17 results on '"J. L. MacArthur"'
Search Results
2. Terrestrial Alteration Mineral Assemblages in the NWA 10416 Olivine Phyric Shergottite
- Author
-
Richard C. Greenwood, L. J. Hicks, J. D. Piercy, J. L. MacArthur, Ian A. Franchi, and John Bridges
- Subjects
Olivine ,010504 meteorology & atmospheric sciences ,Geochemistry ,Maskelynite ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,Isotopes of oxygen ,Igneous rock ,Meteorite ,Geochemistry and Petrology ,engineering ,Plagioclase ,Megacryst ,Geology ,0105 earth and related environmental sciences - Abstract
We report on the alteration history of the olivine-phyric, highly depleted (HD) shergottite, Northwest Africa (NWA) 10416, paying particular attention to the origin of the aqueous alteration seen affecting the meteorite’s olivine megacrysts. The rock’s interior displays 1 mm, zoned, altered olivine megacrysts set in a groundmass of clinopyroxene, unzoned olivine, and interstitial plagioclase and maskelynite. Synchrotron micro X-ray diffraction (µ-XRD) and transmission electron microscopy (TEM) show that plagioclase and maskelynite have been partially replaced by kaolinite. The relict olivine megacryst cores display a unique concentric colouration for Martian meteorites, having central amber-coloured zones surrounded by a brown mantle zone, with the rims remaining clear and unaltered. This colouration is a result of fluid alteration and partial replacement, with hydration. TEM analysis revealed the ∼200 nm scale banded and largely amorphous nature of the alteration, but with some (∼ 20%) relict crystalline olivine patches. Although the coloured olivine zones show cation and anion site vacancies compared to stoichiometric olivine, a relict igneous compositional trend is preserved in the megacrysts, from Mg-rich altered cores (Mg# = 76) to unaltered stoichiometric rims (Fo53). Synchrotron Fe-K X-ray absorption near-edge structure (XANES) analysis revealed that the coloured zones of the megacryst have different Fe oxidation values. High ferric contents are present in the brown mantle zones (Fe3+/ΣFe ≤ 0.92) and the amber zones (Fe3+/ΣFe ≤ 0.30), whereas the clear rims are ferrous. This suggests alteration occurred in an oxidising environment and that the sharp contrast in colour of the megacryst (brown to clear) is a record of a relict fluid reaction front.\ud In order to test the terrestrial or extraterrestrial origin of the alteration, olivine material from a shock-melt vein was analysed by TEM. The analysis revealed 0.952 nm curved d-spacing’s from clay alteration undisturbed by any shock effects, strongly suggesting a terrestrial origin. The d-spacing values most likely represent a collapsed saponite or vermiculite, showing that in some places olivine has been replaced by crystalline clay.\ud Oxygen isotope analysis of bulk (Δ17O = 0.309 ± 0.009 (2σ) ‰) and amber-coloured megacryst material (= 0.271 ± 0.002 (2σ) ‰), are also consistent with terrestrial alteration. We propose a model in which, during the meteorite’s time in Northwest Africa, low-temperature, likely acidic, groundwater exploited fractures. The fluid altered the olivine megacrysts in a way that was controlled by the pre-existing, igneous compositional zonation, with Mg-rich olivine being more susceptible to alteration in this fluid environment. The plagioclase and maskelynite were also altered to a high degree. After the alteration event it is likely that NWA 10416 had a significant residence time in Northwest Africa, accounting for terrestrial calcite and the dehydration of some clay phases.
- Published
- 2020
3. Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration
- Author
-
L. J. Hicks, S. H. Baker, J. L. MacArthur, J. E. Wickham-Eade, G. M. Hansford, John Bridges, Mark J. Burchell, Anna L. Butterworth, Mark C. Price, and S. J. Gurman
- Subjects
Mineral ,Comet ,Analytical chemistry ,Mineralogy ,Aerogel ,010502 geochemistry & geophysics ,01 natural sciences ,Hydrothermal circulation ,Parent body ,chemistry.chemical_compound ,Geophysics ,Meteorite ,chemistry ,Space and Planetary Science ,Chondrite ,0103 physical sciences ,QB651 ,010303 astronomy & astrophysics ,Geology ,QB ,0105 earth and related environmental sciences ,Magnetite - Abstract
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe-K X-ray absorption spectroscopy with in situ transmission XRD and X-ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s?1, using a light-gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.
