232 results on '"J. Wilhelmi"'
Search Results
2. Comparing Negative Pressure Wound Therapy with Instillation and Conventional Dressings for Sternal Wound Reconstructions
- Author
-
Saeed A. Chowdhry, MD, FACS and Bradon J. Wilhelmi, MD, FACS
- Subjects
Surgery ,RD1-811 - Abstract
Background:. Muscle flap reconstruction has become a mainstay of therapy following treatment of sternal wound complications; however, success depends on removing wound exudate and infectious material from the wound before reconstruction and closure. Importantly, time to closure is a key factor affecting morbidity/mortality and cost-to-treat for this wound type. Methods:. A retrospective analysis of 30 patients who were treated for sternal wound complications between June 2015 and October 2017 was performed. After surgical debridement, group 1 patients (n = 15) received negative pressure wound therapy (NPWT) with instillation and dwell time (NPWTi-d), instilling 1/8-strength Dakin’s solution with a 20-minute dwell time followed by 2 hours of NPWT (-125 mm Hg); group 2 patients (n = 15) were treated with wet-to-moist dressings soaked in 1/8-strength Dakin’s solution. After muscle flap reconstruction and closure with sutures, group 1 patients received closed incision negative pressure therapy, and group 2 patients received Benzoin and wound closure strips. Data collected included time to closure, therapy duration, number of debridements/dressing changes, drain duration, and complications. Results:. There was a significantly shorter time to closure (P < 0.0001) for group 1 when compared with group 2. In addition, there were fewer therapy days (P = 0.0041), fewer debridements/dressing changes (P = 0.0011), and shorter drain duration (P = 0.0001) for group 1 when compared with group 2. Conclusions:. We describe a novel regimen consisting of adjunctive NPWTi-d, along with debridement and systemic antibiotics, followed by closed incision negative pressure therapy after muscle flap reconstruction and closure, to help manage preexisting sternal wounds that had failed to close following a previous cardiac procedure.
- Published
- 2019
- Full Text
- View/download PDF
3. Posterior Interosseous Nerve Graft: Utilizing External Landmarks and Anthropometric Ratios to Predict Available Length for Digital Nerve Reconstruction in a Cadaveric Study
- Author
-
Christina N Kapsalis, Morton L. Kasdan, Claude Muresan, Bradley J Vivace, Bradon J. Wilhelmi, Joshua H. Choo, Luke T Meredith, Milind D. Kachare, and Swapnil D Kachare
- Subjects
030222 orthopedics ,medicine.medical_specialty ,business.industry ,Hand surgery ,Sensory system ,Anatomy ,Original Articles ,030230 surgery ,03 medical and health sciences ,0302 clinical medicine ,Posterior interosseous nerve ,medicine.anatomical_structure ,Peripheral nerve ,Caliber ,Medicine ,Surgery ,Digital nerve ,Cadaveric spasm ,business - Abstract
In digital nerve defects that require grafting, autografts remain the efficacious option. The sensory posterior interosseous nerve (PIN) is an ideal choice as it is of similar caliber to digital nerves and leaves no donor morbidity upon resection. However, a finite length of harvestable PIN exists, and considerable variations of this length have been reported in the literature. There exists no predictive model to estimate this length. We sought to determine a method to accurately predict the available length of PIN based on individual patient anthropometry.A cadaveric dissection study was performed in a fresh tissue laboratory. The length of the sensory branch of the PIN and various anthropometric measurements were made in respect to surface anatomy of the ulna to develop a predictable ratio for available PIN donor graft.A total of 16 specimens were obtained. On average the length of the PIN was 5.7 cm (range: 3.3-9. cm) and the length of the ulna was 25.7 cm (range: 23.5-30.6 cm). The ratio of PIN to ulnar length was 0.222 (An anthropometric ratio predicated on reproducible surface anatomy of the ulna is a useful tool in predicting the sensory PIN length. Such a prediction may be a useful in guiding patient discussions concerning surgical options for digital nerve reconstruction.Dans les cas d’anomalies des nerfs digitaux qui exigent une greffe, les autogreffes sont les plus efficaces. Le nerf interosseux postérieur (NIP) sensitif est le choix idéal, car son calibre est semblable à celui des nerfs digitaux et qu’il ne provoque aucun problème de santé au site de résection. Cependant, la longueur du NIP pouvant être récolté est limitée, et d’énormes variations sont présentées dans les publications. Aucun modèle prédictif ne permet d’évaluer cette longueur. Les chercheurs ont entrepris d’établir une méthode pour prédire avec fiabilité la longueur disponible du NIP d’après les caractéristiques anthropométriques de chaque patient.Les chercheurs ont procédé à une étude de dissection cadavérique dans un laboratoire de tissus frais. Ils ont mesuré le rameau sensitif du NIP et diverses dimensions anthropométriques d’après l’anatomie de surface de l’ulna pour établir un ratio prévisible de greffe du NIP disponible chez le donneur.Les chercheurs ont obtenu 16 prélèvements et calculé une longueur moyenne du NIP de 5,7 cm (plage de 3,3 cm à 9,6 cm) et une longueur moyenne de l’ulna de 25,7 cm (plage de 23,5 cm à 30,6 cm). Ils ont calculé un ratio de 0,222 (r = 0,4651) entre la longueur du NIP et de l’ulna. D’après le cinquième de la longueur de l’ulna, ils ont prédit une longueur moyenne du NIP de 5,14 cm (plage de 4,7 cm à 6,1 cm). À l’analyse univariée, ils n’ont constaté aucune différence significative entre la longueur mesurée et prédite du NIP (Le ratio anthropométrique établi d’après l’anatomie de la surface reproductive de l’ulna est un outil utile pour prédire la longueur du NIP sensitif. Une telle prédiction peut être utile pour orienter les échanges avec le patient au sujet des possibilités chirurgicales de la reconstruction du nerf digital.
- Published
- 2023
4. Analysis of Facial Muscle Depths to Guide Botulinum Toxin Therapy of the Periocular Region
- Author
-
Rebecca L. Van Alstine, Mariam Berri, Samar Arshad, Swapnil D Kachare, Bradon J. Wilhelmi, Michael Ablavsky, and Arian Mowlavi
- Subjects
medicine.medical_specialty ,Facial muscles ,medicine.anatomical_structure ,business.industry ,Ophthalmology ,medicine ,General Earth and Planetary Sciences ,Periocular Region ,business ,Botulinum toxin ,General Environmental Science ,medicine.drug - Abstract
Purpose: Botulinum toxin (BTX) injections are used in cosmetic surgery to efface facial wrinkles. Botulinum toxin relaxes the muscle by preventing the release of the neurotransmitter acetylcholine at the neuromuscular junction located at the posterior muscle surface causing local muscle paralysis. The purpose of this study is to provide anatomic knowledge of muscle belly depths of the frontalis, corrugator supercilii, procerus, and orbicularis oculi muscles in an attempt to improve the efficacy of BTX treatment of glabellar, forehead, and lateral eyelid rhytides. Methods: Six-millimeter punch biopsies were obtained from 7 fresh cadavers. Biopsies were taken from the corrugator supercilii, frontalis, procerus, and orbicularis oculi muscles at the sites of routine BTX injection. Specimens were fixed in formalin, and representative H&E-stained sections were used to measure muscle surface depths by light microscopy equipped with digital camera that includes a digital micrometer. One-way analysis of variance test analyses were used to identify statistical differences between measured muscle depths. Results: The measured anterior muscle depth of the corrugator supercilii, frontalis, procerus, and orbicularis oculi was found to be 4.2 ± 0.6, 3.9 ± 0.6, 2.9 ± 0.4, and 2.3 ± 0.7 mm, respectively. The anterior muscle surface of the corrugator supercilii and frontalis was found to be deeper than that of the procerus and orbicularis oculi ( P < .001). The posterior surface depth of the corrugator supercilii, frontalis, procerus, and orbicularis oculi was found to be 6.6 ± 0.8, 5.1 ± 0.7, 4.9 ± 0.7, and 3.8 ± 1.0 mm, respectively. The posterior surface depth of the corrugator supercilii was found to be significantly deeper than that of the frontalis, procerus, and orbicularis oculi ( P < .001); the posterior surface depth of the frontalis and procerus was deeper than that of the orbicularis oculi ( P < .001). The muscle belly width of the corrugator supercilii, frontalis, procerus, and orbicularis oculi measured 2.5 ± 0.9, 1.1 ± 0.4, 2.0 ± 0.6, and 1.5 ± 0.5 mm, respectively. The corrugator supercilii was found to be thicker than the frontalis and orbicularis oculi, while the procerus was found to be thicker than the frontalis ( P < .001). Conclusion: The findings above demonstrate statistical differences in the posterior muscle surface depth of the corrugator supercilii, frontalis, procerus, and orbicularis oculi which can be used clinically to improve BTX injection efficacy when used to efface facial rhytides.
