14 results on '"J. Neuhausen"'
Search Results
2. Modular Plant Architecture
- Author
-
W. Eversheim and J. Neuhausen
- Subjects
Control and Systems Engineering ,Automotive Engineering - Published
- 2001
- Full Text
- View/download PDF
3. European Spallation Source Technical Design Report
- Author
-
C. Carlile, R. Miyamoto, A. Pahlsson, M. Trojer, J. G. Weisend II, M. -L. Ainalem, K. H. Andersen, K. Batkov, P. Carlsson, D. Ene, B. Heden, K. Hedin, A. J. Jackson, P. Jacobsson, O. Kirstein, G. Lanfranco, Y. Lee, M. Lindroos, J. Malovrh Rebec, G. Trahern, J. Yeck, M. Ålberg, N. Ahlfors, R. Ainsworth, C. Alba-Simionesco, S. Alimov, N. Aliouane, B. Alling, K. Andersson, M. Andersson, N. H. Andersen, D. Anevski, S. Ansell, V. Antonelli, D. Argyriou, L. Arleth, E. Babcock, S. Barbanotti, F. Beckmann, P. M. Bentley, P. Beran, L. Berden, F. Bergstedt, J. Bermejo, M. Berrada, M. Bertelsen, Y. Beßler, T. Bigault, J. Birch, J. O. Birk, J. Bobnar, C. Bohme, A. Bollhalder, P. Boni, H. N. Bordallo, P. Bosland, S. Bousson, W. G. Bouwman, G. Brandl, S. Brault, J. Brinch, R. Brinkmann, H. Brueck, T. Bruckel, J. C. Buffet, M. Bulat, R. Burge, I. Bustinduy, M. Butzek, X. X. Cai, R. Caniello, M. Cardenas, G. Castro, H. Carlsen, L. Celona, Y. Chen, N. Cherkashyna, S. Choroba, B. Cheymol, M. Christensen, N. B. Christensen, E. P. Cippo, A. Class, K. Clausen, U. Clemens, J. F. Clergeau, M. Comunian, C. Cooper-Jensen, J. Correa, G. Croci, G. Cuk, L. Cussen, Y. Dai, H. Danared, D. Dancila, C. Darve, T. Davenne, P. De Vicente, P. P. Deen, M. Dell’Anno Boulton, S. Deledda, C. Densham, R. De Prisco, M. Desmons, G. Devanz, F. M. Dominguez, P. Duchesne, R. Duperrier, P. Duthil, H. Eckerlebe, S. Eckert, H. -J. Eckholt, T. Ekelof, J. Embs, M. Eneroth, R. Engels, C. Engling, M. Eshraqi, R. Fabbri, C. Fazio, J. Fenske, J. Fetzer, U. Filges, U. Fischer, K. G. Fissum, M. Forster, A. France, A. Franciosi, P. Freeman, H. Frielinghaus, C. Frojdh, C. Frost, T. Gahl, S. Gallimore, S. Gammino, N. Gandalfo, R. Georgii, G. Gerbeth, G. Gervasini, B. -E. Ghidersa, A. Ghiglino, L. Giacomelli, O. Gonzalez, G. Gorini, V. Goryashiko, M. Gohran, K. Gajewski, A. Goukassov, D. Graf, F. Grespan, A. Gromov, G. Grosso, U. Greuter, C. Grunzweig, B. Guerard, S. Gysin, K. Habicht, H. Hahn, E. A. L. Hakansson, S. Hall, R. Hall-Wilton, B. R. Hansen, U. B. Hansen, T. Hansson, T. Haraldsen, V. Haramus, C. -H. Hardh, H. Hassan, H. Hassanzadegan, B. C. Hauback, W. Haussler, W. Hees, G. Helgesen, P. Henry, L. Hermansson, A. Hiess, A. Hilger, T. Hofmann, C. Hoglund, L. Hoitzner, A. I. S. Holm, S. Holm, L. Høpfner, C. Horstmann, A. Houben, L. Hultman, M. Imam, A. Ioffe, J. Iversen, S. Iyengar, P. Jacobs, C. L. Jacobsen, H. Jacobsen, J. Jacobsen, A. Jansson, K. Jensch, J. Jensen, M. Jensen, X. J. Jin, A. J. Johansson, R. Jongeling, F. Juranyi, C. Kagi, R. Kampmann, K. Kanaki, N. Kardjilov, S. Kecskes, P. Keller, G. Kemmerling, M. Kenzelmann, A. Khaplanov, C. Kharoua, I. Khokhriakov, K. Kiefer, B. Kildetoft, T. Kittelmann, H. Kleines, K. Klenø, E. B. Klinkby, B. Klosgen, E. B. Knudsen, K. Knudsen, J. Kohlbrecher, M. Konnecke, A. Konobeev, P. Korelis, T. Kottig, L. Kramer, J. Krasna, J. Krebs, Z. Kroflic, V. Krsjak, S. Kynde, B. Laatsch, P. Ladd, E. Laface, B. Lauritzen, R. E. Lechner, K. Lefmann, E. Lehmann, M. Lehmann, F. Leseigneur, K. Lieutenant, L. Lilje, R. Linander, H. Lindblad, B. Lindenau, I. Llamas-Jansa, T. Lofnes, W. Lohstroh, D. Lott, P. Lukas, J. Lundgren, M. Lundin, H. Mo ̈ller, M. Ma ́gan, I. Manke, M. Marko, N. Martin, D. Mascali, A. Matheisen, S. Mattauch, D. McGinnis, M. Meissner, P. Mereu, M. Meshkian, F. Mezei, W. -D. Moeller, J. Molander, S. Molloy, K. Mortensen, J. -F. Moulin, A. Milocco, M. Monkenbusch, M. Morgano, T. Muhlebach, M. Muller, J. L. Munoz, G. Nagy, D. Nekrassov, L. Neri, K. Neuhaus, J. Neuhausen, C. Niedermayer, J. B. Nielsen, S. Nielsen, B. Nilsson, P. Nilsson, E. Noah, E. Nonboel, P. Norby, A. Nordt, G. Nowak, E. Oksanen, G. Olivier, G. Olry, T. Panzner, S. Pape-Møller, C. Pappas, T. Parker, S. Pasini, H. Pedersen, S. Peetermans, J. Persson, B. Petersen, S. Petersson, S. Petersson Arskol, J. Pieper, A. Pietropaolo, J. Pilch, A. Piquet, F. Piscitelli, A. Pisent, E. Platacis, F. Plewinski, J. Plomp, J. Plouin, A. Ponton, S. Pospisil, B. Pottin, H. F. Poulsen, S. O. Poulsen, P. Radahl, P. K. Pranzas, M. Proell, O. Prokhnenko, K. Prokes, E. Rampnoux, E. Rantsiou, N. Rasmussen, O. Rasmussen, K. Rathsman, M. Rebai, T. Reiss, M. Rescic, D. Reschke, C. Rethfeldt, M. Reungoat, D. Reynet, D. Richter, M. Rieth, T. H. Rod, D. M. Rodriguez, I. Rodriguez, K. Rolfs, M. Rouijaa, R. Ruber, U. Rucker, C. Ruegg, H. Rønnow, M. Russina, A. Ryberg, P. Sabbagh, A. Sadeghzadeh, M. Sales, Z. Salhi, R. Santiago-Kern, J. Saroun, T. Satogata, F. Saxild, J. Schaffran, J. Schefer, J. Scherzinger, M. Schild, B. Schillinger, H. Schlarb, P. Schmakat, A. Schreyer, W. Schroeder, P. Schurtenberger, C. Schulz, M. Schulz, W. Schweika, M. Seifert, G. Severin, R. Seviour, M. Sharp, T. Shea, P. Sievers, L. Silvi, G. G. Simeoni, W. Singer, P. Sittner, R. Sjoholm, N. Skar-Gislinge, S. Skelboe, F. Sordo, J. Stahn, P. Staron, I. Stefanescu, F. Stefani, W. -D. Stein, R. Steitz, H. Stelzer, A. Steuwer, M. St ̈ormer, M. Strobl, P. Stronciwilk, P. Strunz, A. Sukhanova, I. Sutton, K. Svedin, H. Svensson, A. Takibayev, V. Talanov, M. Tardocchi, L. Tchelidze, M. Telling, S. Terron, K. Theodor, J. -P. Thermeau, H. D. Thomsen, K. Thomsen, A. Tibbelin, C. Tiemann, M. Trapp, N. Tsapatsaris, L. Udby, A. Ushakov, P. Van Esch, L. Van Eijck, S. Van Waasen, A. A. Van Well, C. Vasi, E. Vassallo, C. Vettier, A. Vickery, N. Violini, M. Vitorovic, R. Vivanco, E. Vogel, J. Voigt, L. Von Moos, H. P. Wacklin, X. Wang, X. L. Wang, T. Weber, R. Wedberg, S. Weichselbaumer, B. Weinhorst, H. Weise, A. Weisenburger, P. K. Willendrup, R. Willumeit, T. Wilpert, A. Wischnewski, M. Wohlmuther, J. Wolters, R. A. Yogi, L. Zanini, K. Zagar, K. Zeitelhack, C. Zendler, R. Zeng, V. Ziemann, M. Zoppi, and A. Zugazaga
- Published
- 2013
- Full Text
- View/download PDF
4. TaNi2.05Te3 and Ta2Ni3Se5, New Metal-Rich Ternary Tantalum Chalcogenides
- Author
-
J. Neuhausen, R.K. Kremer, and W. Tremel
- Subjects
Materials science ,Mechanical Engineering ,Metallurgy ,Tantalum ,chemistry.chemical_element ,Electronic structure ,Condensed Matter Physics ,Metal ,chemistry ,Mechanics of Materials ,visual_art ,visual_art.visual_art_medium ,General Materials Science ,Ternary operation - Published
- 1994
- Full Text
- View/download PDF
5. s-process nucleosynthesis in massive stars: new results on [sup 60]Fe, [sup 62]Ni and [sup 64]Ni
- Author
-
