, T., Buss, J., Dorner, D., Eisenberger, L., Elsaesser, D., Hildebrand, D., Iotov, R., Mannheim, K., Neise, D., Noethe, M., Paravac, A., Rhode, W., Schleicher, B., Sliusar, V., Walter, R., D???ammando, F., Horan, D., Lien, A. Y., Balokovi??, M., Madejski, G. M., Perri, M., Verrecchia, F., Leto, C., L??hteenm??ki, A., Tornikoski, M., Ramakrishnan, V., J??rvel??, E., Vera, R. J. C., Chamani, W., Villata, M., Raiteri, C. M., Gupta, A. C., Pandey, A., Fuentes, A., Agudo, I., Casadio, C., Semkov, E., Ibryamov, S., Marchini, A., Bachev, R., Strigachev, A., Ovcharov, E., Bozhilov, V., Valcheva, A., Zaharieva, E., Damljanovic, G., Vince, O., Larionov, V. M., Borman, G. A., Grishina, T. S., Hagen-Thorn, V. A., Kopatskaya, E. N., Larionova, E. G., Larionova, L. V., Morozova, D. A., Nikiforova, A. A., Savchenko, S. S., Troitskiy, I. S., Troitskaya, Y. V., Vasilyev, A. A., Merkulova, O. A., Chen, W. P., Samal, M., Lin, H. C., Moody, J. W., Sadun, A. C., Jorstad, S. G., Marscher, A. P., Weaver, Z. R., Feige, M., Kania, J., Kopp, M., Kunkel, L., Reinhart, D., Scherbantin, A., Schneider, L., Lorey, C., Acosta-Pulido, J. A., Carnerero, M. I., Carosati, D., Kurtanidze, S. O., Kurtanidze, O. M., Nikolashvili, M. G., Chigladze, R. A., Ivanidze, R. Z., Kimeridze, G. N., Sigua, L. A., Joner, M. D., Spencer, M., Giroletti, M., Marchili, N., Righini, S., Rizzi, N., Bonnoli, G., Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), MAGIC, FACT, Department of Electronics and Nanoengineering, Aalto-yliopisto, and Aalto University
- Subjects
electron ,PARTICLE-ACCELERATION ,ELECTRON ACCELERATION ,Radiation mechanisms: non-thermal ,RAY ,VHE [gamma ray] ,galaxies: active ,BL Lacertae objects: individual: Mrk 421 ,radiation mechanisms: non-thermal ,Electron ,Astrophysics ,GeV ,01 natural sciences ,7. Clean energy ,LARGE-AREA TELESCOPE ,law.invention ,OBSERVATIONS ,law ,ultraviolet ,optical ,MAGIC (telescope) ,correlation [flux] ,010303 astronomy & astrophysics ,X-ray: flux ,model: leptonic ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,BL-LACERTAE ,individual: Mrk 421 [BL Lacertae objects] ,flux [X-ray] ,Gamma ray ,flux: correlation ,Galaxies: active ,non-thermal [radiation mechanisms] ,Synchrotron ,SWIFT OBSERVATIONS ,active [galaxies] ,Spectral energy distribution ,Física nuclear ,Astrophysics - High Energy Astrophysical Phenomena ,Lorentz ,Flare ,LOG-PARABOLIC SPECTRA ,ACTIVE GALACTIC NUCLEI ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,radiation ,mechanisms: non-thermal ,LIGHT CURVES ,X-RAY ,MULTIWAVELENGTH ,GLAST ,leptonic [model] ,blazar ,0103 physical sciences ,TeV ,Blazar ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,MAGIC ,gamma ray: VHE ,Space and Planetary Science ,ddc:520 ,spectral ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Fermi Gamma-ray Space Telescope - Abstract
Full list of authors: Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; Artero, M.; Asano, K.; Babić, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J. A.; Batković, I.; Becerra González, J.; Bednarek, W.; Bellizzi, L.; Bernardini, E.; Bernardos, M.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Blanch, O.; Bošnjak, Ž.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; di Pierro, F.; di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Doro, M.; Fallah Ramazani, V.; Fattorini, A.; Ferrara, G.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinović, N.; Green, J. G.; Green, D.; Hadasch, D.; Hahn, A.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hütten, M.; Inada, T.; Inoue, S.; Ishio, K.; Iwamura, Y.; Jiménez, I.; Jormanainen, J.; Jouvin, L.; Kajiwara, Y.; Karjalainen, M.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Lombardi, S.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menchiari, S.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Neustroev, V.; Nigro, C.; Nilsson, K.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletić, L.; Peñil, P.; Perennes, C.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Priyadarshi, C.; Puljak, I.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saha, L.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Saturni, F. G.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Tosti, L.; Truzzi, S.; Tutone, A.; Ubach, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Wunderlich, C.; Zarić, D.; Baack, D.; Balbo, M.; Biederbeck, N.; Biland, A.; Bretz, T.; Buss, J.; Dorner, D.; Eisenberger, L.; Elsaesser, D.; Hildebrand, D.; Iotov, R.; Mannheim, K.; Neise, D.; Noethe, M.; Paravac, A.; Rhode, W.; Schleicher, B.; Sliusar, V.; Walter, R.; D'Ammando, F.; Horan, D.; Lien, A. Y.; Baloković, M.; Madejski, G. M.; Perri, M.; Verrecchia, F.; Leto, C.; Lähteenmäki, A.; Tornikoski, M.; Ramakrishnan, V.; Järvelä, E.; Vera, R. J. C.; Chamani, W.; Villata, M.; Raiteri, C. M.; Gupta, A. C.; Pandey, A.; Fuentes, A.; Agudo, I.; Casadio, C.; Semkov, E.; Ibryamov, S.; Marchini, A.; Bachev, R.; Strigachev, A.; Ovcharov, E.; Bozhilov, V.; Valcheva, A.; Zaharieva, E.; Damljanovic, G.; Vince, O.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.; Hagen-Thorn, V. A.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Morozova, D. A.; Nikiforova, A. A.; Savchenko, S. S.; Troitskiy, I. S.; Troitskaya, Y. V.; Vasilyev, A. A.; Merkulova, O. A.; Chen, W. P; Samal, M.; Lin, H. C.; Moody, J. W.; Sadun, A. C.; Jorstad, S. G.; Marscher, A. P.; Weaver, Z. R.; Feige, M.; Kania, J.; Kopp, M.; Kunkel, L.; Reinhart, D.; Scherbantin, A.; Schneider, L.; Lorey, C.; Acosta-Pulido, J. A.; Carnerero, M. I.; Carosati, D.; Kurtanidze, S. O.; Kurtanidze, O. M.; Nikolashvili, M. G.; Chigladze, R. A.; Ivanidze, R. Z.; Kimeridze, G. N.; Sigua, L. A.; Joner, M. D.; Spencer, M.; Giroletti, M.; Marchili, N.; Righini, S.; Rizzi, N.; Bonnoli, G.; MAGIC Collaboration; Fact Collaboration.-- This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations. Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsahovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components. Results. The very-high-energy (VHE; E 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow dierent patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario.We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from 0 min = 2104 to 0 max = 6105. © 2021 Georg Thieme Verlag. All rights reserved., The MAGIC Collaboration would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF, MPG and HGF; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish Ministerio de Ciencia e Innovación (MICINN) (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729-C6-5-R, FPA2017-90566-REDC, PID2019-104114RB-C31, PID2019-104114RB-C32, PID2019-105510GB-C31,PID2019-107847RB-C41, PID2019-107847RB-C42, PID2019-107847RB-C44, PID2019-107988GB-C22); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-268/16.12.2019 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2016-0588, SEV-2017-0709 and CEX2019-000920-S, and “María de Maeztu” CEX2019-000918-M, the Unidad de Excelencia “María de Maeztu” MDM-2015-0509-18-2 and the “la Caixa” Foundation (fellowship LCF/BQ/PI18/11630012) and by the CERCA program of the Generalitat de Catalunya; by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02; by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3; the Polish National Research Centre grant UMO-2016/22/M/ST9/00382; and by the Brazilian MCTIC, CNPq and FAPERJ. The important contributions from ETH Zurich grants ETH-10.08-2 and ETH-27.12-1 as well as the funding by the Swiss SNF and the German BMBF (Verbundforschung Astro- und Astroteilchenphysik) and HAP (Helmoltz Alliance for Astroparticle Physics) are gratefully acknowledged. Part of this work is supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”, project C3. We are thankful for the very valuable contributions from E. Lorenz, D. Renker and G. Viertel during the early phase of the project. We thank the Instituto de Astrofísica de Canarias for allowing us to operate the telescope at the Observatorio del Roque de los Muchachos in La Palma, the Max-Planck-Institut für Physik for providing us with the mount of the former HEGRA CT3 telescope, and the MAGIC collaboration for their support. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France. This work performed in part under DOE Contract DE-AC02-76SF00515. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC; Italy) and the California Institute of Technology (USA). This research has also made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. A.A.E and D.P acknowledge support from the Deutsche Forschungs gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2094 – 390783311. M. B. acknowledges support from the YCAA Prize Postdoctoral Fellowship and from the Black Hole Initiative at Harvard University, which is funded in part by the Gordon and Betty Moore Foundation (grant GBMF8273) and in part by the John Templeton Foundation. This publication makes use of data obtained at the Metsähovi Radio Observatory, operated by Aalto University in Finland. This research has made use of data from the OVRO 40-m monitoring program (Richards et al. 2011) which is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G and NSF grants AST-0808050 and AST-1109911. I.A. acknowledges financial support from the Spanish “Ministerio de Ciencia e Innovación” (MCINN) through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía-CSIC (SEV-2017-0709). Acquisition and reduction of the MAPCAT data was supported in part by MICINN through grants AYA2016-80889-P and PID2019-107847RB-C44. The MAPCAT observations were carried out at the German-Spanish Calar Alto Observatory, which is jointly operated by Junta de Andalucía and Consejo Superior de Investigaciones Científicas. C.C. acknowledges support from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program under the grant agreement No 771282. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants KP-06-H28/3 (2018), KP-06-H38/4 (2019) and KP-06-KITAJ/2 (2020). We acknowledge support by Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-277/16.12.2019 and DO1-268/16.12.2019 of the Ministry of Education and Science of the Republic of Bulgaria. This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract No 451-03-68/2020-14/200002). G.D. acknowledges observing grant support from the Institute of Astronomy and Rozhen NAO BAS through the bilateral joint research project “Gaia Celestial Reference Frame (CRF) and fast variable astronomical objects” (2020–2022, head – G. Damljanovic). The BU group was supported in part by NASA Fermi guest investigator program grants 80NSSC19K1505 and 80NSSC20K1566. This study was based in part on observations conducted using the 1.8 m Perkins Telescope Observatory (PTO) in Arizona, which is owned and operated by Boston University. This article is partly based on observations made with the LCOGT Telescopes, one of whose nodes is located at the Observatorios de Canarias del IAC on the island of Tenerife in the Observatorio del Teide. This article is also based partly on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR-19-6174. Based on observations with the Medicina telescope operated by INAF – Istituto di Radioastronomia.