- Published
- 2021
- Full Text
- View/download PDF
5. Restoring Breast Volume in High BMI Patients: A Single-Center Review of Breast Reconstruction Using Hyperinflated Saline Implants
- Author
-
Milind D, Kachare, Swapnil D, Kachare, Bradley J, Vivace, Omar, Elfanagely, Brooke, Barrow, Adam, O'Toole, Alyssa M, Simpson, Rachel, Safeek, Joshua H, Choo, Terry M, McCurry, and Bradon J, Wilhelmi
- Subjects
Original Research - Abstract
BACKGROUND: Breast reconstruction in the obese patient is often fraught with poor patient satisfaction due to inadequate volume restoration. The off-label hyperinflation of saline implants is a direct yet controversial solution to this problem, with limited studies in the literature. This study sought to determine the safety and efficacy of this technique for breast reconstruction. METHODS: A retrospective chart review was performed to identify all patients with a body mass index (BMI) greater than or equal to 30 kg/m2 who underwent breast reconstruction between the years 2013 to 2020 with saline implants filled beyond the manufacturer's maximum recommended volume. RESULTS: The 21 patients identified had an average age of 49 years. The mean BMI was 39.5 kg/m2. A total of 42 implants were placed; 34 were 800 mL, 4 were 750 mL, and 4 were 700 mL. The average overfill volume was 302 mL (138%). Mean follow-up was 65.0 months. Of these, 1 (4.8%) patient with a history of chest wall radiotherapy underwent reoperation for unilateral implant exposure 27 days after the index procedure, no patient sustained spontaneous leak or rupture, and 1 patient had unilateral deflation following emergent central line and pacemaker placement 2 years after the implant was placed for an unrelated cardiovascular event. CONCLUSIONS: Hyperinflation of saline implants beyond the maximum recommended volume may be considered for volume replacement in obese patients undergoing implant-based breast reconstruction. This practice is well tolerated, has a complication rate comparable to using implants filled to the recommended volume, and has the potential to restore lost breast volume in the obese patient post mastectomy.
- Published
- 2022
6. Students teaching students: A survey of a medical student led surgical skills workshop - A prospective cohort study
- Author
-
Jared Davis, Swapnil D Kachare, Joyce Jhang, Christina N Kapsalis, Angelica Yun, Dexter W. Weeks, Milind D. Kachare, Bradon J. Wilhelmi, and Morton L. Kasdan
- Subjects
Medical student ,Medical education ,Skills course ,business.industry ,education ,Mean age ,Survey research ,General Medicine ,Mentorship ,030230 surgery ,Basic skills ,03 medical and health sciences ,0302 clinical medicine ,030220 oncology & carcinogenesis ,Cohort ,Surgical skills ,Medicine ,Suturing ,Surgery ,business ,Prospective cohort study ,Curriculum ,Knot tying ,Original Research - Abstract
Background Surgical skills training is a recognized vital component of medical education, yet a standardized curriculum does not exist. Early opportunities for skills development and mentorship may increase student interest in pursuing surgery. We evaluated the effects of a student-led, faculty-supervised suture clinic on student comfort level with basic surgical skills and interest in surgery. Methods A cohort survey study of 103 second-year medical students participating in a surgical skills course was performed between the years 2016–2018. Upon completion of the course, we assessed their comfort level with performing six basic skills as well as their interest in pursuing surgery based on pre- and post-course surveys. Results Mean age was 25 years and 50.5% were female. Most students (61.2%) had no prior suturing experience. Upon completion of the course, there was a significant improvement (p =, Highlights • Learning suture skills early in medical school leads to future operative confidence. • Early suture skills teaching can significantly increase skill level among junior medical students. • Suture clinics can provide students opportunities for mentorship and encourage interest in pursuing surgical specialties. • Medical Students appropriately trained can lead a suture clinic, minimizing demand on faculty support.
- Published
- 2020
7. Neutrino-Based Tools for Nuclear Verification and Diplomacy in North Korea
- Author
-
Takeo Kawasaki, K. Nakajima, Giorgio Gratta, Wei Wang, James Nikkel, J. P. Coleman, Soo-Bong Kim, K. M. Heeger, John G. Learned, J. Wilhelmi, Liang Zhan, Antonin Vacheret, Patrick Huber, Manfred Lindner, R. Carr, Y. K. Hor, Mikhail Danilov, Seon Hee Seo, F. Suekane, and Yeongduk Kim
- Subjects
Physics - Physics and Society ,Engineering ,Physics - Instrumentation and Detectors ,media_common.quotation_subject ,FOS: Physical sciences ,Physics and Society (physics.soc-ph) ,01 natural sciences ,Peninsula ,0103 physical sciences ,010306 general physics ,Diplomacy ,media_common ,geography ,geography.geographical_feature_category ,010308 nuclear & particles physics ,business.industry ,General Engineering ,International community ,Instrumentation and Detectors (physics.ins-det) ,Neutrino detector ,Work (electrical) ,Software deployment ,Systems engineering ,Neutrino ,business ,Research center - Abstract
We present neutrino-based options for verifying that the nuclear reactors at North Korea's Yongbyon Nuclear Research Center are no longer operating or that they are operating in an agreed manner, precluding weapons production. Neutrino detectors may be a mutually agreeable complement to traditional verification protocols because they do not require access inside reactor buildings, could be installed collaboratively, and provide persistent and specific observations. At Yongbyon, neutrino detectors could passively verify reactor shutdowns or monitor power levels and plutonium contents, all from outside the reactor buildings. The monitoring options presented here build on recent successes in basic particle physics. Following a dedicated design study, these tools could be deployed in as little as one year at a reasonable cost. In North Korea, cooperative deployment of neutrino detectors could help redirect a limited number of scientists and engineers from military applications to peaceful technical work in an international community. Opportunities for scientific collaboration with South Korea are especially strong. We encourage policymakers to consider collaborative neutrino projects within a broader program of action toward stability and security on the Korean Peninsula.