- Published
- 2017
- Full Text
- View/download PDF
4. Raman identification of olivine grains in fine grained mineral assemblages fired into aerogel
- Author
-
L. J. Hicks, Jamie E. Wickham-Eade, J. L. MacArthur, Mark J. Burchell, Mark C. Price, and John Bridges
- Subjects
Thermal Emission Spectrometer ,Mineral ,Olivine ,010504 meteorology & atmospheric sciences ,Comet ,Mineralogy ,General Medicine ,engineering.material ,Hematite ,010502 geochemistry & geophysics ,01 natural sciences ,Meteorite ,Carbonaceous chondrite ,visual_art ,Enstatite ,engineering ,visual_art.visual_art_medium ,Geology ,0105 earth and related environmental sciences - Abstract
NASA’s Stardust mission returned from the comet 81P/Wild2 in 2006 and has yielded a plethora of research looking into the composition and attributes of the comet. The mission itself collected thousands of cometary dust particles as it flew through the coma of the comet at a relative speed of 6.1 km s -1 . This work focuses on one of the most abundant minerals in the solar system – olivine. Previous work has shown capture affects on this mineral in similar impacts to that experienced during the Stardust mission. However, the past work looked into effects on isolated mineral grains which would be a rare occurrence in the Solar System. A more accurate representation of this would be to investigate the capture effects on olivine as a constituent of an assemblage of minerals. Accordingly, here we used samples from the NWA 10256 CR2 carbonaceous chondrite meteorite. This natural sample contains fine grains of olivine, and brings additional issues when analysing the olivine due to limited homogeneity. Shifts in the Raman spectra for olivine, enstatite and hematite were observed after capture due to shock effects. However, this work suggests that olivine may well experience a different shock effect during capture when part of a mineral assemblage as distinct from that experienced by single grains.
- Published
- 2017
- Full Text
- View/download PDF
5. Mineralogical Constraints on the Thermal History of Martian Regolith Breccia Northwest Africa 8114
- Author
-
L. J. Hicks, Trevor Ireland, Katherine H. Joy, M. J. Branney, John Bridges, Susanne P. Schwenzer, J. D. Piercy, Ray Burgess, G. M. Hansford, E. D. Steer, S. J. Gurman, N. R. Stephen, S. H. Baker, and J. L. MacArthur
- Subjects
010504 meteorology & atmospheric sciences ,Geochemistry ,Pyroxene ,engineering.material ,010502 geochemistry & geophysics ,Feldspar ,01 natural sciences ,Regolith ,Augite ,Meteorite ,Geochemistry and Petrology ,visual_art ,Breccia ,engineering ,visual_art.visual_art_medium ,Ejecta blanket ,Alkali feldspar ,Geology ,0105 earth and related environmental sciences - Abstract
Martian meteorite Northwest Africa (NWA) 8114 – a paired stone to NWA 7034 – provides an opportunity to examine the thermal history of a martian regolith and study near-surface processes and ancient environmental conditions near an impact crater on Mars. Our study reports petrographic and alteration textures and focuses on pyroxene and iron oxide grains. Some of the pyroxene clasts show exsolution lamellae, indicating a high temperature magmatic origin and slow cooling. However, transmission electron microscopy reveals that other predominantly pyroxene clasts are porous and have partially re-crystallised to form magnetite and a K-bearing feldspathic glassy material, together with relict pyroxene. This breakdown event was associated with oxidation, with up to 25% Fe3+/ΣFe in the relict pyroxene measured using Fe-K XANES. By comparison with previous studies, this breakdown and oxidation of pyroxene is most likely to be a result of impact shock heating, being held at a temperature above 700 °C for at least 7 days in an oxidising regolith environment.We report an approximate 40Ar39Ar maximum age of 1.13 Ga to 1.25 Ga for an individual, separated, augite clast. The disturbed nature of the spectra precludes precise age determination. In section, this clast is porous and contains iron oxide grains. This shows that it has undergone the high temperature partial breakdown seen in other relict pyroxene clasts, and has up to 25% Fe3+/ΣFe. We infer that the age corresponds to the impact shock heating event that led to the high temperature breakdown of many of the pyroxenes, after consolidation of the impact ejecta blanket.High temperatures, above 700 °C, may have been maintained for long enough to remobilise and congruently partially melt some of the alkali feldspar clasts to produce the feldspar veins and aureoles that crosscut, and in some cases surround, the oxidised pyroxene. However, the veins could alternatively be the result of a hydrothermal event in the impact regolith. A simple Fourier cooling model suggests that a regolith of at least five metres depth would be sufficient to maintain temperatures associated with the pyroxene breakdown for over seven days. Low temperature hydrous alteration took place forming goethite, identified via XRD, XANES and FTIR. Comparing with previous studies, the goethite is likely to be terrestrial alteration pseudomorphing martian pyrite.