- Published
- 2021
- Full Text
- View/download PDF
24. Torus and polar dust dependence on active galactic nucleus properties
- Author
-
I. García-Bernete, O. González-Martín, C. Ramos Almeida, A. Alonso-Herrero, M. Martínez-Paredes, M. J. Ward, P. F. Roche, J. A. Acosta-Pulido, E. López-Rodríguez, D. Rigopoulou, and D. Esparza-Arredondo
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
We present a statistical analysis of the properties of the obscuring material around active galactic nuclei (AGN). This study represents the first of its kind for an ultra-hard X-ray (14–195 keV; Swift/BAT), volume-limited (DL < 40 Mpc) sample of 24 Seyfert (Sy) galaxies (BCS40 sample) using high angular resolution infrared data and various torus models: smooth, clumpy, and two-phase torus models and clumpy disc+wind models. We find that torus models (i.e. without including the polar dusty wind component) and disc+wind models provide the best fits for a comparable number of galaxies, 8 out of 24 (33.3%) and 9 out of 24 (37.5%), respectively. We find that the best-fit models depend on the hydrogen column density (NHX−ray), which is related to the X-ray (unobscured or obscured) and optical (Sy1/Sy2) classification. In particular, smooth, clumpy, and two-phase torus models are best at reproducing the infrared (IR) emission of AGN with relatively high hydrogen column density (median value of log (NHX−ray cm−2) = 23.5 ± 0.8; i.e. Sy2). However, clumpy disc+wind models provide the best fits to the nuclear IR spectral energy distributions (SEDs) of Sy1/1.8/1.9 (median value of log (NHX−ray cm−2) = 21.0 ± 1.0) – specifically, in the near-infrared (NIR) range. The success of the disc+wind models in fitting the NIR emission of Sy1 galaxies is due to the combination of adding large graphite grains to the dust composition and self-obscuration effects caused by the wind at intermediate inclinations. In general, we find that the Seyfert galaxies having unfavourable (favourable) conditions, namely, nuclear hydrogen column density and Eddington ratio, for launching IR dusty polar outflows are best-fitted with smooth, clumpy, and two-phase torus (disc+wind) models, confirming the predictions from simulations. Therefore, our results indicate that the nature of the inner dusty structure in AGN depends on the intrinsic AGN properties.
- Published
- 2022
- Full Text
- View/download PDF
25. A Multi-epoch, Multiwavelength Study of the Classical FUor V1515 Cyg Approaching Quiescence
- Author
-
Zs. M. Szabó, Á. Kóspál, P. Ábrahám, S. Park, M. Siwak, J. D. Green, A. Pál, J. A. Acosta-Pulido, J.-E. Lee, M. Ibrahimov, K. Grankin, B. Kovács, Zs. Bora, A. Bódi, B. Cseh, G. Csörnyei, Marek Dróżdż, O. Hanyecz, B. Ignácz, Cs. Kalup, R. Könyves-Tóth, M. Krezinger, L. Kriskovics, Waldemar Ogłoza, A. Ordasi, K. Sárneczky, B. Seli, R. Szakáts, Á. Sódor, A. Szing, K. Vida, and J. Vinkó
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Historically, FU Orionis-type stars are low-mass, pre-main sequence stars. The members of this class experience powerful accretion outbursts and remain in an enhanced accretion state for decades or centuries. V1515 Cyg, a classical FUor, started brightening in the 1940s and reached its peak brightness in the late 1970s. Following a sudden decrease in brightness it stayed in a minimum state for a few months, then started a brightening for several years. We present results of our ground-based photometric monitoring complemented with optical/NIR spectroscopic monitoring. Our light curves show a long-term fading with strong variability on weekly and monthly time scales. The optical spectra show P Cygni profiles and broad blue-shifted absorption lines, common properties of FUors. However, V1515 Cyg lacks the P Cygni profile in the Ca II 8498 \r{A} line, a part of the Ca infrared triplet (IRT), formed by an outflowing wind, suggesting that the absorbing gas in the wind is optically thin. The newly obtained near-infrared spectrum shows the strengthening of the CO bandhead and the FeH molecular band, indicating that the disk has become cooler since the last spectroscopic observation in 2015. The current luminosity of the accretion disk dropped from the peak value of 138 $L_{\odot}$ to about 45 $L_{\odot}$, suggesting that the long-term fading is also partly caused by the dropping of the accretion rate., Comment: 26 pages, 19 figure, accepted for publication in The Astrophysical Journal
- Published
- 2022
- Full Text
- View/download PDF
26. Bow shocks, nova shells, disc winds and tilted discs: the nova-like V341 Ara has it all
- Author
-
N Castro Segura, C Knigge, J A Acosta-Pulido, D Altamirano, S del Palacio, J V Hernandez Santisteban, M Pahari, P Rodriguez-Gil, C Belardi, D A H Buckley, M R Burleigh, M Childress, R P Fender, D M Hewitt, D J James, R B Kuhn, N P M Kuin, J Pepper, A A Ponomareva, M L Pretorius, J E Rodríguez, K G Stassun, D R A Williams, and P A Woudt
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Accretion ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,purl.org/becyt/ford/1.3 [https] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,Shock waves ,spectroscopic [Binaries] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Novae, cataclysmic variables ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Winds, outflows ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Accretion discs - Abstract
V341 Ara was recently recognised as one of the closest (d ~ 150 pc) and brightest (V~ 10) nova-like cataclysmic variables. This unique system is surrounded by a bright emission nebula, likely to be the remnant of a recent nova eruption. Embedded within this nebula is a prominent bow-shock, where the system's accretion disc wind runs into its own nova shell. In order to establish its fundamental properties, we present the first comprehensive multi-wavelength study of the system. Long-term photometry reveals quasi-periodic, super-orbital variations with a characteristic time-scale of 10-16 days and typical amplitude of ~1 mag. High-cadence photometry from TESS reveals for the first time both the orbital period and a "negative superhump" period. The latter is usually interpreted as the signature of a tilted accretion disc. We propose a recently developed disc instability model as a plausible explanation for the photometric behaviour. In our spectroscopic data, we clearly detect anti-phased absorption and emission line components. Their radial velocities suggest a high mass ratio, which in turn implies an unusually low white dwarf mass. We also constrain the wind mass-loss rate of the system from the spatially resolved [O iii] emission produced in the bow-shock; this can be used to test and calibrate accretion disc wind models. We suggest a possible association between V341 Ara and a "guest star" mentioned in Chinese historical records in AD1240. If this marks the date of the system's nova eruption, V341 Ara would be the oldest recovered nova of its class and an excellent laboratory for testing nova theory., Accepted in MNRAS
- Published
- 2021
- Full Text
- View/download PDF
27. Studying the Extreme Behaviour of 1ES 2344+51.4
- Author
-
Daniela Dorner, Alexei V. Filippenko, Valeri M. Larionov, Vandad Fallah Ramazani, Vitalii Sliusar, Marina Manganaro, J. A. Acosta-Pulido, C. M. Raiteri, WeiKang Zheng, Axel Arbet-Engels, Matteo Cerruti, and Talvikki Hovatta
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,FOS: Physical sciences ,Astrophysics ,Redshift ,Spectral line ,Synchrotron ,law.invention ,Crab Nebula ,13. Climate action ,law ,Spectral energy distribution ,MAGIC (telescope) ,Astrophysics - High Energy Astrophysical Phenomena ,Flare - Abstract
The BL Lac type object 1ES 2344+51.4 (redshift z = 0.044) was one of the first sources to be included in the extreme high-peaked BL Lac (EHBL) family. EHBLs are characterised by a broadband spectral energy distribution (SED) featuring the synchrotron peak above ∼ 1017 Hz. From previous studies of 1ES 2344+51.4 in the very-high-energy (VHE, >100 GeV) gamma-ray range, its inverse Compton (IC) peak is expected around 200 GeV. 1ES 2344+51.4 was first detected in the VHE range by Whipple in 1995 during a very bright outburst showing around 60% of the flux of the Crab Nebula above 350 GeV. In 1996, during another flare in the X-ray band, observations with Beppo-SAX revealed a large 0.1-10 keV flux variability on timescales of a few hours and an impressive frequency shift of the synchrotron peak to above 1018 Hz. Later on, this extreme behaviour of the source motivated several multiwavelength campaigns, during most of which the source appeared to be in a low state and showing no clear signs of “extremeness”. In August 2016, FACT detected 1ES 2344+51.4 in a high state and triggered multiwavelength observations. The VHE observations show a flux level similar to the historical maximum of 1995. The combination of MAGIC, FACT, and Fermi-LAT spectra provides an unprecedented characterisation of the IC peak. It is the first time that simultaneous HE and VHE data are presented for this object during a flaring episode. We find an atypically hard spectrum in the VHE γ-rays as well as a hard X-ray spectrum, revealing a renewed extreme behaviour., PoS: Proceedings of Science, 358, ISSN:1824-8039, Proceedings of 36th International Cosmic Ray Conference (ICRC 2019)
- Published
- 2021
- Full Text
- View/download PDF
28. A study of the photometric and spectroscopic variations of the prototypical FU Orionis-type star V1057 Cyg
- Author
-
Péter Ábrahám, B. Seli, Sunkyung Park, A. Moór, Ágnes Kóspál, J. A. Acosta-Pulido, B. Cseh, Michal Siwak, Joel D. Green, Réka Könyves-Tóth, A. Ordasi, A. Pál, Jeong-Eun Lee, O. Hanyecz, Krisztián Sárneczky, Krisztián Vida, M. Krezinger, A. Szing, Zs. M. Szabó, G. Csörnyei, Róbert Szakáts, and Levente Kriskovics
- Subjects
Physics ,010308 nuclear & particles physics ,Stratospheric Observatory for Infrared Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Doubly ionized oxygen ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Light curve ,01 natural sciences ,Exoplanet ,Nordic Optical Telescope ,Photometry (optics) ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Observatory ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Among the low-mass pre-main sequence stars, a small group called FU Orionis-type objects (FUors) are notable for undergoing powerful accretion outbursts. V1057 Cyg, a classical example of an FUor, went into outburst around 1969-1970, after which it faded rapidly, making it the fastest fading FUor known. Around 1995, a more rapid increase in fading occurred. Since that time, strong photometric modulations have been present. We present nearly 10 years of source monitoring at Piszk\'estet\H{o} Observatory, complemented with optical/near-infrared photometry and spectroscopy from the Nordic Optical Telescope, Bohyunsan Optical Astronomy Observatory, Transiting Exoplanet Survey Satellite, and the Stratospheric Observatory for Infrared Astronomy. Our light curves show continuation of significant quasi-periodic variability in brightness over the past decade. Our spectroscopic observations show strong wind features, shell features, and forbidden emission lines. All of these spectral lines vary with time. We also report the first detection of [S II], [N II], and [O III] lines in the star., Comment: 37 pages, 20 figures
- Published
- 2021
- Full Text
- View/download PDF
29. The complex variability of blazars: time-scales and periodicity analysis in S4 0954+65
- Author
-
