Meerakhan Pathan, Patrick Giraudeau, Stéphane Massou, Serge Akoka, Edern Cahoreau, Jean-Charles Portais, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), French National Research Agency (ANR) [QUANTUM 2010-JCJC-0804-01, ANR 08-BIOE-002], Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), MetaToul FluxoMet (TBI-MetaToul), MetaboHUB-MetaToul, MetaboHUB-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-MetaboHUB-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Methods based on C isotopic enrichment are common procedures for metabolite quantification and metabolic flux analysis in complex biological samples. 2D NMR spectroscopy is a powerful tool in this field, as it offers the capacity of measuring site-specific C enrichments in complex samples. However, existing methods relying on 2D NMR are hampered by numerous overlaps when complex mixtures are studied. Here, we propose a fast 3D NMR method, based on ultrafast spatially-encoded NMR, which gives unambiguous access to isotopic enrichments (IEs) in biological mixtures in a few minutes, an experiment duration roughly 60 times shorter than a conventional 3D NMR approach. The combination of NMR with C-labeling strategies is a powerful tool for studying metabolic fluxes in living systems. Biological samples are generally incubated with Clabeled substrates, and the metabolic fluxes in complex networks can be estimated from the labeling pattern of metabolites. As the isotope distribution is generally not uniform over a given molecule, analytical methods must be able to measure site-specific C enrichments (i.e. the C enrichment for each position of each molecule). The simplest procedure consists of integrating the C-satellite peaks on H NMR spectra, 13] however this approach is impractical due to the large overlap between peaks in complex mixtures. Several approaches based on 2D H NMR have been designed to circumvent this drawback. Homonuclear 2D spectra are recorded, where H C couplings are expressed in one dimension only, which reduces overlaps while permitting the determination of site-specific isotopic enrichments by extracting rows (parallel to the F2 dimension) from the 2D spectrum. Whereas this approach initially suffered from long experiment durations, we recently proposed a strategy to reduce the experiment time by several orders of magnitude, based on the ultrafast 2D NMR methodology. This acquisition strategy, relying on spatial encoding, makes it possible to record 2D NMR spectra in a single scan— or a few scans when signal averaging is necessary for sensitivity purposes. However, both conventional and ultrafast 2D NMR methods are still affected by signal overlaps due to the H C splitting (typically 100–200 Hz) in one of the two dimensions. Consequently, many isotopomers cannot be resolved by these methods, thus limiting the metabolic information accessible for complex biological mixtures. 14] In order to bypass this limitation, it would be interesting to tilt the H C splittings in a third dimension, thus avoiding overlaps caused by heteronuclear couplings while preserving the information on C enrichments. Such an acquisition strategy, however, would require the sampling of an additional spectral dimension, thus increasing the acquisition duration to several tens of hours, which would be highly impractical. This communication presents a new NMR acquisition strategy permitting the acquisition of 3D data in a few minutes, based on the ultrafast 2D NMR strategy developed by Frydman and described in recent papers. In the corresponding NMR pulse sequence (Figure 1), two dimensions are recorded in an ultrafast fashion, while the third one is recorded in a conventional way. Therefore, a full 3D spectrum can be recorded in the time generally required to obtain a conventional 2D spectrum. The pulse sequence starts like a conventional correlation spectroscopy (COSY) experiment, with a linear time incrementation to sample the H chemical shifts in the first dimension, including a 1808 C pulse in the middle of this period to refocus the heteronuclear couplings. The 908 coherence transfer pulse is then followed by a constant-time spatial encoding scheme, while the heteronuclear couplings are again refocused by a 1808 pulse. Finally, the information is decoded in an echo-planar-imaging fashion (EPI), and 1808 pulses are applied during the detection to refocus chemical shift interactions. Therefore, the H C splittings are detected in the third dimension, similarly to the ultrafast heteronuclear J-resolved strategy that we have described recently. Following the acquisition, a processing specific to ultrafast acquisitions is applied (see Experimental Section). Figure 2a presents the 3D NMR spectrum obtained in 11 min on a model alanine sample with this pulse sequence. The H chemical shifts are expressed in dimensions F1 and F2, the conventionally sampled and spatially encoded dimensions, respectively. A F1F2 plane read from the 3D spectrum gives rise to a COSY-type correlation (Figure 2b), where the peaks are not broadened by heteronuclear couplings in spite of the C enrichment, contrary to the 2D methods previously published. The heteronuclear couplings are obtained in di[a] Dr. P. Giraudeau, M. Pathan, Prof. S. Akoka EBSI team, CEISAM UMR 6230, Universit de Nantes, CNRS B.P. 92208, 2 rue de la Houssini re, 44322 Nantes Cedex 03 (France) E-mail : patrick.giraudeau@univ-nantes.fr [b] E. Cahoreau, Dr. S. Massou, Prof. J.-C. Portais Universit de Toulouse; INSA, UPS, INP 135 Avenue de Rangueil, 31077 Toulouse (France) [c] E. Cahoreau, Dr. S. Massou, Prof. J.-C. Portais INRA, UMR792 Ing nierie des Syst mes Biologiques et des Proc d s 31400 Toulouse (France) [d] E. Cahoreau, Dr. S. Massou, Prof. J.-C. Portais CNRS, UMR5504, 31400 Toulouse (France) [**] UFJCOSY: Ultrafast J-Resolved Correlation Spectroscopy