C. Domingo-Pardo, I. Dillmann, T. Faestermann, U. Giesen, J. Görres, M. Heil, S. Horn, F. Käppeler, S. Köchli, G. Korschinek, J. Lachner, M. Maiti, J. Marganiec, J. Neuhausen, R. Nolte, M. Poutivtsev, R. Reifarth, R. Rugel, D. Schumann, E. Uberseder, F. Voss, S. Walter, M. Wiescher, Jan Jolie, Andreas Zilges, Nigel Warr, and Andrey Blazhev
- Subjects
Nuclear physics ,Physics ,Neutron capture ,Stars ,Isotope ,Nucleosynthesis ,Neutron ,Astrophysics ,Giant star ,s-process ,Abundance of the chemical elements - Abstract
The s process synthesizes the elements between Fe and Sr in massive stars during two major evolutionary stages, convective core He burning and C shell burning. This scenario implies fascinating consequences for the chemical evolution of the star. For instance, the neutron capture rate at each isotope can have a big influence on the production of many of the subsequent higher mass isotopes. Correspondingly, one needs to know the (n,γ) cross sections of the involved isotopes with high accuracy in order to determine the abundance pattern reliably and to obtain a consistent picture of this stage. This contribution gives an overview on recent and future experiments for the Fe/Ni nucleosynthesis in massive stars. New results on 60Fe, 62Ni and 64Ni are reported. 60Fe is mostly produced during the short convective C shell burning phase, where peak densities of ∼1011 cm−3 are reached, prior to the SN explosion. The stellar (n,γ) cross section of 60Fe could be measured with a 1 μg sample obtained at PSI (Switzerlan...
- Published
- 2009
- Full Text
- View/download PDF
6. Renale ausscheidung von intraven�s infundiertem tromethamin (= trishydroxymethylaminomethan, ?tris-puffer?, THAM)
- Author
-
H. Helwig and H. J. Neuhausen
- Subjects
Pharmacology ,Gynecology ,medicine.medical_specialty ,business.industry ,Pharmacology toxicology ,medicine ,Pharmacology (medical) ,General Medicine ,business - Abstract
Mittels einer relativ einfachen Bestimmungsmethodik last sich die Elimination von intravenos infundiertem Tromethamin messen. Dabei wurden in 72 Std bei acidotisch exsikkierten Kindern insgesamt nur 58.2 ± 12.8% unverandert ausgeschieden. Eine Kumulation bei wiederholter Gabe ist daher moglich. Weitere Untersuchungen sind erforderlich, um die Elimination von intravenos infundiertem Tromethamin unter klinischen Bedingungen zu bestimmen.
- Published
- 1969
- Full Text
- View/download PDF
7. Polonium behavior following a vacuum window rupture in a lead-bismuth eutectic based accelerator driven system.
- Author
-
Karlsson E, Neuhausen J, Aerts A, Danilov II, Eichler R, Türler A, and Vögele A
- Abstract
Accelerator driven fast nuclear reactors cooled by lead-bismuth eutectic (LBE) are developed for transmuting long-lived radionuclides in spent nuclear fuel. Due to the nature of the coolant, operating the reactor will result in a production of
210 Po by neutron capture. Understanding the behavior of this highly radiotoxic nuclide in the event of a failure of the window separating the evacuated proton beam guide from the reactor core is required for safety assessments. The present work aims at acquiring this knowledge by studying the evaporation of polonium from neutron-irradiated LBE and its deposition in a scaled down model of the beam tube. Experimental results along with Monte Carlo simulations indicate that polonium adsorbs as a single species with an adsorption enthalpy of approximately -156 kJ/mol., (Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