- Published
- 2019
- Full Text
- View/download PDF
8. Limits on Sub-GeV Dark Matter from the PROSPECT Reactor Antineutrino Experiment
- Author
-
J. Koblanski, J. L. Palomino, Chao Zhang, M. P. Mendenhall, Minfang Yeh, A. J. Conant, A. B. Hansell, C. E. Gilbert, Christopher V. Cappiello, B. T. Foust, J. Wilhelmi, J. LaRosa, A. M. Meyer, R. Neilson, J. K. Gaison, J. Maricic, R. Milincic, G. Deichert, T. J. Langford, D. Venegas-Vargas, Jim Napolitano, C. D. Bryan, Xin Lu, P. E. Mueller, R. L. Varner, Nathaniel Bowden, R. Rosero, X. Zhang, Denis E. Bergeron, D. E. Jaffe, J. A. Nikkel, Xiaolu Ji, Hans P. Mumm, S. Hans, D. C. Jones, A. B. Balantekin, M. A. Tyra, A. Woolverton, O. Kyzylova, S. Nour, Anna Erickson, K. M. Heeger, C. E. Lane, Christopher G. White, T. Classen, C. D. Bass, M. J. Dolinski, P. Weatherly, M. V. Diwan, H. R. Band, A. Galindo-Uribarri, B. R. Littlejohn, P. T. Surukuchi, Dmitry A. Pushin, S. Jayakumar, B. Heffron, Xin Qian, and M. Andriamirado
- Subjects
Physics ,High energy ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Flux ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Sidereal time ,0103 physical sciences ,Neutrino ,010306 general physics ,Nuclear Experiment - Abstract
If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may be detectable in both direct-detection experiments and neutrino experiments. We report the results of a dedicated search for boosted dark matter upscattered by cosmic rays using the PROSPECT reactor antineutrino experiment. We show that such a flux of upscattered dark matter would display characteristic diurnal sidereal modulation, and use this to set new experimental constraints on sub-GeV dark matter exhibiting large interaction cross-sections., 11 pages, 8 figures
- Published
- 2021
9. PROSPECT-II physics opportunities
- Author
-
M Andriamirado, A B Balantekin, H R Band, C D Bass, D E Bergeron, N S Bowden, C D Bryan, R Carr, T Classen, A J Conant, G Deichert, A Delgado, M V Diwan, M J Dolinski, A Erickson, B T Foust, J K Gaison, A Galindo-Uribari, C E Gilbert, C Grant, S Hans, A B Hansell, K M Heeger, B Heffron, D E Jaffe, S Jayakumar, X Ji, D C Jones, J Koblanski, P Kunkle, O Kyzylova, C E Lane, T J Langford, J LaRosa, B R Littlejohn, X Lu, J Maricic, M P Mendenhall, A M Meyer, R Milincic, P E Mueller, H P Mumm, J Napolitano, R Neilson, J A Nikkel, S Nour, J L Palomino, D A Pushin, X Qian, R Rosero, M Searles, P T Surukuchi, M A Tyra, R L Varner, D Venegas-Vargas, P B Weatherly, C White, J Wilhelmi, A Woolverton, M Yeh, C Zhang, X Zhang, and (The PROSPECT Collaboration)
- Subjects
High Energy Physics - Experiment (hep-ex) ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,High Energy Physics - Experiment - Abstract
The precision reactor oscillation and spectrum experiment, PROSPECT, has made world-leading measurements of reactor antineutrinos at short baselines. In its first phase, conducted at the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory, PROSPECT produced some of the strongest limits on eV-scale sterile neutrinos, made a precision measurement of the reactor antineutrino spectrum from 235U, and demonstrated the observation of reactor antineutrinos in an aboveground detector with good energy resolution and well-controlled backgrounds. The PROSPECT collaboration is now preparing an upgraded detector, PROSPECT-II, to probe yet unexplored parameter space for sterile neutrinos and contribute to a full resolution of the reactor antineutrino anomaly, a longstanding puzzle in neutrino physics. By pressing forward on the world’s most precise measurement of the 235U antineutrino spectrum and measuring the absolute flux of antineutrinos from 235U, PROSPECT-II will sharpen a tool with potential value for basic neutrino science, nuclear data validation, and nuclear security applications. Following a two-year deployment at HFIR, an additional PROSPECT-II deployment at a low enriched uranium reactor could make complementary measurements of the neutrino yield from other fission isotopes. PROSPECT-II provides a unique opportunity to continue the study of reactor antineutrinos at short baselines, taking advantage of demonstrated elements of the original PROSPECT design and close access to a highly enriched uranium reactor core.
- Published
- 2022
- Full Text
- View/download PDF
10. Nonfuel Antineutrino Contributions in the High Flux Isotope Reactor
- Author
-
A B, Balantekin, H R, Band, C D, Bass, D E, Bergeron, D, Berish, N S, Bowden, J P, Brodsky, C D, Bryan, T, Classen, A J, Conant, G, Deichert, M V, Diwan, M J, Dolinski, A, Erickson, B T, Foust, J K, Gaison, A, Galindo-Uribarri, C E, Gilbert, B T, Hackett, S, Hans, A B, Hansell, K M, Heeger, B, Heffron, D E, Jaffe, X, Ji, D C, Jones, O, Kyzylova, C E, Lane, T J, Langford, J, LaRosa, B R, Littlejohn, X, Lu, J, Maricic, M P, Mendenhall, R, Milincic, I, Mitchell, P E, Mueller, H P, Mumm, J, Napolitano, R, Neilson, J A, Nikkel, D, Norcini, S, Nour, J L, Palomino-Gallo, D A, Pushin, X, Qian, E, Romero-Romero, R, Rosero, P T, Surukuchi, M A, Tyra, R L, Varner, C, White, J, Wilhelmi, A, Woolverton, M, Yeh, A, Zhang, C, Zhang, and X, Zhang
- Subjects
Article - Abstract
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of [Formula: see text] is important when making theoretical predictions. One source of [Formula: see text] that is often neglected arises from the irradiation of the nonfuel materials in reactors. The [Formula: see text] rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible [Formula: see text] sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the [Formula: see text] source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel [Formula: see text] contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8–2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel [Formula: see text] contribution.
- Published
- 2020
11. Surface Landmarks to Provide a Safe Ulnar Nerve Block in the Wrist: Anatomical Study and Literature Review
- Author
-
Swapnil D, Kachare, Luke T, Meredith, Milind D, Kachare, Bradley J, Vivace, Christina N, Kapsalis, Claude, Muresan, Joshua H, Choo, Morton L, Kasdan, and Bradon J, Wilhelmi
- Subjects
musculoskeletal diseases ,body regions ,iatrogenic injury ,ulnar nerve block ,musculoskeletal, neural, and ocular physiology ,Review ,wrist block ,musculoskeletal system ,local anesthesia ,safe injection - Abstract
Introduction: Use of local anesthesia in awake patients undergoing hand surgery has become increasingly popular. A thorough understanding of local anatomy, such as the distal wrist for ulnar nerve block, is required to provide safe blockade. We sought to conduct an anatomic study of the distal wrist and review cadaveric studies describing various techniques for ulnar nerve block. Methods: Dissection of fresh-frozen cadaver forearms at the University of Louisville Robert Acland Fresh Tissue Lab assessing relationships between the flexor carpi ulnaris tendon and the ulnar nerve and the ulnar artery was performed. Three cadaveric studies on ulnar nerve blockade using the ulnar, volar, and/or transtendinous technique were identified and reviewed. Results: A total of 16 cadaver forearms of equal male to female ratio were obtained. The ulnar nerve was noted to be directly posterior to the flexor carpi ulnaris tendon in 15 (93.8%) forearms, with 1 (6.3%) specimen having the nerve extend along the ulnar border of the flexor carpi ulnaris. The ulnar artery was radial to the ulnar nerve 1 cm proximal to the pisiform in all specimens. In all 3 cadaveric studies, only the ulnar technique was associated with no ulnar artery and/or ulnar nerve injury. Conclusion: Knowledge of distal wrist anatomy can help minimize risk of iatrogenic injury during local blockade. On review, the ulnar approach provides the safest method for ulnar nerve block.
- Published
- 2020
12. Anatomic surface landmarks to guide injection for posterior interosseous nerve block
- Author
-
Claude Muresan, Bradley J Vivace, Bradon J. Wilhelmi, Luke T Meredith, Morton L. Kasdan, Michael Ablavsky, Christina N Kapsalis, Milind D. Kachare, Swapnil D Kachare, Joshua H. Choo, and Rachel H Safeek
- Subjects
Denervation ,Male ,business.industry ,Nerve Block ,Anatomy ,Wrist pain ,Wrist ,Injections ,Posterior interosseous nerve ,medicine.anatomical_structure ,Block (telecommunications) ,medicine ,Cadaver ,Humans ,Surgery ,Female ,Radial Nerve ,medicine.symptom ,Anatomic Landmarks ,Anatomic Surface ,business - Abstract
Proper injection of the posterior interosseous nerve (PIN) is important for both the therapeutic and diagnostic management of wrist pain. However, no anatomical study exists describing the site of injection based on individual wrist width. We sought to develop a reproducible anthropometric ratio utilizing external wrist surface anatomy to predict a safe and accurate injection site for the PIN. Fresh frozen cadaver forearms were dissected at the University of Louisville tissue lab. Several anthropometric measurements were obtained in order to develop a reproducible ratio to calculate location of injection. A total of 16 cadaver forearms of equal male to female ratio were obtained. On average, the male forearm had a greater mean wrist circumference obtained at the level of Lister's tubercle compared to female forearms, 17.1 cm vs. 13.5 cm. An injection given ulnar to proximal edge of Lister's tubercle at a length of one-fourth the distance between Lister's tubercle and radial aspect of ulnar styloid resulted in 100% accurate perineural injection without intraneural injection. An anthropometric ratio of one-fourth the distance from Lister's tubercle to the ulnar styloid was able to predict accurate injection sites for the distal PIN in cadaveric specimens of varying anatomical proportions.