- Published
- 2019
- Full Text
- View/download PDF
6. Role of the current young generation within the space exploration sector
- Author
-
M. Dayas-Codina, D.M. Bielicki, J. L. MacArthur, and Abigail Calzada-Diaz
- Subjects
Economics and Econometrics ,Sociology and Political Science ,business.industry ,Perspective (graphical) ,Space (commercial competition) ,Public relations ,Space exploration ,Variety (cybernetics) ,Young professional ,Work (electrical) ,Space and Planetary Science ,Political science ,International Space Station ,Set (psychology) ,business ,Simulation - Abstract
The space sector gathers together people from a variety of fields who work in the industry on different levels and with different expertise. What is often forgotten is the impact and role of the current young generation. Their engagement is of great importance as undeniably today's young ‘space generation’ will be defining the direction of future space exploration. Today's vision of future human and robotic space exploration has been set out in the Global Exploration Roadmap (GER). This focuses on sustainable, affordable and productive long-term goals. The strategy begins with the International Space Station (ISS) and then expands human presence into the solar system, including a human mission to Mars. This paper presents a general overview of the role of today's youth within the space exploration sector and the challenges to overcome. To complete this perspective, we present results from a survey made among students and young professionals about their levels of awareness of the GER. The respondents presented their opinion about current aspects of the GER and prioritised the GER's objectives. It is hoped that the paper will bring a new perspective into the GER and a contribution to the current GER strategy.
- Published
- 2014
- Full Text
- View/download PDF
7. MUSE – Mission to the Uranian system: Unveiling the evolution and formation of ice giants
- Author
-
I. Gerth, A. Luntzer, Kostas Konstantinidis, T. M. Bocanegra-Bahamón, Dominic Dirkx, Achim Morschhauser, Tom Nordheim, Matthieu Laneuville, Marc Costa Sitjà, C. Bracken, Christos Labrianidis, J. L. MacArthur, Reinhard Tlustos, Renaud Sallantin, and Andrea Maier
- Subjects
Atmospheric Science ,Solar System ,Computer science ,Uranus ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Exoplanet ,Astrobiology ,law.invention ,Orbiter ,Geophysics ,Space and Planetary Science ,law ,Planet ,Exploration of Uranus ,Atmospheric entry ,General Earth and Planetary Sciences ,Ice giant - Abstract
The planet Uranus, one of the two ice giants in the Solar System, has only been visited once by the Voyager 2 spacecraft in 1986. Ice giants represent a fundamental class of planets, and many known exoplanets fall within this category. Therefore, a dedicated mission to an ice giant is crucial to improve the understanding of the formation, evolution and current characteristics of such planets in order to extend the knowledge of both the Solar System and exoplanetary systems. In the study at hand, the rationale, selection, and conceptual design for a mission to investigate the Uranian system, as an archetype for ice giants, is presented. A structured analysis of science questions relating to the Uranian system is performed, categorized by the themes atmosphere, interior, moons and rings, and magnetosphere. In each theme, science questions are defined, with their relative importance in the theme quantified. Additionally, top-level weights for each theme are defined, with atmosphere and interior weighted the strongest, as they are more related to both exoplanetary systems and the Uranian system, than the other two themes (which are more specific for the planet itself). Several top level mission architecture aspects have been defined, from which the most promising concepts were generated using heuristic methods. A trade-off analysis of these concepts is presented, separately, for engineering aspects, such as cost, complexity, and risk, and for science aspects. The science score for each mission is generated from the capability of each mission concept to answer the science