8. Radionuclide Chemistry in Nuclear Facilities Based on Heavy Liquid Metal Coolants: Past, Present and Future.
- Author
-
Neuhausen J
- Abstract
Heavy liquid metals such as lead and lead bismuth eutectic (LBE) are considered as spallation target material for next-generation neutron sources and as coolant of fast spectrum nuclear reactors that are developed to facilitate more efficient use of nuclear fuel as well as transmutation of long-lived nuclear waste. During the operation of such facilities, the heavy liquid metal will be activated by nuclear reactions. Additionally, fission product radionuclides may be introduced into the liquid metal from leaking fuel pins or by fission of the target nuclei in spallation. The chemical behaviour of these radioactive contaminants in the liquid metal - especially their immediate volatilization or volatilization of formed secondary compounds - may affect the safety of such facilities. The present article summarizes the activities of PSI's Laboratory of Radiochemistry towards a better understanding of the chemistry of potentially hazardous radionuclides in LBE and discusses aspects that need to be addressed in future to support the licensing of heavy liquid metal-based nuclear facilities.
- Published
- 2020
- Full Text
- View/download PDF
9. Po-Containing Molecules in Fusion and Fission Reactors.
- Author
-
Mertens MAJ, Aerts A, Infante I, Neuhausen J, and Cottenier S
- Abstract
Fission and fusion reactors can only play a role in the future energy landscape if they are inherently safe by design. For some reactor concepts, a major remaining issue is the undesired production of radiotoxic
210 Po. To filter out the volatile Po species, information on their molecular composition is needed. An experimental characterization is very challenging due to the large required amount of radioactive Po. An alternative quantum chemistry approach was taken to predict the temperature-dependent stability of relevant diatomic Po-containing molecules. Experimental data on lighter analogue molecules was used to establish a well-founded methodology. The relative occurrence of the Po species was estimated in the cover gas of (i) the lead-bismuth eutectic coolant in the accelerator-driven MYRRHA fission reactor and (ii) the Pb-Li eutectic tritium breeder in the DEMO fusion reactor. In both systems, Po is found to occur mainly as PbPo molecules and atomic Po.- Published
- 2019
- Full Text
- View/download PDF
10. Radiochemical determination of rare Earth elements in proton-irradiated lead-bismuth eutectic.
- Author
-
Hammer B, Neuhausen J, Boutellier V, Wohlmuther M, Türler A, and Schumann D
- Abstract
Various types of proton-irradiated lead-bismuth eutectic (LBE) samples from the MEGAPIE prototype spallation target were analyzed concerning their content of (148)Gd, (173)Lu, and (146)Pm by use of α- and γ-spectrometry. A radiochemical separation procedure was developed to isolate the lanthanide fraction and to prepare thin samples for α-ray measurement. The results prove a substantial depletion of these three elements in bulk samples, whereas accumulation on the LBE/steel-interfaces was observed. The amount of material accumulated on surfaces was roughly estimated by relating the values measured on the sample surfaces to the total surface of the inner target walls. The amount of (148)Gd, (173)Lu, and (146)Pm was then quantified by summing up the contributions from every sample type. The results show a reasonable agreement with theoretical predictions. The obtained results are of utmost importance for the evaluation of the performance of high-power spallation targets, especially concerning the residual nuclide production, the physicochemical behavior of the produced radionuclides during operation, and in terms of an intermediate or final disposal.
- Published
- 2015
- Full Text
- View/download PDF
11. Measurement of the 60Fe(n, gamma)61Fe Cross Section at Stellar Temperatures.
- Author
-
Uberseder E, Reifarth R, Schumann D, Dillmann I, Pardo CD, Görres J, Heil M, Käppeler F, Marganiec J, Neuhausen J, Pignatari M, Voss F, Walter S, and Wiescher M
- Abstract
Observations of galactic gamma-ray activity have challenged the current understanding of nucleosynthesis in massive stars. Recent measurements of (60)Fe abundances relative to ;{26}Al;{g} have underscored the need for accurate nuclear information concerning the stellar production of (60)Fe. In light of this motivation, a first measurement of the stellar (60)Fe(n, gamma)(61)Fe cross section, the predominant destruction mechanism of (60)Fe, has been performed by activation at the Karlsruhe Van de Graaff accelerator. Results show a Maxwellian averaged cross section at kT = 25 keV of 9.9 +/-_{1.4(stat)};{2.8(syst)}mbarn, a significant reduction in uncertainty with respect to existing theoretical discrepancies. This result will serve to significantly constrain models of (60)Fe nucleosynthesis in massive stars.