- Published
- 2020
13. Nonfuel antineutrino contributions in the ORNL High Flux Isotope Reactor (HFIR)
- Author
-
Xiaolu Ji, I. Mitchell, D. Norcini, A. Woolverton, C.E. Gilbert, J. Wilhelmi, Chao Zhang, Aiwu Zhang, S. Nour, M. P. Mendenhall, A. J. Conant, J. L. Palomino-Gallo, Anna Erickson, X. Lu, R. Neilson, E. Romero-Romero, C. E. Lane, Christopher G. White, T. Classen, D. Berish, R. Milincic, D. E. Jaffe, T. J. Langford, R. Rosero, A. B. Hansell, J. A. Nikkel, C. D. Bryan, J. LaRosa, Denis E. Bergeron, B. T. Foust, A. Galindo-Uribarri, B. R. Littlejohn, Jim Napolitano, M. A. Tyra, P. T. Surukuchi, X. Zhang, D. C. Jones, A. B. Balantekin, O. Kyzylova, R. L. Varner, J. K. Gaison, B. Hackett, J. Maricic, Nathaniel Bowden, Hans P. Mumm, K. M. Heeger, Minfang Yeh, J. P. Brodsky, M. V. Diwan, P. E. Mueller, H. R. Band, G. Deichert, Xin Qian, Dmitry A. Pushin, B. Heffron, C. D. Bass, M. J. Dolinski, and S. Hans
- Subjects
Physics ,Isotope ,010308 nuclear & particles physics ,chemistry.chemical_element ,Uranium ,Oak Ridge National Laboratory ,01 natural sciences ,7. Clean energy ,Nuclear physics ,chemistry ,13. Climate action ,Inverse beta decay ,0103 physical sciences ,Neutron ,Irradiation ,Reactor neutrino ,010306 general physics ,High Flux Isotope Reactor - Abstract
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of ν ¯ e is important when making theoretical predictions. One source of ν ¯ e that is often neglected arises from the irradiation of the nonfuel materials in reactors. The ν ¯ e rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible ν ¯ e sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the ν ¯ e source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel ν ¯ e contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel ν ¯ e contribution.
- Published
- 2020
- Full Text
- View/download PDF
14. Breast Reconstruction With Local Flaps: Don't Forget Grandma
- Author
-
Bradley J, Vivace, Swapnil D, Kachare, Michael, Ablavsky, Sara R, Abell, Luke T, Meredith, Christina N, Kapsalis, Joshua H, Choo, and Bradon J, Wilhelmi
- Subjects
breast reconstruction ,oncoplastic surgery ,Review ,rhomboid flap ,eye diseases ,local flaps ,bilobed flap - Abstract
Objective: Lateral breast defects of various causes can be reconstructed with random patterned local flaps utilizing oncoplastic techniques. These local flaps are used frequently in other areas but are infrequent in breast reconstruction despite affording excellent utility in small lateral defects. We sought to demonstrate this with a case series involving 5 patients who underwent oncoplastic breast surgery with random patterned flap reconstruction. Methods: From 2016 to 2017, 3 different varieties of random flaps were used in 5 women requiring lateral breast defect reconstruction secondary to resection of localized cancer or cutaneous lesion. The local flaps included a rhomboid flap, the bilobed flap, and a rotational flap. Patients were then evaluated in the clinic 10 to 12 months postoperatively for complications, symmetry, and satisfaction of reconstruction. Results: In 4 of 5 patients, the local flap remained fully viable and there was no incidence of seroma, infection, or further complications. One patient developed a post-operative hematoma requiring evacuation and a second patient experienced distal flap necrosis and delayed wound healing. Patients reported satisfaction with the reconstruction. Conclusions: Several random patterned local flaps exist for a variety of breast defects. They can yield excellent cosmetic results, high patient satisfaction, and bolster a low rate of complications. Our case series emphasizes the utility of random patterned flaps for lateral breast oncoplastic reconstruction.
- Published
- 2019
15. Late recurrence of melanoma after 10 years - Is the course of the disease different from early recurrences?
- Author
-
Ulrike Leiter, Thomas Eigentler, J. Wilhelmi, Ioannis Thomas, E. Sarac, Claus Garbe, Teresa Amaral, and Ulrike Keim
- Subjects
0301 basic medicine ,Oncology ,Male ,medicine.medical_specialty ,Skin Neoplasms ,Dermatology ,Disease ,Metastasis ,03 medical and health sciences ,0302 clinical medicine ,Internal medicine ,medicine ,Humans ,Stage (cooking) ,Melanoma ,Survival analysis ,Proportional Hazards Models ,Retrospective Studies ,Proportional hazards model ,business.industry ,Hazard ratio ,Retrospective cohort study ,medicine.disease ,Prognosis ,030104 developmental biology ,Infectious Diseases ,030220 oncology & carcinogenesis ,Neoplasm Recurrence, Local ,business - Abstract
BACKGROUND It is known that melanoma can metastasize and recur many years after the first diagnosis. Although predictive and prognostic factors for melanoma are well defined, there is still insufficient information about the factors affecting the recurrence period and the effect of the recurrence time to survival. OBJECTIVES This study investigates the course of melanoma to show prognostic factors comparing early and late recurrence patients. The main objective is to uncover the effect of the recurrence time on the progression of the disease. METHODS In this retrospective study, late recurrence (LR) was defined as melanoma recurrence 10 years after the first diagnosis and early recurrence (ER) was defined as recurrence within 10 years. Gender, age, localization of primary tumour, time to first metastasis, survival rates, histological subtype, stage, tumour thickness, invasion level, ulceration and regression of the primary melanoma were documented. Survival curves were evaluated using the Kaplan-Meier and compared with the log-rank test. Multivariate Cox proportional hazard models were used to identify significant independent prognostic factors for melanoma-specific survival (MSS). RESULTS A total of 1537 melanoma patients were analysed. Early metastasis was developed in 1438 patients (93.6%), and 99 patients (6.4%) developed late metastasis. Late recurrence patients were younger (P
- Published
- 2019
16. Measurement of the Antineutrino Spectrum from U235 Fission at HFIR with PROSPECT
- Author
-
D. Davee, G. Deichert, D. Norcini, Michael Febbraro, R. L. Varner, J. M. Minock, M. V. Diwan, Chao Zhang, M. P. Mendenhall, A. B. Hansell, X. Zhang, B. Viren, J. T. Matta, Hans P. Mumm, H. R. Band, B. T. Foust, A. Galindo-Uribarri, Anna Erickson, B. R. Littlejohn, J. Nikkel, J. Wilhelmi, Y-R Yen, D. C. Jones, J. Insler, J. J. Cherwinka, A. B. Balantekin, S. Nour, K. Gilje, T. Wise, C. E. Gilbert, P. T. Surukuchi, S. Hans, D. Berish, O. Kyzylova, K. M. Heeger, D. E. Jaffe, C. D. Bryan, M. J. Dolinski, E. Romero-Romero, Aiwu Zhang, A. J. Conant, R. Neilson, J. LaRosa, P. E. Mueller, M. A. Tyra, Richard Rosero, Jim Napolitano, Denis E. Bergeron, D. J. Dean, Dmitry A. Pushin, Minfang Yeh, C.D. Bass, R. D. McKeown, B. T. Hackett, Xin Lu, Andrew A. Cox, Xiaolu Ji, J. K. Gaison, J. P. Brodsky, Xin Qian, T. Classen, Dusan Sarenac, A. B. Telles, D. A. Martinez Caicedo, C. E. Lane, T. J. Langford, Christopher G. White, J. Ashenfelter, and Nathaniel Bowden
- Subjects
Semileptonic decay ,Physics ,Fission ,General Physics and Astronomy ,chemistry.chemical_element ,Inverse ,Uranium ,Enriched uranium ,01 natural sciences ,7. Clean energy ,Nuclear physics ,chemistry ,0103 physical sciences ,010306 general physics ,Neutrino oscillation ,Energy (signal processing) ,High Flux Isotope Reactor - Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
- Published
- 2019
- Full Text
- View/download PDF
17. The Radioactive Source Calibration System of the PROSPECT Reactor Antineutrino Detector
- Author
-