questions. The trade-off results in terms of relative science and engineering weight are presented, and competitive mission concepts are analyzed based on the preferred mission type. A mission design point for a typical flagship science mission is selected from the trade space. It consists of a Uranus orbiter with a dry mass of 2073 kg including 402 kg of payload and a Uranus entry probe, which is to perform measurements down 100 bar atmospheric pressure. The orbiter science phase will consist of a Uranus orbit phase of approximately 2 years in a highly elliptical orbit, during which 36 Uranus orbits are performed. Subsequently, a moon phase is performed, during which the periapsis will be raised in five steps, facilitating 9 flybys of each of Uranus’ major moons. A preliminary vehicle design is presented, seeking the best compromise between the design drivers, which basically derive from the large distance between Uranus and the Earth (e.g., high thermal load during Venus flyby, low thermal load during Uranus science phase, low data-rate during Uranus science phase, the need of radioisotope power source, etc). This paper is the result of a study carried out during the Alpbach Summer School 2012 “Exploration of the icy planets and their systems” and a one-week follow-up meeting in Graz, Austria. The results of this study show that a flagship ESA L-class mission – consisting of an orbiter with a single atmospheric entry probe and flybys of the main satellites – would be able to address the set of science questions which are identified in the study at hand as the most essential for the understanding of Uranus and its system. The spacecraft, as currently designed, could be launched with an Ariane 5, in 2026, arriving at Uranus in 2044, and operating until 2050. The development of a radioactive power source is the main requirement for feasibility for this mission.
- Published
- 2015
8. Remote science support during MARS2013: testing a map-based system of data processing and utilization for future long-duration planetary missions
- Author
-
J. L. MacArthur, Izabela Gołębiowska, Natalie Jones, Csilla Orgel, Andrea Boyd, Gernot Groemer, Sebastian Hettrich, Anna Losiak, and Linda Moser
- Subjects
Data processing ,Electronic Data Processing ,Computer science ,business.industry ,RSS ,Mars ,computer.file_format ,Mars Exploration Program ,Exploration of Mars ,Agricultural and Biological Sciences (miscellaneous) ,Field (computer science) ,Workflow ,Software ,Space and Planetary Science ,Remote Sensing Technology ,Systems engineering ,Operational efficiency ,business ,computer ,Space Simulation ,Remote sensing ,Maps as Topic - Abstract
MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies.
- Published
- 2014
9. Planning Strategies for Mars (Analog) Missions: Real-Time, 3-Days-in-Advance and 1-Day-in-Advance Planning
- Author
-
Isabella Pfeil, Leila Ghasemzadeh, Ali Alizadeh, Nina Sejkora, Linn-Kristine Glesnes Ødegaard, Elena S. Lupu, Quentin Scornet, Agnieszka Sekula, Barbara Ramirez, Aline N. Dinkelaker, J. L. MacArthur, Sebastian Hettrich, and Tilo Kauerhoff
- Subjects
Engineering ,Aeronautics ,business.industry ,Mars Exploration Program ,business - Published
- 2014
- Full Text
- View/download PDF
10. The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets
- Author
-
Roberto Peron, Jonathan J. Fortney, Denis Grodent, Ralf Srama, L. Lamy, Robert Ebert, S. Hsu, Ioannis A. Daglis, Edward C. Sittler, K. Konstantinidis, Matthew S. Tiscareno, O. Karatekin, M. H. Hofstadter, Nicolas Rambaux, Matthew M. Hedman, Richard Holme, Andrew J. Coates, Tom Stallard, Pierre Henri, Sarah V. Badman, Bruno Christophe, Jessica Agarwal, M. I. Desai, Diego Turrini, Fritz M. Neubauer, Andrew Smith, Agustín Sánchez-Lavega, Julianne I. Moses, Davide Grassi, G. S. Orton, O. Mousis, N. André, C. Labrianidis, Mihaly Horanyi, Federico Tosi, Henrik Melin, P. Zarka, Mathew J. Owens, S. M. P. McKenna-Lawlor, Elizabeth P. Turtle, Benoît Noyelles, Shawn M. Brooks, Matthieu Laneuville, Richard M. Ambrosi, John F. Cooper, Dominic Dirkx, Caitriona M. Jackman, Mario M. Bisi, C. Bracken, Kevin H. Baines, Harald Krüger, Mathieu