A. A. Nikiforova, Efthalia Traianou, Sergey S. Savchenko, J. Escudero, L. V. Larionova, T. S. Andreeva, V. Bozhilov, W. J. Hou, An-Li Tsai, Carolina Casadio, Anne Lähteenmäki, Ioannis Myserlis, Merja Tornikoski, A. Fuentes, J. A. Acosta-Pulido, I. Agudo, S. O. Kurtanidze, A. A. Arkharov, F. D'Ammando, M. I. Carnerero, M. Hart, D. Ivanov, Goran Damljanović, Evgeni Semkov, M. Stojanovic, J. Otero-Santos, Y. V. Troitskaya, I. Rahimov, Wen Ping Chen, E. N. Kopatskaya, D. Shakhovskoy, Alok C. Gupta, Rumen Bachev, D. Carosati, A. Strigachev, Antoniya Valcheva, Elena G. Larionova, M. Nakamura, M. G. Nikolashvili, Alan P. Marscher, G. A. Borman, Valeri M. Larionov, N. Marchili, Z. R. Weaver, T. Pursimo, Marcello Giroletti, Marco Berton, C. Konstantopoulou, Simona Righini, O. M. Kurtanidze, I. Björklund, T. Sakamoto, C. M. Raiteri, M. Villata, T. S. Grishina, Evgeni Ovcharov, M. Minev, J. Y. Kim, E. Zaharieva, Vladimir A. Hagen-Thorn, S. G. Jorstad, Clemens Thum, D. A. Morozova, O. Vince, A. A. Vasilyev, G. Markovic, Givi N. Kimeridze, Lorand A. Sigua, Erika Benítez, David Hiriart, I. S. Troitskiy, National Aeronautics and Space Administration (US), Ministry of Education, Science and Technological Development (Serbia), Bulgarian National Science Fund, Shota Rustaveli National Science Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), National Institute for Astrophysics, St. Petersburg State University, Boston University, Instituto de Astrofísica de Canarias, CSIC, Russian Academy of Sciences, RAS - Pulkovo Astronomical Observatory, Bulgarian Academy of Sciences, Universidad Nacional Autónoma de México, Metsähovi Radio Observatory, Department of Electronics and Nanoengineering, Sofia University St. Kliment Ohridski, EPT Observatories, Institute of Electronic Structure and Laser, National Central University, University of Belgrade, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Aryabhatta Research Institute of Observational Sciences, Korea Astronomy and Space Science Institute, Georgian National Academy of Sciences, Nordic Optical Telescope, Max Planck Institute for Radio Astronomy, Aoyama Gakuin University, IRAM, Aalto-yliopisto, and Aalto University
- Subjects
individual: S4 0954+65 [BL Lacertae objects] ,active [Galaxies] ,BL Lacertae objects: individual: S4 0954+65 ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Library science ,7. Clean energy ,01 natural sciences ,IRAM 30m telescope ,Observatory ,0103 physical sciences ,Bulgarian ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,general [BL Lacertae objects] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Galaxies: active ,BL Lacertae objects: general ,Astrophysics - Astrophysics of Galaxies ,language.human_language ,Joint research ,Galaxies: jets ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,language ,jets [Galaxies] ,Christian ministry ,Astrophysics - High Energy Astrophysical Phenomena ,Administration (government) - Abstract
Full list of authors: Raiteri, C. M.; Villata, M.; Larionov, V. M.; Jorstad, S. G.; Marscher, A. P.; Weaver, Z. R.; Acosta-Pulido, J. A.; Agudo, I.; Andreeva, T.; Arkharov, A.; Bachev, R.; Benítez, E.; Berton, M.; Björklund, I.; Borman, G. A.; Bozhilov, V.; Carnerero, M. I.; Carosati, D.; Casadio, C.; Chen, W. P. Damljanovic, G.; D'Ammando, F.; Escudero, J.; Fuentes, A.; Giroletti, M.; Grishina, T. S.; Gupta, A. C.; Hagen-Thorn, V. A.; Hart, M.; Hiriart, D.; Hou, W. -J.; Ivanov, D.; Kim, J. -Y.; Kimeridze, G. N.; Konstantopoulou, C.; Kopatskaya, E. N.; Kurtanidze, O. M.; Kurtanidze, S. O.; Lähteenmäki, A.; Larionova, E. G.; Larionova, L. V.; Marchili, N.; Markovic, G.; Minev, M.; Morozova, D. A.; Myserlis, I.; Nakamura, M.; Nikiforova, A. A.; Nikolashvili, M. G.; Otero-Santos, J.; Ovcharov, E.; Pursimo, T.; Rahimov, I.; Righini, S.; Sakamoto, T.; Savchenko, S. S.; Semkov, E. H.; Shakhovskoy, D.; Sigua, L. A.; Stojanovic, M.; Strigachev, A.; Thum, C.; Tornikoski, M.; Traianou, E.; Troitskaya, Y. V.; Troitskiy, I. S.; Tsai, A.; Valcheva, A.; Vasilyev, A. A.; Vince, O.; Zaharieva, E., Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time. © 2021 The Author(s)., This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. Partly based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This article is partly based on observations made in the Observatorios de Canarias del IAC with the Liverpool telescope operated on the island of La Palma by the Liverpool John Moores University in the Observatorio del Roque de Los Muchachos. This article is partly based on observations made with the LCOGT Telescopes, one of whose nodes is located at the Observatorios de Canarias del IAC on the island of Tenerife in the Observatorio del Teide. This article is partly based on observations made with the IAC-80 operated on the island of Tenerife by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide. Many thanks are due to the IAC support astronomers and telescope operators for supporting the observations at the IAC-80 telescope. This publication makes use of data obtained at Metsähovi Radio Observatory, operated by Aalto University in Finland. This research has made use of NASA’s Astrophysics Data System and of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The research at Boston University was supported by NASA grants 80NSSC20K1566 (Fermi Guest Investigator Program) and 80NSSC21K0243 (TESS Guest Investigator Program). This study was based (in part) on observations conducted using the 1.8 m Perkins Telescope Observatory (PTO) in Arizona (USA), which is owned and operated by Boston University. GD, MS, GM, and OV acknowledge the observing grant support from the Institute of Astronomy and Rozhen NAO BAS through the bilateral joint research project ‘Gaia Celestial Reference Frame (CRF) and fast variable astronomical objects’ (2020–2022, leader is G.Damljanovic), and support by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract No 451-03-68/2020-14/200002) This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 18-13/2017, KP-06-H28/3 (2018), KP-06-H38/4 (2019), and KP-06-KITAJ/2 (2020). SOK acknowledges financial support by Shota Rustaveli National Science Foundation of Georgia under contract PHDF-18-354 EB acknowledges support from DGAPA-PAPIIT GRANT IN113320. This work is partly based upon observations carried out at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir (OAN- SPM), Baja California, Mexico. We acknowledge support by Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Project DO1-383/18.12.2020 of the Ministry of Education and Science of the Republic of Bulgaria. IA acknowledges financial support from the Spanish ‘Ministerio de Ciencia e Innovación’ (MCINN) through the ‘Center of Excellence Severo Ochoa’ award for the Instituto de Astrofísica de Andalucía-CSIC (SEV-2017-0709). Acquisition and reduction of the POLAMI data was supported in part by MICINN through grants AYA2016-80889-P and PID2019-107847RB-C44. The POLAMI observations were carried out at the IRAM 30m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
- Published
- 2021
30. The dual nature of blazar fast variability. Space and ground observations of S5 0716+714
- Author
-
F. D'Ammando, D. Carosati, Evgeni Semkov, D. O. Mirzaqulov, Lorand A. Sigua, Giacomo Bonnoli, Katsura Matsumoto, M. Nakamura, Valeri M. Larionov, V. Dhiman, A. Di Maggio, M. I. Carnerero, M. Villata, J. M. Lopez, A. A. Nikiforova, A. A. Vasilyev, T. Pursimo, An-Li Tsai, Sh. A. Ehgamberdiev, Raúl Mújica, G. A. Borman, C. M. Raiteri, Sofia O. Kurtanidze, J. A. Acosta-Pulido, Alessandro Marchini, A. V. Zhovtan, Alok C. Gupta, M. G. Nikolashvili, I. S. Troitsky, David Hiriart, L. Stiaccini, C. Lin, G. V. Baida, D. N. Okhmat, T. Sakamoto, Barbara Balmaverde, Erika Benítez, Wen Ping Chen, Omar M. Kurtanidze, Givi N. Kimeridze, N. Rizzi, J. Otero-Santos, National Aeronautics and Space Administration (US), Ministry of Education, Youth and Science (Bulgaria), Japan Society for the Promotion of Science, Ministry of Education, Culture, Sports, Science and Technology (Japan), Shota Rustaveli National Science Foundation, Ministerio de Ciencia, Innovación y Universidades (España), and Universidad Nacional Autónoma de México
- Subjects
active [Galaxies] ,galaxies: active ,galaxies: jets ,galaxies: BL Lacertae objects: general ,galaxies: BL Lacertae objects: individual: S5 0716+714 ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Space (mathematics) ,01 natural sciences ,0103 physical sciences ,Blazar ,010303 astronomy & astrophysics ,Mathematical physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,general [BL Lacertae objects] ,Astronomy and Astrophysics ,BL Lacertae objects: general ,Galaxies: active ,DUAL (cognitive architecture) ,Space and Planetary Science ,Galaxies: jets ,BL Lacertae objects: individual: S5 0716+714 ,individual: S5 0716+714 [BL Lacertae objects] ,jets [Galaxies] ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Full list of authors: Raiteri, C. M.; Villata, M.; Carosati, D.; Benítez, E.; Kurtanidze, S. O.; Gupta, A. C.; Mirzaqulov, D. O.; D'Ammando, F.; Larionov, V. M.; Pursimo, T.; Acosta-Pulido, J. A.; Baida, G. V.; Balmaverde, B.; Bonnoli, G.; Borman, G. A.; Carnerero, M. I.; Chen, W. -P.; Dhiman, V.; Di Maggio, A.; Ehgamberdiev, S. A.; Hiriart, D.; Kimeridze, G. N.; Kurtanidze, O. M.; Lin, C. S.; Lopez, J. M.; Marchini, A.; Matsumoto, K.; Mujica, R.; Nakamura, M.; Nikiforova, A. A.; Nikolashvili, M. G.; Okhmat, D. N.; Otero-Santos, J.; Rizzi, N.; Sakamoto, T.; Semkov, E.; Sigua, L. A.; Stiaccini, L.; Troitsky, I. S.; Tsai, A. L.; Vasilyev, A. A.; Zhovtan, A. V., Blazar S5 0716+714 is well-known for its short-term variability, down to intraday time-scales. We here present the 2-min cadence optical light curve obtained by the TESS space telescope in 2019 December-2020 January and analyse the object fast variability with unprecedented sampling. Supporting observations by the Whole Earth Blazar Telescope Collaboration in B, V, R, and I bands allow us to investigate the spectral variability during the TESS pointing. The spectral analysis is further extended in frequency to the UV and X-ray bands with data from the Neil Gehrels Swift Observatory. We develop a new method to unveil the shortest optical variability time-scales. This is based on progressive de-trending of the TESS light curve by means of cubic spline interpolations through the binned fluxes, with decreasing time bins. The de-trended light curves are then analysed with classical tools for time-series analysis (periodogram, autocorrelation, and structure functions). The results show that below 3 d there are significant characteristic variability time-scales of about 1.7, 0.5, and 0.2 d. Variability on time-scales $\lesssim 0.2$ d is strongly chromatic and must be ascribed to intrinsic energetic processes involving emitting regions, likely jet substructures, with dimension less than about 10-3 pc. In contrast, flux changes on time-scales $\gtrsim 0.5$ d are quasi-achromatic and are probably due to Doppler factor changes of geometric origin. © 2020 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society, The Astronomical Observatory of the University of Siena thanks the friend amateur astronomers Massimo Conti and Claudio Vallerani for their invaluable and unceasing contribution, essential for the performance of the observatory. This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. This research has made use of NASA's Astrophysics Data System and of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. Based (partly) on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. This work is partly based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM), Baja California, Mexico. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grantsDN18-13/2017, KP06-H28/3, and KP-06-PN38/4. KM acknowledges JSPS KAKENHI grant no. JP19K03930. SOK acknowledges financial support by Shota Rustaveli National Science Foundation of Georgia under contract PHDF-18-354. EB acknowledges support from DGAPAPAPIIT GRANT IN113320. GB acknowledges financial support from the State Agency for Research of the Spanish MCIU through the 'Center of Excellence Severo Ochoa' award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709).