R. Rosero, Denis E. Bergeron, T. J. Langford, R. L. Varner, R. D. McKeown, Chao Zhang, M. P. Mendenhall, J. Ashenfelter, M. V. Diwan, Xin Qian, Nathaniel Bowden, X. Lu, Aiwu Zhang, J. Wilhelmi, D. A. Martinez Caicedo, D. Norcini, J. T. Matta, A. B. Telles, Y-R Yen, G. Deichert, C. D. Bass, M. J. Dolinski, Hans P. Mumm, Jim Napolitano, C.E. Gilbert, J. P. Brodsky, D. C. Jones, J. Insler, A. B. Balantekin, O. Kyzylova, J. J. Cherwinka, R. Neilson, A. B. Hansell, K. M. Heeger, P. E. Mueller, B. Hackett, H. R. Band, B. T. Foust, S. Hans, C. E. Lane, X. Zhang, Dmitry A. Pushin, A. Galindo-Uribarri, B. R. Littlejohn, E. Romero-Romero, J. LaRosa, D. E. Jaffe, Minfang Yeh, S. Nour, P. T. Surukuchi, J. A. Nikkel, Anna Erickson, T. Wise, D. Berish, Christopher G. White, T. Classen, Dusan Sarenac, M. A. Tyra, Michael Febbraro, B. Viren, C. D. Bryan, A. J. Conant, J. K. Gaison, and D. J. Dean
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Radioactive source ,Nuclear engineering ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear reactor ,Oak Ridge National Laboratory ,7. Clean energy ,01 natural sciences ,law.invention ,Physics::Geophysics ,law ,Inverse beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Instrumentation ,High Flux Isotope Reactor - Abstract
The Precision Reactor Oscillation and Spectrum (PROSPECT) Experiment is a reactor neutrino experiment designed to search for sterile neutrinos with a mass on the order of 1 eV/c$^2$ and to measure the spectrum of electron antineutrinos from a highly-enriched $^{235}$U nuclear reactor. The PROSPECT detector consists of an 11 by 14 array of optical segments in $^{6}$Li-loaded liquid scintillator at the High Flux Isotope Reactor in Oak Ridge National Laboratory. Antineutrino events are identified via inverse beta decay and read out by photomultiplier tubes located at the ends of each segment. The detector response is characterized using a radioactive source calibration system. This paper describes the design, operation, and performance of the PROSPECT source calibration system.
- Published
- 2019
18. Basic suture technique: Instructional videos explaining suturing for medical students in a qualitative study
- Author
-
Swapnil D Kachare, Sara R. Abell, Joyce Jhang, Bradon J. Wilhelmi, Morton L. Kasdan, and Milind D. Kachare
- Subjects
Suturing techniques ,medicine.medical_specialty ,business.industry ,education ,Specialty ,Inversion ,General Medicine ,Eversion ,03 medical and health sciences ,0302 clinical medicine ,Suture (anatomy) ,030220 oncology & carcinogenesis ,Surgical skills ,Medicine ,Technique ,030211 gastroenterology & hepatology ,Surgery ,Medical physics ,business ,Instruction ,Deep bite ,Qualitative research ,Original Research ,Suture ,Skin - Abstract
Background Understanding basic surgical skills is important for medical students prior to entering residency regardless of future specialty. In these videos we provide instruction for suturing as it relates to skin closure. Material and methods Instructional videos were created by the senior faculty (R.A. and M.K.) to teach medical students at the University of Louisville suturing techniques. Results Entering and exiting the needle at an angle of 90° or greater allows for tissue eversion. Inadequate eversion of tissue or inadequate angling of the needle will lead to tissue inversion. When suturing uneven edges, a deep bite on the low side and a shallow bite on the high side will allow for appropriate tissue leveling. For buried sutures, skin eversion with substantial dermal bites and proper knot location is essential. Conclusion Understanding the basics of skin apposition will provide students with knowledge about primary wound healing and prepare them for residency., Highlights • Learning suture skills early in medical school leads to future operative confidence. • The angle of the needle entering the skin determines the level of skin apposition. • High and low edges of a wound can be leveled with proper suture technique. • Proper technique can achieve a buried knot in the deep layer of the dermis.
- Published
- 2019
19. Two-Stage Prosthetic Breast Reconstruction With Integrated Versus Remote Port Expanders: A Comparison of Complication Rates
- Author
-
Joshua H, Choo, Mitchell J, Buller, Michelle, O'Brien, Ron, Hazani, Adam, Augenstein, John P, Tutela, and Bradon J, Wilhelmi
- Subjects
prosthetic breast reconstruction ,remote port complications ,remote tissue expanders ,integrated tissue expanders ,Journal Article ,breast reconstruction - Abstract
Background: Ever since their introduction, tissue expanders for breast reconstruction have undergone a gradual evolution from remote port expanders to the integrated port expanders commonly in use today. Integrated port expanders have been widely adopted because of their ease of use and reliability, and though the convenience of integrated port expanders over remote port expanders is clear, a side-by-side comparison of complications has not been performed. A same-surgeon, same-institution study was conducted comparing the complication rates of remote versus integrated tissue expanders. Methods: A retrospective review was conducted of 107 patients who underwent breast reconstruction with tissue expanders. Remote tissue expanders were used in 21 consecutive patients (n = 42) and integrated port tissue expanders in 86 consecutive patients (n = 128). Patients who had received prior or concurrent breast irradiation were excluded from the study. Overall complications were compared, followed by complications that were broken down according to mechanical and infectious complications. Results: Fisher's exact test demonstrated a statistically significant increase in the rate of overall complications in remote port expanders compared with integrated port expanders (19% vs 7%; P = .024). Similarly, a statistically significant difference in the rate of mechanical complications between the 2 groups was found (7% in remote vs 0.8% in integrated, P = .047). When the rates of infectious complications were compared between the 2 groups, however (12% in remote vs 6% in integrated), no significant difference could be found (P = .312). Conclusion: In this retrospective review of prosthetic breast reconstructions, increased overall complications were observed with remote tissue expanders that were mainly mechanical in nature. The higher rate of infection observed in the remote port group was not statistically significant. Our study shows that remote port expanders do in fact have a higher complication rate than integrated port expanders. This should be taken into account when considering the use of remote port expanders in certain clinical scenarios.
- Published
- 2019
20. Kickstand External Fixator for Immobilization Following Free Flap Plantar Calcaneal Reconstruction
- Author
-
Swapnil D, Kachare, Bradley J, Vivace, Joshua T, Henderson, Milind, Kachare, Christina, Kapsalis, Jamie L, Fulfer, Joshua, Choo, and Bradon J, Wilhelmi
- Subjects
kickstand ,immobilization ,Journal Article ,external fixator ,heel reconstruction ,free flap - Abstract
Objective: Management of calcaneal wounds is challenging due to a paucity of tissue, complex local anatomy, and limited vascularity. These wounds are commonly associated with lower extremity fractures, which are often treated with external fixation. Free tissue transfers are frequently employed as a means for closure of plantar heel wounds; however, postoperative management can be challenging due to their dependent location. We sought to describe how simple modification of the external fixator can help relieve direct pressure, provide joint immobilization, and optimize accessibility necessary for flap survival. Methods: Three patients requiring autologous free tissue reconstruction of hindfoot defects were immobilized using an external fixator with a “kickstand” modification. Viability of the transferred tissue and the postoperative outcomes were assessed. Results: All free flaps survived with no associated complications. The “kickstand” modification was well tolerated with minimal discomfort. All 3 patients expressed satisfaction with early return to ambulation. Conclusion: An external fixator with a “kickstand” modification provides an essential function in maintaining the viability of the transferred tissue to plantar calcaneal wounds.