Barthelemy, E. Khalisi, Kunio M. Sayanagi, Pontus Brandt, Tom Nordheim, J. L. MacArthur, Ondrej Santolik, Glyn Collinson, Sascha Kempf, Jürgen Blum, Robert W. Wilson, I. de Pater, Veerle Sterken, William S. Kurth, Patrick G. J. Irwin, Craig B. Agnor, Frank Postberg, T. M. Bocanegra-Bahamón, Jon K. Hillier, Julie Castillo-Rogez, Eberhard Grün, Georg Moragas-Klostermeyer, Michele K. Dougherty, Christelle Briois, Christopher T. Russell, Nicholas Achilleos, Bertrand Bonfond, Mario Trieloff, Kurt D. Retherford, Abigail Rymer, Renaud Sallantin, Christina Plainaki, Frank Spahn, N. Nettelmann, Achim Morschhauser, S. Vinatier, Gabriel Tobie, Serge Reynaud, Elias Roussos, I. Gerth, A. Luntzer, Joachim Saur, M. Costa-Sitja, Paul M. Schenk, Ravit Helled, David M. Lucchesi, C. Briand, J. Schubert, Régis Courtin, George Hospodarsky, Thibault Cavalié, Sebastien Hess, Chris S. Arridge, V. Lainey, Adam Masters, Anna Milillo, Gianrico Filacchione, Andrea Maier, Jacques Gustin, Nick Sergis, Zoltan Sternovsky, Don Banfield, Leigh N. Fletcher, Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Centre for Planetary Sciences [UCL/Birkbeck] (CPS), Department of Physics and Astronomy [UCL London], European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Queen Mary University of London (QMUL), Space Research Centre [Leicester], University of Leicester, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institute of Space and Astronautical Science (ISAS), Department of Physics [Lancaster], Lancaster University, Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, University of Wisconsin-Madison, Cornell University, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC), Technische Universität Braunschweig [Braunschweig], Delft University of Technology (TU Delft), Laboratoire de Physique Atmosphérique et Planétaire (LPAP), Université de Liège, National University of Ireland Maynooth (NUIM), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de physique et chimie de l'environnement (LPCE), Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DPHY, ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, NASA Goddard Space Flight Center (GSFC), European Space Astronomy Centre (ESAC), Department of Physics [Athens], National and Kapodistrian University of Athens = University of Athens (NKUA | UoA), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Southwest Research Institute [San Antonio] (SwRI), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Space and Atmospheric Physics Group [London], Blackett Laboratory, Imperial College London-Imperial College London, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford [Oxford], University of California [Santa Cruz] (UCSC), University of California, Max-Planck-Institut für Kernphysik (MPIK), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], University of Idaho [Moscow, USA], Tel Aviv University [Tel Aviv], HEPPI - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Universität Heidelberg [Heidelberg], School of Environmental Sciences [Liverpool], University of Liverpool, University of Iowa [Iowa City], Department of Physics [Oxford], School of Physics and Astronomy [Southampton], University of Southampton, Royal Observatory of Belgium [Brussels], University of Stuttgart, Universität der Bundeswehr München [Neubiberg], Department of Physics and Astronomy [Iowa City], UTesat-Spacecom, Institut de Physique du Globe de Paris (IPGP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), University of Vienna [Vienna], Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Space Technology Ireland Limited, Institut für Raumfahrtsysteme (IRS), Universität Stuttgart [Stuttgart], Deutsches Zentrum für Luft- und Raumfahrt (DLR), Space Science Institute [Boulder] (SSI), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Institute for Geophysics and Meteorology [Köln] (IGM), University of Cologne, Université de Namur [Namur], University of Reading (UOR), Université Pierre et Marie Curie - Paris 6 - UFR de Médecine Pierre et Marie Curie (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire Kastler Brossel (LKB (Jussieu)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institute