- Published
- 2020
31. Low optical polarisation at the core of the optically-thin jet of M87
- Author
-
A. Y. Fresco, Mercedes Prieto, Andrea Merloni, J. A. Fernández-Ontiveros, and J. A. Acosta-Pulido
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Linear polarization ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Optical polarization ,Polarimeter ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Position angle ,01 natural sciences ,Waveplate ,Astrophysics - Astrophysics of Galaxies ,symbols.namesake ,Knot (unit) ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,symbols ,Stokes parameters ,Atomic physics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Circular polarization - Abstract
We study the optical linear and circular polarisation in the optically-thin regime of the core and jet of M87. Observations were acquired two days before the Event Horizon Telescope (EHT) campaign in early April 2017. A high degree ($\sim 20$ per cent) of linear polarisation (P$_{\rm lin}$) is detected in the bright jet knots resolved at $\sim 10\, \rm{arcsec}$ to $23\, \rm{arcsec}$ ($0.8$-$1.8\, \rm{kpc}$) from the centre, whereas the nucleus and inner jet show P$_{\rm lin} \lesssim 5$ per cent. The position angle of the linear polarisation shifts by $\sim 90$ degrees from each knot to the adjacent ones, with the core angle perpendicular to the first knot. The nucleus was in a low level of activity (P$_{\rm lin} \sim 2$-$3$ per cent), and no emission was detected from HST-1. No circular polarisation was detected either in the nucleus or the jet above a $3\sigma$ level of P$_{\rm circ} \leq 1.5$ per cent, discarding the conversion of P$_{\rm lin}$ into P$_{\rm circ}$. A disordered magnetic field configuration or a mix of unresolved knots polarised along axes with different orientations could explain the low P$_{\rm lin}$. The latter implies a smaller size of the core knots, in line with current interferometric observations. Polarimetry with EHT can probe this scenario in the future. A steep increase of both P$_{\rm lin}$ and P$_{\rm circ}$ with increasing frequency is expected for the optically-thin domain, above the turnover point. This work describes the methodology to recover the four Stokes parameters using a $\lambda/4$ wave-plate polarimeter., Comment: Accepted for publication in MNRAS. 10 pages, 8 figures
- Published
- 2020
32. The infrared to X-ray correlation spectra of unobscured type 1 active galactic nuclei
- Author
-
Mislav Baloković, I. García-Bernete, J. A. Acosta-Pulido, C. Ramos Almeida, Martin Ward, and Hermine Landt
- Subjects
Active galactic nucleus ,Infrared ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Spectral line ,law.invention ,Telescope ,law ,Ionization ,0103 physical sciences ,Emission spectrum ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Luminous infrared galaxy ,Physics ,010308 nuclear & particles physics ,X-ray ,Astronomy ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We use new X-ray data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR), near-infrared (NIR) fluxes, and mid-infrared (MIR) spectra of a sample of 24 unobscured type 1 active galactic nuclei (AGN) to study the correlation between various hard X-ray bands between 3 and 80 keV and the infrared (IR) emission. The IR to X-ray correlation spectrum (IRXCS) shows a maximum at ~15-20 micron, coincident with the peak of the AGN contribution to the MIR spectra of the majority of the sample. There is also a NIR correlation peak at ~2 micron, which we associate with the NIR bump observed in some type 1 AGN at ~1-5 micron and is likely produced by nuclear hot dust emission. The IRXCS shows practically the same behaviour in all the X-ray bands considered, indicating a common origin for all of them. We finally evaluated correlations between the X-ray luminosities and various MIR emission lines. All the lines show a good correlation with the hard X-rays (rho>0.7), but we do not find the expected correlation between their ionization potentials and the strength of the IRXCS., 20 pages, 6 figures, accepted by MNRAS
- Published
- 2017
- Full Text
- View/download PDF
33. Uncovering the host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy FBQS J1644+2619
- Author
-
Ranieri D. Baldi, Alessandro Capetti, Filippo D'Ammando, C. Ramos Almeida, M. Orienti, C. M. Raiteri, J. A. Acosta-Pulido, ITA, and ESP
- Subjects
Luminous infrared galaxy ,Physics ,Active galactic nucleus ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Astronomy and Astrophysics ,Type-cD galaxy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Galaxy ,Space and Planetary Science ,Bulge ,0103 physical sciences ,Elliptical galaxy ,Astrophysics::Earth and Planetary Astrophysics ,Surface brightness ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy - Abstract
The discovery of $\gamma$-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1) galaxies has questioned the need for large black hole masses (> 10$^8$ M$_{\odot}$) to launch relativistic jets. We present near-infrared data of the $\gamma$-ray-emitting NLSy1 FBQS J1644+2619 that were collected using the camera CIRCE (Canarias InfraRed Camera Experiment) at the 10.4-m Gran Telescopio Canarias to investigate the structural properties of its host galaxy and to infer the black hole mass. The 2D surface brightness profile is modelled by the combination of a nuclear and a bulge component with a S\'ersic profile with index $n$ = 3.7, indicative of an elliptical galaxy. The structural parameters of the host are consistent with the correlations of effective radius and surface brightness against absolute magnitude measured for elliptical galaxies. From the bulge luminosity, we estimated a black hole mass of (2.1$\pm$0.2) $\times$10$^8$ M$_{\odot}$, consistent with the values characterizing radio-loud active galactic nuclei., Comment: 5 pages, 3 figures, 1 table. Monthly Notices of the Royal Astronomical Society Letter, Vol. 469, L11-L15
- Published
- 2017
- Full Text
- View/download PDF
34. Quasi-periodic behaviour in the optical and γ-ray light curves of blazars 3C 66A and B2 1633+38
- Author
-
C. Ballester Niebla, Elena G. Larionova, Paul S. Smith, N. Castro Segura, Valeri M. Larionov, E. N. Kopatskaya, M. Villata, Yu. V. Troitskaya, T. S. Grishina, M. I. Carnerero, A. A. Nikiforova, J. Becerra González, J. A. Acosta-Pulido, Pablo Peñil, G. A. Borman, Ivan S. Troitsky, Sergey S. Savchenko, C. M. Raiteri, D. A. Morozova, A. A. Vasilyev, and J. Otero-Santos
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Quasar ,Astrophysics ,Correlation function (astronomy) ,Light curve ,01 natural sciences ,law.invention ,Telescope ,Space and Planetary Science ,Observatory ,law ,0103 physical sciences ,Blazar ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,BL Lac object - Abstract
We report on quasi-periodic variability found in two blazars included in the Steward Observatory Blazar Monitoring data sample: the BL Lac object 3C 66A and the Flat Spectrum Radio Quasar B2 1633+38. We collect optical photometric and polarimetric data in V and R bands of these sources from different observatories: St. Petersburg University, Crimean Astrophysical Observatory, WEBT-GASP, Catalina Real-Time Transient Survey, Steward Observatory, STELLA Robotic Observatory and Katzman Automatic Imaging Telescope. In addition, an analysis of the $\gamma$-ray light curves from $\textit{Fermi}$-LAT is included. Three methods are used to search for any periodic behaviour in the data: the Z-transform Discrete Correlation Function, the Lomb-Scargle periodogram and the Weighted Wavelet Z-transform. We find evidences of possible quasi-periodic variability in the optical photometric data of both sources with periods of $\sim$3 years for 3C 66A and $\sim$1.9 years for B2 1633+38, with significances between 3$\sigma$ and 5$\sigma$. Only B2 1633+38 shows evidence of this behaviour in the optical polarized data set at a confidence level of 2$\sigma$-4$\sigma$. This is the first reported evidence of quasi-periodic behaviour in the optical light curve of B2 1633+38. Also a hint of quasi-periodic behaviour is found in the $\gamma$-ray light curve of B2 1633+38 with a confidence level $\geqslant$2$\sigma$, while no periodicity is observed for 3C 66A in this energy range. We propose different jet emission models that could explain the quasi-periodic variability and the differences found between these two sources., Comment: Accepted for publication in MNRAS
- Published
- 2020
35. Multiwavelength Variability of BL Lacertae Measured with High Time Resolution
- Author
-
Katsura Matsumoto, Ivan S. Troitsky, G. V. Baida, Evgeni Ovcharov, Yu. V. Troitskaya, Svetlana G. Jorstad, An-Li Tsai, Sh. A. Ehgamberdiev, M. I. Carnerero, Alan P. Marscher, V. Dhiman, S. O. Kurtanidze, D. A. Morozova, Karen E. Williamson, A. V. Zhovtan, Krista Lynne Smith, O. Vince, M. Villata, A. A. Nikiforova, M. Minev, J. J. Slater, H. Y. Hsiao, A. A. Vasilyev, A. Strigachev, Wen Ping Chen, C. M. Raiteri, Goran Damljanović, J. A. Acosta-Pulido, Antoniya Valcheva, Sunay Ibryamov, Evgeni Semkov, D. O. Mirzaqulov, Erika Benítez, Rumen Bachev, Elena G. Larionova, Thomas J. Balonek, David Hiriart, Alok C. Gupta, E. Zaharieva, Givi N. Kimeridze, Z. R. Weaver, D. J. Dougherty, M. G. Nikolashvili, Ryota Matsumura, Valeri M. Larionov, D. Carosati, T. S. Grishina, A. C. Sadun, Sergey S. Savchenko, V. Bozhilov, M. Stojanovic, O. M. Kurtanidze, N. Rizzi, M. Hart, G. A. Borman, Michael D. Joner, and E. N. Kopatskaya
- Subjects
Physics ,Active galactic nucleus ,Swift Gamma-Ray Burst Mission ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Astrophysics ,Light curve ,Polarization (waves) ,01 natural sciences ,Exoplanet ,law.invention ,Telescope ,Space and Planetary Science ,law ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Blazar ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Fermi Gamma-ray Space Telescope - Abstract
In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000–10000 Å with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at γ-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ∼0.5 hr. The most common timescale is 13 ± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the γ-ray and optical light curves by up to ∼0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ∼3 G.
- Published
- 2020
36. Optical spectral characterization of the the TeV extreme blazar 2WHSP J073326.7+515354
- Author
-
R. Clavero, J. Becerra González, and J. A. Acosta-Pulido
- Subjects
Absolute magnitude ,Stellar population ,Metallicity ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Astrophysical jet ,0103 physical sciences ,Surface brightness ,Blazar ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Velocity dispersion ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The emission from the relativistic jets in blazars usually outshines their host galaxies, challenging the determination of their distances and the characterization of the stellar population. The situation becomes more favorable in the case of the extreme blazars (EHBLs), for which the bulk of the emission of the relativistic jets is emitted at higher energies, unveiling the optical emission from the host galaxy. The distance determination is fundamental for the study of the intrinsic characteristics of the blazars, especially to estimate the intrinsic gamma-ray spectra distorted due to the interaction with the Extragalactic Background Light. In this work we report on the properties of 2WHSP~J073326.7+515354 host galaxy in the optical band, which is one of the few EHBLs detected at TeV energies. We present the first measurement of the distance of the source, $\mathrm{z}=0.06504\pm0.00002$ (velocity dispersion $\sigma=237 \pm 9\,\mathrm{km s^{-1}}$). We also perform a detailed study of the stellar population of its host galaxy. We find that the mass-weighted mean stellar age is $11.72\pm0.06\,\mathrm{Gyr}$ and the mean metallicity $[M/H]=0.159 \pm 0.016$. In addition, a morphological study of the host galaxy is also carried out. The surface brightness distribution is modelled by a composition of a dominant classical bulge ($R_e=3.77\pm1\arcsec $ or equivalently 4.74~kpc) plus an unresolved source which corresponds to the active nucleus. The black hole mass is estimated using both the mass relation with the velocity dispersion and the absolute magnitude from the bulge yielding comparable results: $(4.8\pm0.9)\times10^8\,M_{\odot}$ and $(3.7\pm1.0)\times10^8\,M_{\odot}$, respectively., Comment: Accepted for publication in MNRAS
- Published
- 2020
- Full Text
- View/download PDF
37. An UXor among FUors: extinction-related brightness variations of the young eruptive star V582 Aur
- Author
-
J. A. Acosta-Pulido, G. Zsidi, Orsolya Feher, M. Kun, Péter Ábrahám, and A. Kospal
- Subjects
Physics ,Brightness ,Line-of-sight ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,Extinction (astronomy) ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Accretion (astrophysics) ,Accretion rate ,Stars ,Accretion disc ,13. Climate action ,Space and Planetary Science ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
The early evolution of Sun-like stars may be interspersed by energetic FU Orionis (FUor) type accretion outbursts. We analysed eight years of photometric and spectroscopic variability of V582 Aur, a bona fide FUor, in outburst. While the accretion rate derived from near-infrared measurements was constant, radical brightness changes occurred due to dust clumps crossing the line of sight. The brightness minima resemble the variability patterns of the UXor phenomenon. Orbiting density enhancements or short-lived clumps moving in and out of the line-of-sight may explain these observations. Our message is that during FUor outbursts the inner disk is a dynamically active place, affecting the initial conditions for planet formation.