- Published
- 2019
21. Understanding Why Lateral Osteotomy During Rhinoplasty Can Be Performed Safely
- Author
-
Arian, Mowlavi, Jay B, Kim, Natalia, Molinatti, Sean, Saadat, Soheil, Sharifi-Amina, and Bradon J, Wilhelmi
- Subjects
safety ,nasal bridge ,rhinoplasty ,Journal Article ,nose job ,osteotomy - Abstract
Background: Lateral osteotomy is a mainstay of rhinoplasty surgery and involves fracture of the nasal and maxillary bones to narrow or widen the nasal dorsal bridge and base. To avoid nasal midvault collapse following rhinoplasty, the accepted “high-low-high” lateral osteotomy technique advocates for the preservation of a triangular strut of maxillary bone when initiating the osteotomy. Objective: We evaluated the risk of starting a lateral osteotomy in the “high” position to leave the aforementioned triangular maxillary strut without risk of falling into the nasomaxillary suture line, which can result in an aberrant and uncontrolled fracture. Methods: We utilized high-definition computed tomographic scans to reconstruct layered 3-dimensional images of 20 patient skulls and measured the distance from the rhinion (most inferior point of the central nasal bone junction) to the nasomaxillary suture line and from the rhinion to the maxillary groove. Results: We found that the nasomaxillary suture line was reliably only halfway down the bony nasal pyramid and not in proximity to the maxillary groove. Conclusions: Our findings provide reassurance that a generous triangular strut can be preserved along the maxillary component of the piriform aperture without concern of falling into the nasomaxillary suture line. Thus, controlled lateral osteotomies can be performed safely to achieve aesthetic gains without fear of compromising midvault stability.
- Published
- 2019
22. Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT
- Author
-
J, Ashenfelter, A B, Balantekin, H R, Band, C D, Bass, D E, Bergeron, D, Berish, N S, Bowden, J P, Brodsky, C D, Bryan, J J, Cherwinka, T, Classen, A J, Conant, A A, Cox, D, Davee, D, Dean, G, Deichert, M V, Diwan, M J, Dolinski, A, Erickson, M, Febbraro, B T, Foust, J K, Gaison, A, Galindo-Uribarri, C E, Gilbert, K E, Gilje, B T, Hackett, S, Hans, A B, Hansell, K M, Heeger, J, Insler, D E, Jaffe, X, Ji, D C, Jones, O, Kyzylova, C E, Lane, T J, Langford, J, LaRosa, B R, Littlejohn, X, Lu, D A, Martinez Caicedo, J T, Matta, R D, McKeown, M P, Mendenhall, J M, Minock, P E, Mueller, H P, Mumm, J, Napolitano, R, Neilson, J A, Nikkel, D, Norcini, S, Nour, D A, Pushin, X, Qian, E, Romero-Romero, R, Rosero, D, Sarenac, P T, Surukuchi, A B, Telles, M A, Tyra, R L, Varner, B, Viren, C, White, J, Wilhelmi, T, Wise, M, Yeh, Y-R, Yen, A, Zhang, C, Zhang, and X, Zhang
- Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
- Published
- 2019
23. Iatrogenic Injury to the Median Nerve During Palmaris Longus Harvest
- Author
-
Joshua Choo, Bradon J. Wilhelmi, and Morton L. Kasdan
- Subjects
musculoskeletal diseases ,Adult ,Male ,medicine.medical_specialty ,medicine.medical_treatment ,Iatrogenic Disease ,Tendon Transfer ,Case Reports ,030230 surgery ,Tendons ,03 medical and health sciences ,0302 clinical medicine ,Tendon Injuries ,Tendon transfer ,medicine ,Iatrogenic disease ,Humans ,Orthopedics and Sports Medicine ,Palmaris longus tendon ,Tendon graft ,030222 orthopedics ,Medical Errors ,Iatrogenic injury ,business.industry ,Accidents, Traffic ,musculoskeletal system ,Median nerve ,Median Nerve ,Tendon ,Surgery ,medicine.anatomical_structure ,Tissue and Organ Harvesting ,Complication ,business ,tissues - Abstract
Background: A rare and disastrous complication of harvesting a tendon graft is the misidentification of the median nerve for the palmaris longus. Methods: The authors report a referred case in which the median nerve was harvested as a free tendon graft. Results: Few reports of this complication are found in the literature despite the frequency of palmaris longus tendon grafting and the proximity of the palmaris tendon to the median nerve. Given the obvious medicolegal implications, the true incidence of this complication is difficult to assess. Discussion: Safe harvesting of the palmaris longus mandates a thorough understanding of the relevant anatomy, in particular the proper differentiation between nerve and tendon and recognition of when the palmaris longus tendon is absent. Techniques to facilitate proper identification of the palmaris longus are outlined.
- Published
- 2016
- Full Text
- View/download PDF
24. The Safe Labiaplasty: A Study of Nerve Density in Labia Minora and Its Implications
- Author
-
Saeed Chowdhry, Bradon J. Wilhelmi, John Paul Tutela, Nicole R. Herring, Shahrooz Sean Kelishadi, Rawhi A. Omar, and Ron Brooks
- Subjects
medicine.medical_treatment ,Sexual arousal ,H&E stain ,030230 surgery ,Vulva ,03 medical and health sciences ,0302 clinical medicine ,Cadaver ,medicine ,Humans ,Hematoxylin ,Aged ,Aged, 80 and over ,Microscopy ,Labia minora hypertrophy ,Staining and Labeling ,business.industry ,Labiaplasty ,General Medicine ,Anatomy ,Plastic Surgery Procedures ,Heterogeneous population ,medicine.anatomical_structure ,Labia minora ,030220 oncology & carcinogenesis ,Eosine Yellowish-(YS) ,Female ,Surgery ,business - Abstract
Background Surgical techniques to alleviate labia minora hypertrophy are gaining popularity. Due to the rapidly growing number of labiaplasties performed around the world, there is concern for the safety of these procedures with respect to maintaining sensitivity to the genitalia and/or implications for sexual arousal. Objectives An anatomic study aimed at identifying the nerve density distribution of the labia minora was performed to provide unique insight into performing labiaplasty while preserving sensation. Methods Four fresh tissue cadaver labia minora were analyzed. Each labia minora was divided into 6 anatomic areas. The samples from each of the 6 anatomic locations were analyzed for presence of nerve bundles using both a routine hematoxylin and eosin (H&E) stain and a confirmatory immunohistochemical staining for S100 protein. Nerve density was analyzed under light microscopy, counted, and then expressed as percentage nerve density as well as number of bundles per square millimeter. Results Upon gross analysis, the raw data reveal that labia minora have a heterogeneous population of sensory nerves. When looking at percent nerve density, the data do not reveal any statistical differences between the anatomic locations. Conclusions Most labiaplasty techniques can be performed safely and are unlikely to cause loss of sensation as the nerve density distribution in labia minora is heterogeneous.