- Published
- 2009
- Full Text
- View/download PDF
12. Five-coordinate complexes [FeX(depe)(2)]BPh(4), X = Cl, Br: electronic structure and spin-forbidden reaction with N(2).
- Author
-
Franke O, Wiesler BE, Lehnert N, Näther C, Ksenofontov V, Neuhausen J, and Tuczek F
- Abstract
The bonding of N(2) to the five-coordinate complexes [FeX(depe)(2)](+), X = Cl (1a) and Br (1b), has been investigated with the help of X-ray crystallography, spectroscopy, and quantum-chemical calculations. Complexes 1a and 1b are found to have an XP(4) coordination that is intermediate between square-pyramidal and trigonal-bipyramidal. Mössbauer and optical absorption spectroscopy coupled with angular overlap model (AOM) calculations reveal that 1a and 1b have (3)B(1) ground states deriving from a (xz)(1)(z(2))(1) configuration. The zero-field splitting for this state is found to be 30-35 cm(-1). In contrast, the analogous dinitrogen complexes [FeX(N(2))(depe)(2)](+), X = Cl (2a) and Br (2b), characterized earlier are low-spin (S = 0; Wiesler, B. E.; Lehnert, N.; Tuczek, F.; Neuhausen, J.; Tremel, W. Angew. Chem, Int. Ed. 1998, 37, 815-817). N(2) bonding and release in these systems are thus spin-forbidden. It is shown by density functional theory (DFT) calculations of the chloro complex that the crossing from the singlet state (ground state of 2a) to the triplet state (ground state of 1a) along the Fe-N coordinate occurs at r(C) = 2.4 A. Importantly, this intersystem crossing lowers the enthalpy calculated for N(2) release by 10-18 kcal/mol. The free reaction enthalpy Delta G degrees for this process is calculated to be 4.7 kcal/mol, which explains the thermal instability of N(2) complex 2a with respect to the loss of N(2). The differences in reactivity of analogous trans hydrido systems are discussed.
- Published
- 2002
- Full Text
- View/download PDF
13. Influence of the trans Substituent on N 2 Bonding in Iron(ii)-Phosphane Complexes: Structure, Synthesis, and Properties of the Monomeric Adducts trans-[FeXN 2 (depe) 2 ]BPh 4 , X=Cl, Br.
- Author
-
Wiesler BE, Lehnert N, Tuczek F, Neuhausen J, and Tremel W
- Abstract
Not a dimer but a monomer was found in the X-ray structure analysis of the complex "trans-[{FeCl(depe)
2 }2 (µ-N2 )](BPh4 )2 " (depe=Et2 PCH2 CH2 PEt2 ). The complexes [FeXN2 (depe)2 ]BPh4 (X=Cl, Br; structure of the cation for X=Cl shown on the right) are much less stable than the analogous hydride compounds and undergo N2 exchange at room temperature even in the solid state., (© 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.)- Published
- 1998
- Full Text
- View/download PDF
14. Nb(x)()Ru(6)(-)(x)()Te(8), New Chevrel-Type Clusters Containing Niobium and Ruthenium(,).
- Author
-
Neuhausen J, Finckh EW, and Tremel W
- Abstract
Phases of composition Nb(x)()Ru(6)(-)(x)()Te(8) were prepared by reacting stoichiometric mixtures of the elements at high temperature in evacuated silica ampules. The structure of Nb(3.33)Ru(2.67)Te(8) was refined from X-ray powder data using the Rietveld method. Nb(3.33)Ru(2.67)Te(8) crystallizes isotypic with Mo(6)Q(8) (Q = S, Se, Te) in the rhombohedral space group R&thremacr; with the hexagonal lattice parameters a = 10.34106(5) Å, c = 11.47953(7) Å, and Z = 3. Its structure consists of M(6)Te(8) mixed-metal clusters (M = Nb, Ru) which are connected by intercluster M-Te bonds to form a three-dimensional network. Metal-metal bonding in these phases is analyzed in terms of Pauling bond orders and found to be weaker compared to that in related cluster compounds. Nb(x)()Ru(6)(-)(x)()Te(8) are the first representatives of Chevrel-type cluster phases with complete substitution of Mo by other metals. The chemical perspectives arising from this substitution are discussed.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.