- Published
- 2018
- Full Text
- View/download PDF
38. The beamed jet and quasar core of the distant blazar 4C 71.07
- Author
-
A. Di Paola, Evgeni Ovcharov, Yu. V. Troitskaya, Sergey S. Savchenko, A. A. Arkharov, N. V. Efimova, V. Bozhilov, M. G. Nikolashvili, Sunay Ibryamov, Elena G. Larionova, Manash R. Samal, P. Calcidese, I. Agudo, Marcello Giroletti, Givi N. Kimeridze, J. L. Gomez, Carolina Casadio, Anne Lähteenmäki, C. M. Raiteri, Alan P. Marscher, Valeri M. Larionov, Uwe Bach, D. Carosati, P. Romano, M. Minev, G. A. Borman, A. C. Sadun, Lorand A. Sigua, E. N. Kopatskaya, S. Vercellone, Joseph Moody, Goran Damljanović, Evgeni Semkov, D. O. Mirzaqulov, S. Baitieri, M. Villata, A. Strigachev, O. M. Kurtanidze, Helen Jermak, S. A. Klimanov, R. Bachev, Stoyanka Peneva, Wen Ping Chen, Walter Boschin, S. G. Jorstad, Sol N. Molina, D. A. Morozova, Iain A. Steele, O. Vince, M. S. Butuzova, T. S. Grishina, V. T. Doroshenko, Sofia O. Kurtanidze, M. I. Carnerero, J. A. Acosta-Pulido, L. Slavcheva-Mihova, Simona Righini, N. Rizzi, S. V. Nazarov, Boyko Mihov, Ivan S. Troitsky, Sh. A. Ehgamberdiev, Merja Tornikoski, A. A. Nikiforova, Department of Electronics and Nanoengineering, Metsähovi Radio Observatory, Aalto-yliopisto, Aalto University, Istituto Nazionale di Astrofisica, Bulgarian National Science Fund, Ministry of Education, Youth and Science (Bulgaria), Ministry of Education, Science and Technological Development (Serbia), Russian Science Foundation, and Shota Rustaveli National Science Foundation
- Subjects
ACTIVE GALACTIC NUCLEI ,RADIO-SOURCES ,Quasars: individual: 4C 71.07 ,Astrophysics::High Energy Astrophysical Phenomena ,jets [galaxies] ,Library science ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,The Republic ,Observatory ,0103 physical sciences ,ABSORPTION ,Astrophysics::Solar and Stellar Astrophysics ,SPECTRA ,Bulgarian ,010303 astronomy & astrophysics ,BLACK-HOLES ,Astrophysics::Galaxy Astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Government ,010308 nuclear & particles physics ,St petersburg ,Astronomy and Astrophysics ,Galaxies: active ,Astrophysics - Astrophysics of Galaxies ,language.human_language ,Joint research ,VARIABILITY ,Work (electrical) ,13. Climate action ,Space and Planetary Science ,Galaxies: jets ,WEBT CAMPAIGN ,Astrophysics of Galaxies (astro-ph.GA) ,individual: 4C 71.07 [quasars] ,active [galaxies] ,language ,LUMINOSITY ,ROTATIONS ,Christian ministry ,COMPLETE SAMPLE ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a 2- yr multiwavelength campaign led by the Whole Earth Blazar Telescope (WEBT) to study both the quasar core and the beamed jet of this source. The WEBT data are complemented by ultraviolet and X-ray data from Swift, and by γ-ray data by Fermi. The big blue bump is modelled by using optical and near-infrared mean spectra obtained during the campaign, together with optical and ultraviolet quasar templates. We give prescriptions to correct the source photometry in the various bands for the thermal contribution, in order to derive the non-thermal jet flux. The role of the intergalactic medium absorption is analysed in both the ultraviolet and X-ray bands.We provide opacity values to deabsorb ultraviolet data, and derive a best-guess value for the hydrogen column density of Nbest H = 6.3 × 10 cmthrough the analysis of X-ray spectra.We estimate the disc and jet bolometric luminosities, accretion rate, and black hole mass. Light curves do not show persistent correlations among flux changes at different frequencies. We study the polarimetric behaviour and find no correlation between polarization degree and flux, even when correcting for the dilution effect of the big blue bump. Similarly, wide rotations of the electric vector polarization angle do not seem to be connected with the source activity.© 2019 The Author(s)., We acknowledge financial contribution from the agreement ASI-INAF n.2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. PR and SV acknowledge contract ASI-INAF I/004/11/0. We acknowledge support by Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences via bilateral joint research project 'Study of ICRF radio-sources and fast variable astronomical objects' (head -G.Damljanovic). This work is a part of the Projects No. 176011 ('Dynamics and Kinematics of Celestial Bodies and Systems'), No. 176004 ('Stellar Physics'), and No. 176021 ('Visible and Invisible Matter in Nearby Galaxies: Theory and Observations') supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. This research was partially supported by the Bulgarian National Science Fund of theMinistry of Education and Science under grants DN 08-1/2016, DN 18-13/2017, and KP-06-H28/3 (2018). The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology -Hellas, and the Max-Planck-Institut fur Extraterrestrische Physik. The St Petersburg University team acknowledges support from Russian Science Foundation grant no. 17-12-01029. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217950/16. This work was partly supported by the National Science Fund of the Ministry of Education and Science of Bulgaria under grant DN 08-20/2016, and by funds of the project RD-08-37/2019 of the University of Shumen. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the Unite des Communes valdotaines Mont-Emilius'. The research at the OAVdA was partially funded by two 'Research and Education' grants from Fondazione CRT
- Published
- 2019
39. Polarization of changing-look quasars
- Author
-
Dominique Sluse, J. A. Acosta Pulido, Damien Hutsemekers, Frédéric Marin, B. Agís González, C. Ramos Almeida, Observatoire astronomique de Strasbourg (ObAS), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,quasars ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,general -quasars ,01 natural sciences ,0103 physical sciences ,Emission spectrum ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Supermassive black hole ,010308 nuclear & particles physics ,Linear polarization ,Astronomy and Astrophysics ,Optical polarization ,Torus ,Quasar ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,emission lines - Abstract
If the disappearance of the broad emission lines observed in changing-look quasars originates from the obscuration of the quasar core by dusty clouds moving in the torus, high linear optical polarization would be expected in those objects. We then measured the rest-frame UV-blue linear polarization of a sample of 13 changing-look quasars, 7 of them being in a type 1.9-2 state. For all quasars but one the polarization degree is lower than 1%. This suggests that the disappearance of the broad emission lines cannot be attributed to dust obscuration, and supports the scenario in which changes of look are caused by a change in the rate of accretion onto the supermassive black hole. Such low polarization degrees also indicate that these quasars are seen under inclinations close to the system axis. One type 1.9-2 quasar in our sample shows a high polarization degree of 6.8%. While this polarization could be ascribed to obscuration by a moving dusty cloud, we argue that this is unlikely given the very long time needed for a cloud from the torus to eclipse the broad emission line region of that object. We propose that the high polarization is due to the echo of a past bright phase seen in polar-scattered light. This interpretation raises the possibility that broad emission lines observed in the polarized light of some type 2 active galactic nuclei can be echoes of past type 1 phases and not evidence of hidden broad emission line regions., Accepted for publication in Astronomy and Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
40. Torus model properties of an ultra-hard X-ray selected sample of Seyfert galaxies
- Author
-
Isabel Márquez, O. González-Martín, Silvia Mateos, Patrick F. Roche, Miguel Pereira-Santaella, Lindsay Fuller, J. A. Acosta-Pulido, N. A. Levenson, Claudio Ricci, Martin Ward, A. Asensio Ramos, I. García-Bernete, Antonio Hernán-Caballero, C. Ramos Almeida, Almudena Alonso-Herrero, Josefa Masegosa, Francisco J. Carrera, Chris Packham, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Agencia Estatal de Investigación (AEI), Science and Technology Facilities Council (STFC), Ministerio de Economía y Competitividad (MINECO), Universidad Nacional Autónoma de México, Fundación 'la Caixa', National Science Foundation (US), European Commission, Ministerio de Ciencia e Innovación (España), Ministerio de Economía y Competitividad (España), Universidad de Cantabria, Ministry of Science and Innovation (MICINN), MINECO, PAPIIT UNAM project, and NSF- grant
- Subjects
Galaxies: Seyfert ,active [Galaxies] ,Infrared ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Techniques: spectroscopic ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Luminosity ,spectroscopic [Techniques] ,Photometry (optics) ,Techniques: high angular resolution ,0103 physical sciences ,Angular resolution ,Spectroscopy ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Galaxies: nuclei ,Physics ,010308 nuclear & particles physics ,seyfert [Galaxies] ,photometry [Galaxies] ,Astronomy and Astrophysics ,Torus ,Galaxies: photometry ,Galaxies: active ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Wavelength ,high angular resolution [Techniques] ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,nuclei [Galaxies] - Abstract
We characterize for the first time the torus properties of an ultra-hard X-ray (14-195 keV) volume-limited (DL < 40 Mpc) sample of 24 Seyfert (Sy) galaxies (BCS sample). The sample was selected from the Swift/BAT nine-month catalogue.We use high angular resolution nuclear infrared (IR) photometry and N-band spectroscopy, the CLUMPY torus models and a Bayesian tool to characterize the properties of the nuclear dust. In the case of the Sy1s, we estimate the accretion disc contribution to the subarcsecond resolution nuclear IR SEDs (~0.4 arcsec) which is, on average, 46 ± 28, 23 ± 13, and 11 ± 5 per cent in the J, H, and K bands, respectively. This indicates that the accretion disc templates that assume a steep fall for longer wavelengths than 1 μm might underestimate its contribution to the near-IR emission. Using both optical (broad versus narrow lines) and X-ray (unabsorbed versus absorbed) classifications, we compare the global posterior distribution of the torus model parameters. We confirm that Sy2s have larger values of the torus covering factor (CT ~ 0.95) than Sy1s (CT ~ 0.65) in our volume-limited Seyfert sample. These findings are independent of whether we use an optical or X-ray classification.We find that the torus covering factor remains essentially constant within the errors in our luminosity range and there is no clear dependence with the Eddington ratio. Finally, we find tentative evidence that even an ultra-hard X-ray selection is missing a significant fraction of highly absorbed type 2 sources with very high covering factor tori.© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society., IGB acknowledges financial support from the Instituto de Astrofisica de Canarias through Fundacion La Caixa. IGB also acknowledges Oxford University and Durham University for their hospitality during his stays in 2017 August when this project was started and 2018 May, respectively. IGB also acknowledges Cardiff University for their hospitality from 2018 May to August. CRA and IGB acknowledge financial support from the Spanish Ministry of Science and Innovation (MICINN) through project AYA2016-76682-C3-2-P. IGB, AAH, and FJC also acknowledge financial support through grant PN AYA2015-64346-C2-1-P (MINECO/FEDER). Funded by the Agencia Estatal de Investigacion, Unidad de Excelencia Maria de Maeztu. CRA also acknowledges the Ramon y Cajal Program of the Spanish Ministry of Economy and Competitiveness. MPS acknowledges support from STFC through grant ST/N000919/1. OGM thanks to the PAPIIT UNAM project IA103118. SM acknowledges financial support through grant AYA2016-76730-P (MINECO/FEDER). IM and JM acknowledge financial support from the research project AYA2016-76682-C3-1-P (AEI/FEDER, UE). LF and CP acknowledge support from the NSF- grant number 1616828.