- Published
- 2016
- Full Text
- View/download PDF
25. Combined Autologous and Prosthetic Breast Reconstruction: Defining the Upper Limits of Safe Expansion in Obesity
- Author
-
Bradon J. Wilhelmi, Mitchell Buller, Thomas J Lee, Steven A Schulz, and Joshua H. Choo
- Subjects
medicine.medical_treatment ,Mammaplasty ,Tissue Expansion ,030230 surgery ,Surgical Flaps ,03 medical and health sciences ,symbols.namesake ,0302 clinical medicine ,Port (medical) ,Cadaver ,Medicine ,Humans ,Obesity ,Fisher's exact test ,Mastectomy ,business.industry ,Significant difference ,Tissue Expansion Devices ,Breast radiation ,030220 oncology & carcinogenesis ,symbols ,Superficial Back Muscles ,Surgery ,Female ,Implant ,business ,Nuclear medicine ,Cadaveric spasm ,Breast reconstruction ,Tissue expansion - Abstract
Combined latissimus dorsi and prosthetic reconstruction is a useful reconstructive option in patients with a history of breast radiation who are not good candidates for abdominally based autologous reconstruction. One difficulty, particularly in obese patients, is that the thickness of the flap can impair port localization, increasing the risk of inadvertent puncture during expansion. The authors sought to investigate the upper limits of tissue thickness at which tissue expansion can be reliably performed.A cadaveric study was designed in which 2 blinded observers attempted to localize the port of a Mentor CPX-4 expander under tissue 1, 2, 3, 4, 5, and 6 cm thick. Thirty attempts were made per tissue thickness.For tissue thicknesses of 1 to 4 cm, the success rate was 100% (k = 1). At 5 cm, the success rate decreased to 86.6% (k = 1); at 6 cm, 43.3% (k = 0.85). Point biserial correlation revealed a negative correlation between tissue thickness and accuracy at a thicknesses of greater than 4 cm (r = -0.55, P0.00001). Converting tissue thickness to a dichotomous variable based on the results (thickness,4 and4 cm), Fisher exact test revealed a statistically significant difference between these 2 populations (P0.00001).In obese patients with a skin pinch of greater than 8 cm or a flap thickness of greater than 4 cm, steps should be taken to minimize the risk of inadvertent puncture of the expander during postoperative expansion. This can include foregoing tissue expander placement in favor of an implant, port localization with ultrasound guidance, or the use of remote port expanders. These findings are relevant not only in breast reconstruction with latissimus flaps and implants but also in any setting where autologous and prosthetic reconstructions are combined.
- Published
- 2018
26. The Danger Zone in the Anterior Neck: Anatomical Landmarks to Avoid Injury to Anterior Jugular Vein During Face-Lift and Neck-Lift
- Author
-
Andrew M, Swiergosz, J Stephen, Gunn, Steven A, Schulz, Joshua T, Henderson, Joshua H, Choo, Arian, Mowlavi, and Bradon J, Wilhelmi
- Subjects
anterior jugular vein ,anterior neck ,cardiovascular system ,Journal Article ,rhytidectomy ,face-lift ,neck-lift - Abstract
Background: An estimated 125,711 face-lifts and 54,281 neck-lifts were performed in 2015. Regardless of the technique employed, facial and neck flap elevation carries with it anatomical risk of which any surgeon performing these procedures should be aware of. Statistics related to anterior jugular vein injury during these procedures have not been published. Objective: To define a “danger zone” that will contain both of the anterior jugular veins on the basis of anatomical landmarks to aid surgeons with planning their surgical approach during rhytidectomy in the anterior neck region. Methods: Ten fresh tissue heminecks were dissected. All specimens were dissected under loupe magnification in a 45° (face-lift) position in which a midline incision was used for exposure. Measurements from the anterior jugular vein to the hyoid, thyroid cartilage, and cricoid cartilage bilaterally were taken. The transverse distance between the anterior jugular veins at the level of the hyoid, thyroid cartilage, and cricoid cartilage was also measured. Results: The anterior jugular veins remain in an anatomical danger zone while they travel in the anterior neck. Regardless of anatomical variation of the vessels between bodies, they generally reside in this danger zone from their inferior emergence behind the sternocleidomastoid muscle until they branch in the suprahyoid region. Conclusions: Knowledge of the anatomy, course, and location of the anterior jugular veins through the anterior neck based on anatomical landmarks and distance ratios can facilitate a safer dissection during rhytidectomy procedures.
- Published
- 2018
27. Recipient Vessel Selection in Head and Neck Reconstruction
- Author
-
Andrea, Hiller, Jared, Davis, Steven, Schulz, Josh, Henderson, and B J, Wilhelmi
- Subjects
head and neck reconstruction ,Journal Article ,external carotid artery ,recipient vessels ,vessel caliber ,Poiseuille's law - Abstract
Objective: Recipient vessel caliber may be the single most important variable for flow to free tissue transfer. We performed cadaveric dissection of the external carotid artery and its branches to analyze average diameter in order to determine an algorithm for recipient vessel selection in head and neck reconstruction. Methods: The external carotid artery and branches were exposed on 3 lightly embalmed male human cadavers, aged 82 to 85 years. Each vessel was dissected, and luminal diameters were recorded with calipers. Results: The proximal ECA had the greatest average diameter (4 ± 0.6 mm) and potential flow; followed by distal ECA (2.85 ± 0.4 mm) facial (2.0 ± 0.6 mm), lingual (1.65 ± 0.6 mm), superior thyroid (1 ± 0.3 mm), and superficial temporal (0.85 ± 0.4 mm). There was a trend towards size variation between sides of the same cadaver. Conclusion: The external carotid artery has the greatest internal diameter and potential blood flow. It should be considered, when feasible, especially for defects of the upper third of the head. For defects of the lower third, the facial artery and the lingual artery should be utilized before the smaller diameter superior thyroid artery. Vessel selection is more challenging in the setting of radiation therapy, complex trauma, and prior neck surgery. In these settings, it is useful to have knowledge of the vascular anatomy and an objective algorithm for recipient vessel selection.
- Published
- 2018
28. Performance of a segmented $^{6}$Li-loaded liquid scintillator detector for the PROSPECT experiment
- Author
-
Dmitry A. Pushin, M. A. Tyra, C. E. Lane, J. P. Brodsky, R. Rosero, Minfang Yeh, Denis E. Bergeron, T. J. Langford, Chao Zhang, M. P. Mendenhall, R. D. McKeown, A. B. Hansell, H. R. Band, S. Nour, Anna Erickson, J. Ashenfelter, D. Norcini, J. J. Cherwinka, T. Wise, D. Berish, K. Gilje, Hans P. Mumm, J. Wilhelmi, Christopher G. White, T. Classen, P. E. Mueller, M. V. Diwan, B. T. Foust, R. Neilson, D. Davee, Nathaniel Bowden, D. A. Martinez Caicedo, F. Lopez, B. Hackett, K. M. Heeger, Y-R Yen, Ke Han, Jim Napolitano, A. Galindo-Uribarri, B. R. Littlejohn, A. Bykadorova Telles, J. T. Matta, D. C. Jones, J. Insler, A. B. Balantekin, E. Romero-Romero, O. Kyzylova, S. Hans, P. T. Surukuchi, X. Zhang, K. Commeford, G. Deichert, D. E. Jaffe, Aiwu Zhang, J. A. Nikkel, C. D. Bass, M. J. Dolinski, J. M. Wagner, A. J. Conant, J. K. Gaison, B. Heffron, Xin Qian, C. Trinh, J. LaRosa, C. D. Bryan, and J. M. Minock
- Subjects
Scintillation ,Materials science ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Physics::Instrumentation and Detectors ,Detector ,Attenuation length ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Neutron capture ,High Energy Physics - Experiment (hep-ex) ,Optics ,Recoil ,Neutrino detector ,0103 physical sciences ,Neutron detection ,010306 general physics ,business ,Instrumentation ,Mathematical Physics - Abstract