of Geophysics and Planetary Physics [Los Angeles] (IGPP), University of California [Los Angeles] (UCLA), University of California-University of California, University of the Basque Country [Bizkaia] (UPV/EHU), Institute of Atmospheric Physics, Institut für Geophysik und Meteorologie [Köln], Universität zu Köln, Institute of Atmospheric Physics [Prague] (IAP), Czech Academy of Sciences [Prague] (ASCR), Lunar and Planetary Institute [Houston] (LPI), Department of Earth Sciences [USC Los Angeles], University of Southern California (USC), Office for Space Research and Applications [Athens], Academy of Athens, University of Potsdam, Max Planck Institute for Nuclear Physics (MPIK), International Space Science Institute [Bern] (ISSI), Cornelle University, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Agence Spatiale Européenne = European Space Agency (ESA), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), NASA-California Institute of Technology (CALTECH), Cornell University [New York], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], National University of Ireland Maynooth (Maynooth University), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), DPHY, ONERA, Université Paris Saclay (COmUE) [Châtillon], ONERA-Université Paris Saclay (COmUE), National and Kapodistrian University of Athens (NKUA), University of Oxford, University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), Tel Aviv University (TAU), HELIOS - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universität Heidelberg [Heidelberg] = Heidelberg University, Royal Observatory of Belgium [Brussels] (ROB), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Université de Namur [Namur] (UNamur), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), University of California (UC)-University of California (UC), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Universität zu Köln = University of Cologne, Czech Academy of Sciences [Prague] (CAS), University of Potsdam = Universität Potsdam, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Mullard Space Science Laboratory ( MSSL ), University College of London [London] ( UCL ), Centre for Planetary Sciences [UCL/Birkbeck] ( CPS ), European Space Research and Technology Centre ( ESTEC ), European Space Agency ( ESA ), Queen Mary University of London ( QMUL ), Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Space and Astronautical Science ( ISAS ), Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), University of Wisconsin-Madison [Madison], Institut de Planétologie et d'Astrophysique de Grenoble ( IPAG ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), STFC Rutherford Appleton Laboratory ( RAL ), Science and Technology Facilities Council ( STFC ), Delft University of Technology ( TU Delft ), Laboratoire de Physique Atmosphérique et Planétaire ( LPAP ), National University of Ireland Maynooth ( NUIM ), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] ( APL ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de physique et chimie de l'environnement ( LPCE ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Max-Planck-Institut für Sonnensystemforschung ( MPS ), ONERA - The French Aerospace Lab ( Toulouse ), ONERA, NASA Goddard Space Flight Center ( GSFC ), European Space Astronomy Center ( ESAC ), National and Kapodistrian University of Athens, University of California [Berkeley], Southwest Research Institute [San Antonio] ( SwRI ), Istituto di Astrofisica e Planetologia Spaziali ( IAPS ), Istituto Nazionale di Astrofisica ( INAF ), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), University of California [Santa Cruz] ( UCSC ), Max-Planck-Institut für Kernphysik ( MPIK ), Laboratory for Atmospheric and Space Physics [Boulder] ( LASP ), University of Colorado Boulder [Boulder], Laboratoire Atmosphères, Milieux, Observations Spatiales ( LATMOS ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Mécanique Céleste et de Calcul des Ephémérides ( IMCCE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), University of Iowa [Iowa], University of Southampton [Southampton], Institut de Physique du Globe