- Published
- 2019
41. Interstellar Extinction, Polarization, and Grain Alignment in the Sh 2-185 (IC 59 and IC 63) Region
- Author
-
R. Janusz, Archana Soam, R. P. Boyle, J. Zdanavičius, Miranda Caputo, B-G Andersson, V. Straižys, Algirdas Kazlauskas, and J. A. Acosta-Pulido
- Subjects
Physics ,H II region ,010504 meteorology & atmospheric sciences ,Reflection nebula ,Extinction (astronomy) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Interstellar medium ,Light intensity ,Local Bubble ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Radiative transfer ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
Optical and infrared continuum polarization from the interstellar medium is driven by radiative processes aligning the grains with the magnetic field. While a quantitative, predictive theory of Radiative Alignment Torques (RAT) exists and has been extensively tested, several parameters of the theory remain to be fully constrained. In a recent paper, \citet{medan2019} showed that the polarization efficiency (and therefore grain alignment efficiency) at different locations in the wall of the Local Bubble (LB) could be modeled as proportional to the integrated light intensity from the surrounding stars and OB associations. Here we probe that relationship at high radiation field intensities by studying the extinction and polarization in the two reflection nebulae IC\,59 and IC\,63 in the Sh 2-185 H II region, illuminated by the B0 IV star $\gamma$ Cassiopeia. We combine archival visual polarimetry with new 7-band photometry in the Vilnius system, to derive the polarization efficiency from the material. We find that the same linear relationship seen in the Local Bubble wall also applies to the Sh 2-185 region, strengthening the conclusion from the earlier study., Comment: 31 pages, 11 figures, 4 tables (data under tables will be uploaded to CDS), Accepted for publication in AJ
- Published
- 2021
- Full Text
- View/download PDF
42. Dissecting the long-term emission behaviour of the BL Lac object Mrk 421
- Author
-
P. A. González-Morales, Valeri M. Larionov, Filippo D'Ammando, C. Lázaro, Sergey S. Savchenko, Ivan Agudo, V. Bozhilov, A. B. Grinon-Marin, Michael D. Joner, F. J. Redondo-Lorenzo, Sol N. Molina, Svetlana Boeva, A. Pastor Yabar, C. Pace, C. Protasio, M. G. Nikolashvili, M. J. Arévalo, E. Eswaraiah, D. A. Morozova, E. N. Kopatskaya, Sofia O. Kurtanidze, O. Vince, Carolina Casadio, Evgeni Ovcharov, Yu. V. Troitskaya, Joseph Moody, G. Gantchev, Svetlana G. Jorstad, Ekaterina Koptelova, L. Slavcheva-Mihova, A. A. Vasilyev, B. Jordan, Marcus Holden, Sunay Ibryamov, Ivan S. Troitsky, R. Ligustri, Kari Nilsson, Rumen Bachev, Wen Ping Chen, Elena G. Larionova, Alan P. Marscher, N. Rizzi, J. Barnes, F. Pinna, B. McBreen, G. Rodriguez-Coira, J. A. Acosta-Pulido, D. Carosati, Georgi Latev, A. C. Sadun, T. S. Grishina, J. A. Ros, Goran Damljanović, Evgeni Semkov, Neelam Panwar, Manasvita Joshi, H. C. Lin, Boyko Mihov, E. Forné, José L. Gómez, C. Martínez-Lombilla, M. I. Carnerero, A. Strigachev, Nathan Smith, O. M. Kurtanidze, Paul S. Smith, M. Villata, L. V. Larionova, C. M. Raiteri, R. Pearson, Ministerio de Economía y Competitividad (España), Russian Science Foundation, Junta de Andalucía, Bulgarian Academy of Sciences, Ministry of Education, Science and Technological Development (Serbia), and National Aeronautics and Space Administration (US)
- Subjects
Galaxies: active, Galaxies: jets ,Astrophysics::High Energy Astrophysical Phenomena ,jets [galaxies] ,Library science ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Observatory ,0103 physical sciences ,010303 astronomy & astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,individual: Mrk 421 [BL Lacertae objects] ,ta115 ,010308 nuclear & particles physics ,general [BL Lacertae objects] ,Astronomy and Astrophysics ,BL Lacertae objects: general ,Joint research ,13. Climate action ,Space and Planetary Science ,active [galaxies] ,BL Lacertae objects: individual: Mrk 421 ,Christian ministry ,Astrophysics - High Energy Astrophysical Phenomena ,active, Galaxies: jets [Galaxies] - Abstract
We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ~50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.© 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society., The Abastumani team acknowledges financial support by Shota Rustaveli NSF under contract FR/577/6-320/13. The research at BU was supported in part by US National Science Foundation grant AST-1615796 and NASA Fermi Guest Investigator grant NNX14AQ58G. This study makes use of 43 GHz VLBA data from the VLBA-BU Blazar Monitoring Program (VLBA-BUBLAZAR; http://www.bu.edu/blazars/VLBAproject.html), funded by NASA through the Fermi Guest Investigator Program. The PRISM camera at the Lowell Observatory was developed by K. Janes et al. at the BU and Lowell Observatory, with funding from the NSF, BU and Lowell Observatory. This research has made use of data from the MOJAVE data base, which is maintained by the MOJAVE team (Lister et al. 2009). The St. Petersburg University team acknowledges support from Russian RFBR grant 15-02-00949 and St. Petersburg University research grant 6.38.335.2015. This paper is partly based on observations carried out at the German Spanish Calar Alto Observatory, which is jointly operated by the MPIA and the IAA-CSIC. IA research is supported by a Ramon y Cajal grant of the Spanish Ministerio de Economia y Competitividad (MINECO). Acquisition of the MAPCAT data was supported in part by MINECO through grants AYA2010-14844, AYA2013-40825-P and AYA2016-80889-P, and by the Regional Government of Andalucia through grant P09-FQM-4784. This research was partially supported by the Scientific Research Fund of the Bulgarian Ministry of Education and Sciences under grants DO 02-137 (BIn-13/09) and DN 08/1. The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology - Hellas and the Max-Planck-Institut fur Extrater-restrische Physik. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgaria Academy of Sciences, via the bilateral joint research project 'Observations of ICRF radio-sources visible in optical domain' (the head is Dr G. Damljanovic). This work is a part of the Projects No 176011 ('Dynamics and kinematics of celestial bodies and systems'), No 176004 ('Stellar physics') and No 176021 ('Visible and invisible matter in nearby galaxies: theory and observations') supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. The Serbian station is the Astronomical Station Vidojevica (ASV) with the 60-cm ASV telescope (and from this year, the 1.4-m ASV one). This research was supported partly by funds of the project RD-08-81 of the Shumen University.
- Published
- 2017
43. The Weakening Outburst of the Young Eruptive Star V582 Aur
- Author
-
P. Ábrahám, Levente Kriskovics, N. Castro Segura, Á. Sódor, Krisztián Sárneczky, G. Zsidi, Zs. M. Szabó, O. Hanyecz, J. A. Acosta-Pulido, A. Bódi, B. Cseh, Róbert Szakáts, András Pál, Cs. Kalup, M. Kun, L. Mészáros, Ágnes Kóspál, Bernadett Ignácz, B. Seli, and A. Ordasi
- Subjects
Physics ,Brightness ,010504 meteorology & atmospheric sciences ,Infrared ,Extinction (astronomy) ,Dust particles ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Star (graph theory) ,01 natural sciences ,Orbit ,Astrophysics - Solar and Stellar Astrophysics ,Accretion disc ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Variation (astronomy) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
V582 Aur is a pre-main sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical $B$, $V$, $R_C$ and $I_C$ band multiepoch observations and new near-infrared $J$, $H$ and $K_S$ band photometric measurements from 2018 January$-$2019 February, as well as publicly available mid-infrared WISE data. We found that the source shows a significant optical$-$near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, than our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in $\sim$80 years., Comment: 8 pages, 4 figures, accepted for publication in ApJ
- Published
- 2019
44. AGILE, Fermi, Swift, and GASP/WEBT multi-wavelength observations of the high-redshift blazar 4C +71.07 in outburst
- Author
-
Andrea Bulgarelli, P. Romano, S. Vercellone, Carolina Casadio, Anne Lähteenmäki, Boyko Mihov, A. Strigachev, Emilia Järvelä, C. Pittori, G. A. Borman, F. Paoletti, Marco Tavani, José L. Gómez, Sergio Colafrancesco, U. Bach, V. Vittorini, I. Donnarumma, Valeri M. Larionov, Fabrizio Lucarelli, V. T. Doroshenko, J. A. Acosta-Pulido, Valentina Fioretti, L. Slavcheva-Mihova, Simona Righini, P. W. Cattaneo, E. N. Kopatskaya, O. M. Kurtanidze, C. M. Raiteri, S. A. Klimanov, M. Villata, Francesco Longo, M. S. Butuzova, F. D'Ammando, N. V. Efimova, F. Verrecchia, S. V. Nazarov, Evgeni Semkov, R. Bachev, M. I. Carnerero, D. O. Mirzaqulov, Sergey S. Savchenko, T. S. Grishina, G. Damljanovic, A. Morselli, A. Di Paola, M. Orienti, P. Munar-Adrover, L. V. Larionova, Marcello Giroletti, Sol N. Molina, Sh. A. Ehgamberdiev, D. A. Morozova, G. Piano, Merja Tornikoski, Arkady A. Arkharov, O. Vince, N. Parmiggiani, Yu. V. Troitskaya, I. Agudo, Vercellone, S., Romano, P., Piano, G., Vittorini, V., Donnarumma, I., Munar-Adrover, P., Raiteri, C. M., Villata, M., Verrecchia, F., Lucarelli, F., Pittori, C., Bulgarelli, A., Fioretti, V., Tavani, M., Acosta-Pulido, J. A., Agudo, I., Arkharov, A. A., Bach, U., Bachev, R., Borman, G. A., Butuzova, M. S., Carnerero, M. I., Casadio, C., Damljanovic, G., D'Ammando, F., Di Paola, A., Doroshenko, V. T., Efimova, N. V., Ehgamberdiev, S. A., Giroletti, M., Gómez, J. L., Grishina, T. S., Järvelä, E., Klimanov, S. A., Kopatskaya, E. N., Kurtanidze, O. M., Lähteenmäki, A., Larionov, V. M., Larionova, L. V., Mihov, B., Mirzaqulov, D. O., Molina, S. N., Morozova, D. A., Nazarov, S. V., Orienti, M., Righini, S., Savchenko, S. S., Semkov, E., Slavcheva-Mihova, L., Strigachev, A., Tornikoski, M., Troitskaya, Y. V., Vince, O., Cattaneo, P. W., Colafrancesco, S., Longo, F., Morselli, A., Paoletti, F., Parmiggiani, N., ITA, Academy of Sciences Republic of Uzbekistan, Russian Science Foundation, Bulgarian Academy of Sciences, Agenzia Spaziale Italiana, Ministerio de Economía y Competitividad (España), Ministry of Education, Science and Technological Development (Serbia), Osservatorio Astronomico di Brera, Osservatorio Astronomico Roma, ASI Science Data Center, Autonomous University of Barcelona, Osservatorio Astronomico di Torino, INAF/IASF Bologna, Università di Roma Tor Vergata, Instituto de Astrofísica de Canarias, CSIC, RAS - Pulkovo Astronomical Observatory, Max-Planck-Institut für Radioastronomie, Crimean Astrophysical Observatory, University of Belgrade, Universita di Bologna, Lomonosov Moscow State University, Academy of Sciences of the Republic of Uzbekistan, St. Petersburg State University, Metsähovi Radio Observatory, Georgian National Academy of Sciences, Istituto Nazionale di Fisica Nucleare (INFN), University of the Witwatersrand, Università Degli Studi di Trieste, Sapienza University of Rome, Department of Electronics and Nanoengineering, Aalto-yliopisto, and Aalto University
- Subjects
Galaxies [Gamma rays] ,Acceleration of particles ,Relativistic processe ,Radiation mechanisms: non-thermal ,Astrophysics::High Energy Astrophysical Phenomena ,Supermassive black holes [Quasars] ,FOS: Physical sciences ,Galaxie [Gamma rays] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,7. Clean energy ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Gamma rays: Galaxies ,Quasars: Individual: 4C +71.07 ,Quasars: Supermassive black holes ,Relativistic processes ,Astronomy and Astrophysics ,Space and Planetary Science ,Blazar ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,non-thermal [Radiation mechanisms] ,010308 nuclear & particles physics ,Order (ring theory) ,Quasar ,Astronomy and Astrophysic ,Acceleration of particle ,Redshift ,Supermassive black hole [Quasars] ,Spectral energy distribution ,Individual: 4C +71.07 [Quasars] ,Astrophysics - High Energy Astrophysical Phenomena ,Energy (signal processing) ,Flare ,Fermi Gamma-ray Space Telescope - Abstract
Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), γ-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc. Aims. 4C +71.07 has been detected in outburst twice by the AGILE γ-ray satellite during the period from the end of October to mid-November 2015, when it reached a γ-ray flux of the order of F(E > 100 MeV)=(1.2 ± 0.3)×10 photons cm s and F(E > 100 MeV)=(3.1 ± 0.6)×10 photons cm s, respectively, allowing us to investigate the properties of the jet and the emission region. Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and γ-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites. Results. The spectral energy distribution of the second γ-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 10 erg s. Conclusions. During the most prominent γ-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future γ-ray satellites such as e-ASTROGAM. © ESO 2019., AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant no. I/028/12/0. SV and PR acknowledge contract ASI-INAF I/004/11/0 and INAF/IASF Palermo where most of the work was carried out. SV acknowledges financial contribution from the agreement ASI-INAF no. 2017-14-H.0. Part of this work is based on archival data, software, or online services provided by the ASI SPACE SCIENCE DATA CENTER (ASI-SSDC). SV and PR thank Leonardo Barzaghi and Sara Baitieri for useful discussions. The Osservatorio di Torino team acknowledges the financial contribution from the agreement ASI-INAF No. 2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. OMK acknowledges financial support from the Shota Rustaveli National Science Foundation under contract FR/217950/16 and grants NSFC11733001, NSFCU1531245. IA acknowledges support from a Ramón y Cajal grant of the Ministerio de Economía y Compet-itividad (MINECO) of Spain. The research at the IAA–CSIC was supported in part by the MINECO through grants AYA2016–80889–P, AYA2013–40825–P, and AYA2010–14844, and by the regional government of Andalucía through grant P09–FQM–4784. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Calar Alto Observatory is jointly operated by the MPIA and the IAA-CSIC. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grant DN 08-1/2016. The St. Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. AZT-24 observations are made within an agreement among the Pulkovo, Rome, and Teramo observatories. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgaria Academy of Sciences, via bilateral joint research project “Observations of ICRF radio-sources visible in optical domain” (PI G. Damljanovic). This work is a part of Project No. 176011 (“Dynamics and kinematics of celestial bodies and systems”), No. 176004 (“Stellar physics”) and No. 176021 (“Visible and invisible matter in nearby galaxies: theory and observations”) supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. The Maidanak Observatory team acknowledges support from Uzbekistan Academy of Sciences grants No. F2-FA-F027 and F.4-16.
- Published
- 2019
45. Investigating the multiwavelength behaviour of the flat spectrum radio quasar CTA 102 during 2013-2017
- Author
-
Manasvita Joshi, Omar M. Kurtanidze, Katsura Matsumoto, Kozo Sadakane, Erika Benítez, Alan P. Marscher, O. Vince, Sebastian Kiehlmann, Rumen Bachev, Evgeni Ovcharov, Yu. V. Troitskaya, Talvikki Hovatta, Boyko Mihov, Givi N. Kimeridze, S. V. Nazarov, Arkady A. Arkharov, T. Pursimo, Joseph Moody, A. Giunta, Ivan S. Troitsky, Goran Damljanović, C. Espinosa, A. Fuentes, Yu. V. Sotnikova, N. Castro-Segura, Sol N. Molina, Evgeni Semkov, D. O. Mirzaqulov, M. I. Carnerero, Walter Boschin, M. G. Nikolashvili, T. V. Mufakharov, G. Rodríguez-Coira, Valeri M. Larionov, P. Calcidese, Walter Max-Moerbeck, D. A. Morozova, Sergey S. Savchenko, M. Mingaliev, D. Carosati, W. P. Chen, A. C. Sadun, A. A. Vasilyev, G. V. Baida, S. G. Jorstad, A. Strigachev, David Hiriart, N Okhmat, Juan Echevarria, Lorand A. Sigua, Paul S. Smith, F. D'Ammando, L. Slavcheva-Mihova, Joni Tammi, N. V. Efimova, C. S. Lin, E. N. Kopatskaya, Raul Michel, F. Pinna, B. McBreen, Iain A. Steele, N. Rizzi, Clemens Thum, Mark Gurwell, C. Protasio, M. Villata, J. M. Ohlert, J. A. Acosta-Pulido, Manash R. Samal, Sh. A. Ehgamberdiev, I. Agudo, Merja Tornikoski, K. S. Kuratov, Anthony C. S. Readhead, A. A. Nikiforova, Michael P. Malmrose, J. L. Gomez, B. Jordan, M. Minev, T. A. Polakis, A. Di Paola, L. V. Larionova, Carolina Casadio, Anne Lähteenmäki, Elena G. Larionova, Bozhilov, C. Lázaro, Helen Jermak, F. J. Redondo-Lorenzo, G. A. Borman, Rodrigo Reeves, Sofia O. Kurtanidze, M. S. Butuzova, Brian A. Skiff, T. S. Grishina, T. J. Pearson, C. M. Raiteri, Bulgarian National Science Fund, Shota Rustaveli National Science Foundation, Russian Science Foundation, Ministry of Education, Science and Technological Development (Serbia), Universidad Nacional Autónoma de México, Smithsonian Institution, Academia Sinica (Taiwan), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), WEBT, OVRO Team, Department of Electronics and Nanoengineering, Metsähovi Radio Observatory, Aalto-yliopisto, Aalto University, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
TELESCOPE ,Astrophysics::High Energy Astrophysical Phenomena ,jets [galaxies] ,nuclei [galaxies] ,Library science ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,individual: CTA 102 [galaxies] ,01 natural sciences ,FERMI ,Observatory ,0103 physical sciences ,Bulgarian ,Aerospace ,010303 astronomy & astrophysics ,SCALE ,Physics ,CALIBRATION ,High Energy Astrophysical Phenomena (astro-ph.HE) ,SWIFT ,010308 nuclear & particles physics ,business.industry ,Astronomy and Astrophysics ,galaxies: jets ,gamma-rays: general ,radiation mechanisms: non-thermal ,non-thermal [radiation mechanisms] ,Monitoring program ,BLAZARS ,language.human_language ,VARIABILITY ,Work (electrical) ,13. Climate action ,Space and Planetary Science ,High energy accelerator ,FLARES ,language ,RADIATION ,OBJECTS ,galaxies: individual: cta 102 ,galaxies: nuclei ,business ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Administration (government) ,Research center ,general [gamma-rays] - Abstract
We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013-2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (γ -rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented γ -ray flaring activity was observed during 2016 November-2017 February, with four major outbursts. A peak flux of (2158 ± 63) × 10−8 ph cm−2 s−1, corresponding to a luminosity of (2.2 ± 0.1) × 1050 erg s−1, was reached on 2016 December 28. These four γ -ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and γ -ray activity is found. The γ -ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This γ -ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission. © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society, The data collected by the WEBT collaboration are stored in the WEBT archive at the Osservatorio Astrofisico di Torino INAF (http://www.oato.inaf.it/blazars/webt/); for questions regarding their availability, contact the WEBT President Massimo Villata(massimo.villata@inaf.it).We acknowledge financial contribution from the agreementASI-INAFn. 2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 08-1/2016, DN 18-13/2017, and KP-06-H28/3 (2018). The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology -Hellas, and the Max-Planck-Institut fur Extraterrestrische Physik. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217554/16. The St. Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgarian Academy of Sciences, via bilateral joint research project 'Study of ICRF radio-sources and fast variable astronomical objects' (head -G.Damljanovic). This work is a part of the Projects No. 176011 ('Dynamics and Kinematics of Celestial Bodies and Systems'), No. 176004 ('Stellar Physics'), and No. 176021 ('Visible and Invisible Matter in Nearby Galaxies: Theory and Observations') supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. JE is indebted to DGAPA (Universidad Nacional Autonoma de M ' exico) for financial support, PAPIIT project IN114917. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Data from the Steward Observatory blazar monitoring project were used. This program is supported by NASA/Fermi Guest Investigator grants NNX12AO93G and NNX15AU81G. We acknowledge support by Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. This publication makes use of data obtained at Mets ahovi Radio Observatory, operated by Aalto University in Finland. The Astronomical Observatory of the Autonomous Region of theAostaValley (OAVdA) is managed by the Fondazione Clment Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the TownMunicipality of Nus and the 'Unit des Communes valdtaines Mont-milius'. The research at the OAVdA was partially funded by two 'Research and Education' grants from Fondazione CRT. RR acknowledges support from CONICYT project Basal AFB-170002. MM and TM acknowledge support through the Russian Government Program of Competitive Growth of Kazan Federal University. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. This work performed in part under DOE Contract DE-AC02-76SF00515. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. We thank the Swift team for making these observations possible, the duty scientists, and science planners. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. FD thanks S. Covino for his help with the REM data reduction. This research has made use of data obtained from the high-energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center.