de Paris ( IPGP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -IPG PARIS-Université Paris Diderot - Paris 7 ( UPD7 ) -Université de la Réunion ( UR ) -Centre National de la Recherche Scientifique ( CNRS ), Space Research Institute of Austrian Academy of Sciences ( IWF ), Austrian Academy of Sciences ( OeAW ), Institut für Raumfahrtsysteme ( IRS ), Deutsches Zentrum für Luft- und Raumfahrt ( DLR ), Space Science Institute [Boulder] ( SSI ), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules ( UTINAM ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Institute for Geophysics and Meteorology [Köln] ( IGM ), University of Reading ( UOR ), Université Pierre et Marie Curie - Paris 6 - UFR de Médecine Pierre et Marie Curie ( UPMC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ), Laboratoire Kastler Brossel ( LKB (Jussieu) ), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris ( FRDPENS ), Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Geophysics and Planetary Physics [Los Angeles] ( IGPP ), University of California at Los Angeles [Los Angeles] ( UCLA ), University of the Basque Country [Bizkaia] ( UPV/EHU ), Institute of Atmospheric Physics [Prague] ( IAP ), Czech Academy of Sciences [Prague] ( ASCR ), Lunar and Planetary Institute [Houston] ( LPI ), Department of Earth Sciences [Los Angeles], University of Southern California ( USC ), Laboratoire de Planétologie et Géodynamique de Nantes ( LPGN ), Université de Nantes ( UN ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), and International Space Science Institute ( ISSI )
- Subjects
Outer planets ,Gas giant ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Uranus ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Natural satellites ,Astrobiology ,ice giant planets ,Neptune ,Rings ,Physics ,Naturalsatellites ,Atmosphere ,Nice model ,Institut für Physik und Astronomie ,Astronomy ,Astronomy and Astrophysics ,orbital mission ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,science case ,[ PHYS.ASTR.EP ] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Rings of Uranus ,Space and Planetary Science ,Exploration of Uranus ,Magnetosphere ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Planetary interior ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Ice giant - Abstract
著者人数: 114名, Accepted: 2014-08-07, 資料番号: SA1005021000
- Published
- 2014
- Full Text
- View/download PDF
11. Anemia in pregnancy and the postpartum
- Author
-
J L, MACARTHUR
- Subjects
Pregnancy ,Postpartum Period ,Humans ,Anemia ,Female - Published
- 2010
12. Severe Anaemias of Pregnancy and the Postpartum State
- Author
-
J L, Macarthur and A D, Campbell
- Subjects
Articles - Published
- 2010
13. Altimeter designs: SEASAT‐1 and future missions
- Author
-
J. L. MacArthur
- Subjects
Flexibility (engineering) ,Noise ,Computer science ,Computation ,Microcomputer ,Mode (statistics) ,Thrust ,Altimeter ,Oceanography ,Reliability (statistics) ,Remote sensing - Abstract
With the launch of SEASAT‐1 in June 1978, an altimeter of improved performance joined GEOS‐3, which had been operational for three years. The advances in design that resulted in
- Published
- 1980
- Full Text
- View/download PDF
14. THE SUPPRESSION OF LACTATION: AN OBJECTIVE STUDY
- Author
-
J, SCHNEIDER, J L, MACARTHUR, J W, PATRICK, and G V, BURTON
- Subjects
Biomedical Research ,Breast Feeding ,Drug Therapy ,Estradiol ,Humans ,Lactation ,Female ,Testosterone - Published
- 1964
15. Management of late toxaemias of pregnancy
- Author
-
J L, MACARTHUR
- Subjects
Pre-Eclampsia ,Pregnancy ,Toxemia ,Disease Management ,Female ,Articles - Published
- 1948
16. Prematurity and the conduct of labour
- Author
-
J H, ROUTLEDGE and J L, MACARTHUR
- Subjects
Work ,Labor, Obstetric ,Pregnancy ,Infant, Newborn ,Humans ,Female ,Original Articles ,Infant, Premature - Published
- 1961
17. Hemoglobin changes in labor and the puerperium; a study of 102 patients
- Author
-
J, MILLER, H B, WILLIAMS, and J L, MACARTHUR
- Subjects
Hemoglobins ,Work ,Labor, Obstetric ,Pregnancy ,Postpartum Period ,Humans ,Female - Published
- 1959
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.