- Published
- 2019
- Full Text
- View/download PDF
46. A Compact Jet at the Infrared Heart of the Prototypical Low-Luminosity AGN in NGC 1052
- Author
-
J. A. Acosta-Pulido, Konrad R. W. Tristram, Daniel Asmus, Mercedes Prieto, N. López-Gonzaga, Enrique Lopez-Rodriguez, and J. A. Fernández-Ontiveros
- Subjects
Luminous infrared galaxy ,Physics ,Line-of-sight ,Active galactic nucleus ,010308 nuclear & particles physics ,Infrared ,Electromagnetic spectrum ,Astrophysics::High Energy Astrophysical Phenomena ,Synchrotron radiation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Space and Planetary Science ,Radiative efficiency ,Extinction (optical mineralogy) ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The feeble radiative efficiency characteristic of Low-Luminosity Active Galactic Nuclei (LLAGN) is ascribed to a sub-Eddington accretion rate, typically at $\log(L_{\rm bol}/L_{\rm edd}) \lesssim -3$. At the finest angular resolutions that are attainable nowadays using mid-infrared (mid-IR) interferometry, the prototypical LLAGN in NGC 1052 remains unresolved down to $< 5\, \rm{mas}$ ($0.5\, \rm{pc}$). This is in line with non-thermal emission from a compact jet, a scenario further supported by a number of evidences: the broken power-law shape of the continuum distribution in the radio-to-UV range; the $\sim 4\%$ degree of polarisation measured in the nuclear mid-IR continuum, together with the mild optical extinction ($A_V \sim 1\, \rm{mag}$); and the "harder when brighter" behaviour of the X-ray spectrum, indicative of self-Compton synchrotron radiation. A remarkable feature is the steepness of the IR-to-UV core continuum, characterised by a power-law index of $\sim 2.6$, as compared to the canonical value of $0.7$. Alternatively, to explain the interferometric data by thermal emission would require an exceptionally compact dust distribution when compared to those observed in nearby AGN, with $A_V \gtrsim 2.8\, \rm{mag}$ to account for the IR polarisation. This is in contrast with several observational evidences against a high extinction along the line of sight, including the detection of the nucleus in the UV range and the well defined shape of the power-law continuum. The case of NGC 1052 shows that compact jets can dominate the nuclear emission in LLAGN across the whole electromagnetic spectrum, a scenario that might be common among this class of active nuclei., Accepted for publication by MNRAS
- Published
- 2019
- Full Text
- View/download PDF
47. Software architecture of the high-level control of FRIDA
- Author
-
Jesús Patrón Recio, Marta Aguiar Gonzalez, Cesar Augusto Guzmán. Alvaréz, José Marco de la Rosa, J. A. Acosta-Pulido, H. Moreno, and Almudena Prieto
- Subjects
010309 optics ,High level control ,Computer architecture ,Computer science ,0103 physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,0210 nano-technology ,Software architecture ,01 natural sciences - Published
- 2018
- Full Text
- View/download PDF
48. The nuclear and extended infrared emission of the Seyfert galaxy NGC 2992 and the interacting system Arp 245
- Author
-
Patrick F. Roche, I. Valtchanov, Omaira González-Martín, N. A. Levenson, J. A. Acosta-Pulido, A. Alonso-Herrero, C. Ramos Almeida, Tanio Díaz-Santos, Miguel Pereira-Santaella, S. Fisher, I. García-Bernete, Maite Castillo, A. M. Pérez García, Chris Packham, Mirjana Pović, P. Esquej, M. Sánchez-Portal, Ministerio de Ciencia e Innovación (España), La Caixa, Consejo Nacional de Ciencia y Tecnología (México), Ministerio de Economía y Competitividad (España), and European Commission
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Galaxies: individual: NGC 2993 ,Active galactic nucleus ,Galaxies: individual: NGC 2992 ,active [Galaxies] ,Radio galaxy ,Astrophysics::High Energy Astrophysical Phenomena ,Megamaser ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,individual: NGC 2992 [Galaxies] ,Hubble sequence ,symbols.namesake ,galaxies [Infrared] ,Spitzer Space Telescope ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Galaxy Astrophysics ,Galaxies: nuclei ,Luminous infrared galaxy ,Physics ,Star formation ,Astronomy ,Astronomy and Astrophysics ,Galaxies: active ,Infrared: galaxies ,Galaxies: groups: individual: Arp 245 ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,groups: individual: Arp 245 [Galaxies] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,nuclei [Galaxies] ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,individual: NGC 2993 [Galaxies] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present subarcsecond resolution infrared (IR) imaging and mid-IR (MIR) spectroscopic observations of the Seyfert 1.9 galaxy NGC 2992, obtained with the Gemini North Telescope and the Gran Telescopio CANARIAS (GTC). The N-band image reveals faint extended emission out to ∼3 kpc, and the polycyclic aromatic hydrocarbon features detected in the GTC/CanariCam 7.5–13 μm spectrum indicate that the bulk of this extended emission is dust heated by star formation. We also report arcsecond resolution MIR and far-IR imaging of the interacting system Arp 245, taken with the Spitzer Space Telescope and the Herschel Space Observatory. Using these data, we obtain nuclear fluxes using different methods and find that we can only recover the nuclear fluxes obtained from the subarcsecond data at 20–25 μm, where the active galactic nuclei (AGN) emission dominates. We fitted the nuclear IR spectral energy distribution of NGC 2992, including the GTC/CanariCam nuclear spectrum (∼50 pc), with clumpy torus models. We then used the best-fitting torus model to decompose the Spitzer/IRS 5–30 μm spectrum (∼630 pc) in AGN and starburst components, using different starburst templates. We find that, whereas at shorter MIR wavelengths the starburst component dominates (64 per cent at 6 μm), the AGN component reaches 90 per cent at 20 μm. We finally obtained dust masses, temperatures and star formation rates for the different components of the Arp 245 system and find similar values for NGC 2992 and NGC 2993. These measurements are within those reported for other interacting systems in the first stages of the interaction., IGB acknowledges financial support from the Instituto de Astrofísica de Canarias through Fundacion La Caixa. This research was partly supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-327934). CRA and IGB acknowledge financial support from the Spanish Ministry of Science and Innovation (MICINN) through project PN AYA2013-47742-C4-2-P. AAH acknowledges funding from the Spanish Ministry of Economy and Competitiveness under grant AYA2012-31447, which is party funded by the FEDER program. PE acknowledges support from the Spanish Plan Nacional de Astronomía y Astrofísica under grant AYA2012-31277. OGM acknowledges support from grant AYA2012-39168-C03-01. TDS was supported by ALMA-CONICYT grant number 31130005.
- Published
- 2015
- Full Text
- View/download PDF
49. The Bright γ-ray Flare of 3C 279 in 2015 June: AGILE Detection and Multifrequency Follow-up Observations
- Author
-
Alan P. Marscher, F. Verrecchia, E. N. Kopatskaya, Lorand A. Sigua, O. M. Kurtanidze, A. Morselli, Andrea Bulgarelli, M. Villata, F. Paoletti, P. W. Cattaneo, I. Donnarumma, Paolo Giommi, H. Y. Hsiao, C. Pittori, M. I. Carnerero, D. O. Mirzaqulov, Valeri M. Larionov, J. A. Acosta-Pulido, C. M. Raiteri, Sh. A. Ehgamberdiev, David Hiriart, L. V. Larionova, F. Longo, L. O. Takalo, Fabrizio Lucarelli, S. Vercellone, A. Strigachev, T. S. Grishina, V. Vittorini, Manash R. Samal, D. Carosati, Sofia O. Kurtanidze, G. A. Borman, Kari Nilsson, Givi N. Kimeridze, A. Goded, Marco Tavani, Wen Ping Chen, B. Spassov, M. Perri, S. Colafrancesco, Erika Benítez, Louis Antonelli, Svetlana G. Jorstad, D. A. Morozova, Simonetta Puccetti, Rumen Bachev, ITA, Pittori, C., Lucarelli, F., Verrecchia, F., Raiteri, C. M., Villata, M., Vittorini, V., Tavani, M., Puccetti, S., Perri, M., Donnarumma, I., Vercellone, S., Acosta-Pulido, J. A., Bachev, R., Benítez, E., Borman, G. A., Carnerero, M. I., Carosati, D., Chen, W. P., Ehgamberdiev, Sh. A., Goded, A., Grishina, T. S., Hiriart, D., Hsiao, H. Y., Jorstad, S. G., Kimeridze, G. N., Kopatskaya, E. N., Kurtanidze, O. M., Kurtanidze, S. O., Larionov, V. M., Larionova, L. V., Marscher, A. P., Mirzaqulov, D. O., Morozova, D. A., Nilsson, K., Samal, M. R., Sigua, L. A., Spassov, B., Strigachev, A., Takalo, L. O., Antonelli, L. A., Bulgarelli, A., Cattaneo, P., Colafrancesco, S., Giommi, P., Longo, F., Morselli, A., and Paoletti, and F.
- Subjects
Physics ,polarization ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,Library science ,Astronomy and Astrophysics ,radiation mechanisms: non-thermal ,non-thermal [radiation mechanisms] ,X-rays: general ,01 natural sciences ,quasars: individual (3C 279) ,gamma rays: galaxies ,Space and Planetary Science ,Observatory ,general [X-rays] ,active [galaxies] ,0103 physical sciences ,individual (3C 279) [quasars] ,Astrophysics::Solar and Stellar Astrophysics ,galaxie [gamma rays] ,Christian ministry ,010303 astronomy & astrophysics - Abstract
We would like to acknowledge the financial support of ASI under contract to INAF:ASI 2014-049-R.0 dedicated to SSDC. Part of this work is based on archival data, software, or online services provided by the ASI SSDC. The research at Boston University was supported by National Science Foundation grant AST-1615796 and NASA Swift Guest Investigator grant 80NSSC17K0309. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grant DN 08-1/2016. The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology-Hellas, and the Max-Planck-Institut fur Extraterrestrische Physik. The St. Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. This article is partly based on observations made with the telescope IAC80 operated by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide on the island of Tenerife. The IAC team acknowledges the support from the group of support astronomers and telescope operators of the Observatorio del Teide. Based (partly) on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. This work is partially based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM), Baja California, Mexico. C.P., V.V. and M. T. also thank Professor A. Cavaliere for the insightful discussion. (INAF:ASI 2014-049-R.0 - ASI; AST-1615796 - National Science Foundation; 80NSSC17K0309 - NASA Swift Guest Investigator grant; DN 08-1/2016 - Bulgarian National Science Fund of the Ministry of Education and Science; 17-12-01029 - Russian Science Foundation)
- Published
- 2018
50. The outbursting protostar 2MASS~22352345+7517076 and its environment
- Author
-
J. A. Acosta Pulido, Péter Ábrahám, Timo Prusti, Attila Moór, and M. Kun
- Subjects
Young stellar object ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Luminosity ,0103 physical sciences ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,Herbig–Haro object ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Solar mass ,010308 nuclear & particles physics ,Molecular cloud ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Accretion (astrophysics) ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Spectral energy distribution ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We studied the Class I protostar 2MASS 22352345+7517076 whose dramatic brightening between the IRAS, Akari, and WISE surveys was reported by Onozato et al. (2015). 2MASS 22352345+7517076 is a member of a small group of low-mass young stellar objects, associated with IRAS 22343+7501 in the molecular cloud Lynds 1251. The IRAS, ISO, Spitzer, Akari, Herschel, and WISE missions observed different stages of its outburst. Supplemented these data with archival and our own near-infrared observations, and considering the contributions of neighbouring sources to the mid-infrared fluxes we studied the nature and environment of the outbursting object, and its photometric variations from 1983 to 2017. The low-state bolometric luminosity Lbol ~ 32 Lsun is indicative of a 100000-200000 years old protostar of 1.6-1.8 solar masses. Its 2-micron brightness started rising between 1993 and 1998, reached a peak in 2009-2011, and started declining in 2015. Changes in the spectral energy distribution suggest that the outburst was preceded by a decade-long, slow brightening in the near-infrared. The actual accretion burst occurred between 2004 and 2007. We fitted the spectral energy distribution in the bright phases with simple accretion disc models. The modelling suggested an increase of the disc accretion rate from some 3.5\times 10^{-7} Msun yr^{-1} to 1.1 \times 10^{-4} Msun yr^{-1}. The central star accreted nearly 10^{-3} solar masses, about a Jupiter mass during the ten years of the outburst. We observed H_2 emission lines in the K-band spectrum during the fading phase in 2017. The associated optical nebulosity RNO 144 and the Herbig-Haro object HH 149 have not exhibited significant variation in shape and brightness during the outburst., Comment: 15 pages, 11 figures. Accepted for publication by MNRAS
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.