This paper describes the design and performance of a 50 liter, two-segment $^{6}$Li-loaded liquid scintillator detector that was designed and operated as prototype for the PROSPECT (Precision Reactor Oscillation and Spectrum) Experiment. The two-segment detector was constructed according to the design specifications of the experiment. It features low-mass optical separators, an integrated source and optical calibration system, and materials that are compatible with the $^{6}$Li-doped scintillator developed by PROSPECT. We demonstrate a high light collection of 850$\pm$20 PE/MeV, an energy resolution of $\sigma$ = 4.0$\pm$0.2% at 1 MeV, and efficient pulse-shape discrimination of low $dE/dx$ (electronic recoil) and high $dE/dx$ (nuclear recoil) energy depositions. An effective scintillation attenuation length of 85$\pm$3 cm is measured in each segment. The 0.1% by mass concentration of $^{6}$Li in the scintillator results in a measured neutron capture time of $\tau$ = 42.8$\pm$0.2 $\mu s$. The long-term stability of the scintillator is also discussed. The detector response meets the criteria necessary for achieving the PROSPECT physics goals and demonstrates features that may find application in fast neutron detection., Comment: 16 pages, 13 figures; minor edits to design detail and references
- Published
- 2018
- Full Text
- View/download PDF
29. First search for short-baseline neutrino oscillations at HFIR with PROSPECT
- Author
-
R. Neilson, Lindsey J. Bignell, D. E. Jaffe, J. A. Nikkel, J. J. Cherwinka, K. Gilje, C. E. Gilbert, D. Davee, R. L. Varner, A. Galindo-Uribarri, B. R. Littlejohn, Minfang Yeh, D. A. Martinez Caicedo, K. Koehler, C. D. Bryan, D. C. Jones, J. Insler, B. Heffron, H. R. Band, C. D. Bass, M. J. Dolinski, A. B. Hansell, A. B. Balantekin, O. Kyzylova, D. Norcini, A. Bykadorova Telles, R. Sharma, J. LaRosa, J. M. Wagner, C. E. Lane, B. T. Foust, C. Baldenegro, Xin Lu, G. Deichert, P. T. Surukuchi, D. J. Dean, H. Yao, Dusan Sarenac, Michael Febbraro, Ke Han, J. P. Brodsky, R. Rosero, J. Wilhelmi, Andrew A. Cox, M. V. Diwan, Jim Napolitano, Denis E. Bergeron, B. Viren, B. R. White, Aiwu Zhang, Hans P. Mumm, J. Bricco, R. D. McKeown, Chao Zhang, K. Commeford, M. P. Mendenhall, Christopher G. White, Wei Wang, J. T. Matta, T. Classen, F. Lopez, K. M. Heeger, X. Zhang, H. J. Miller, T. J. Langford, J. Ashenfelter, X. Ji, Nathaniel Bowden, S. Hans, B. Seilhan, Dmitry A. Pushin, Xin Qian, S. Nour, Anna Erickson, T. Wise, D. Berish, M. A. Tyra, P. E. Mueller, Y-R Yen, A. Glenn, B. T. Hackett, J. K. Gaison, M. Zhao, E. Romero-Romero, A. J. Conant, J. M. Minock, B. W. Goddard, and C. Trinh
- Subjects
Physics ,Fission products ,Sterile neutrino ,010308 nuclear & particles physics ,Fission ,Oscillation ,General Physics and Astronomy ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,High Energy Physics - Experiment ,Physics::Geophysics ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Inverse beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,Physics::Chemical Physics ,010306 general physics ,Neutrino oscillation ,High Flux Isotope Reactor - Abstract
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of $^{235}$U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton $^6$Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 meter water equivalent overburden. Data collected during 33 live-days of reactor operation at a nominal power of 85 MW yields a detection of 25461 $\pm$ 283 (stat.) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5$\sigma$ statistical significance within two hours of on-surface reactor-on data-taking. A reactor-model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the Reactor Antineutrino Anomaly at 2.2$\sigma$ confidence level., Comment: 7 pages, 5 figures; v3: Added additional supplemental files
- Published
- 2018
- Full Text
- View/download PDF
30. The PROSPECT Reactor Antineutrino Experiment
- Author
-
J. J. Cherwinka, Aiwu Zhang, K. Gilje, G. Deichert, C. Baldenegro, A. Galindo-Uribarri, B. R. Littlejohn, R. Sharma, P. T. Surukuchi, Wei Wang, E. Romero-Romero, D. Norcini, R. L. Varner, K. Commeford, B. Hackett, C. E. Lane, M. Zhao, Minfang Yeh, H. R. Band, A. B. Hansell, D. A. Martinez Caicedo, A. J. Conant, X. Lu, M. V. Diwan, J. M. Minock, B. T. Foust, J. Boyle, Christopher G. White, S. Nour, T. Classen, Anna Erickson, R. Rosero, B. W. Goddard, J. T. Matta, J. K. Gaison, C.E. Gilbert, H. J. Miller, A. Bykadorova Telles, T. Wise, T. J. Langford, D. Berish, Y-R Yen, Denis E. Bergeron, R. Neilson, D. J. Dean, A. Glenn, Michael Febbraro, J. Ashenfelter, R. D. McKeown, B. Viren, Lindsey J. Bignell, Jim Napolitano, J. Bricco, J. P. Brodsky, P. E. Mueller, D. E. Jaffe, M. A. Tyra, X. Ji, Nathaniel Bowden, X. Zhang, J. A. Nikkel, Ke Han, Chao Zhang, H. Yao, C. Trinh, M. P. Mendenhall, C. D. Bryan, K. Koehler, Hans P. Mumm, F. Lopez, D. C. Jones, J. Insler, K. M. Heeger, A. B. Balantekin, O. Kyzylova, Andrew A. Cox, B. R. White, D. Davee, Dusan Sarenac, J. LaRosa, C. D. Bass, M. J. Dolinski, B. Heffron, J. M. Wagner, Xin Qian, J. Wilhelmi, B. Seilhan, Dmitry A. Pushin, and S. Hans
- Subjects
Physics ,Nuclear and High Energy Physics ,Sterile neutrino ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Oscillation ,Physics::Instrumentation and Detectors ,Detector ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Parameter space ,Scintillator ,01 natural sciences ,7. Clean energy ,Physics::Geophysics ,Nuclear physics ,Inverse beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Neutrino oscillation ,Instrumentation ,High Flux Isotope Reactor - Abstract
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make both a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and to probe eV-scale sterile neutrinos by searching for neutrino oscillations over meter-long baselines. PROSPECT utilizes a segmented $^6$Li-doped liquid scintillator detector for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT is a movable 4-ton antineutrino detector covering distances of 7m to 13m from the High Flux Isotope Reactor core. It will probe the best-fit point of the $\bar\nu_e$ disappearance experiments at 4$\sigma$ in 1 year and the favored regions of the sterile neutrino parameter space at more than 3$\sigma$ in 3 years. PROSPECT will test the origin of spectral deviations observed in recent $\theta_{13}$ experiments, search for sterile neutrinos, and address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly. This paper describes the design, construction, and commissioning of PROSPECT and reports first data characterizing the performance of the PROSPECT antineutrino detector., Comment: 30 pages, 33 figures; updated with journal revision and reference
- Published
- 2018
- Full Text
- View/download PDF
31. The water purification system for the Daya Bay Reactor Neutrino Experiment
- Author
-
R. L. Brown, Changgen Yang, Minfang Yeh, R. Rosero, Y. Yang, J. Goett, G. S. Li, J. J. Cherwinka, R. W. Hackenburg, R. Bopp, H. Q. Lu, J. C. Liu, J. Wilhelmi, Q. Xiao, X. N. Li, Jim Napolitano, J. Kilduff, Paul Stoler, N. Raper, M. V. Diwan, E. Dale, C. Pearson, L. S. Littenberg, and J. P. Cummings
- Subjects
Physics ,Physics - Instrumentation and Detectors ,business.industry ,Process Chemistry and Technology ,Daya bay ,Environmental engineering ,FOS: Physical sciences ,Portable water purification ,Instrumentation and Detectors (physics.ins-det) ,Daya Bay Reactor Neutrino Experiment ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Water clarity ,Water environment ,Water conductivity ,Safety, Risk, Reliability and Quality ,Process engineering ,business ,Waste Management and Disposal ,Biotechnology - Abstract
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly sealed system, and this provides significant challenges to maintaining high purity in the storage pools, each of which contains several thousand cubic meters. High purity is dictated by the need for large optical absorption length, which is critical for the operation of the experiment. The system is largely successful, and the water clarity criteria are met. We also include a discussion of lessons learned., Comment: Keywords: High purity water, Deionization
- Published
- 2015
- Full Text
- View/download PDF
32. V-Y Nipple Reconstruction
- Author
-
Bradon J. Wilhelmi and Matthew R. Zeiderman
- Subjects
medicine.medical_specialty ,business.industry ,medicine.medical_treatment ,medicine ,Scars ,Mammoplasty ,medicine.symptom ,business ,Nipple reconstruction ,Operative morbidity ,Mastectomy ,Surgery - Abstract
Nipple-areola complex reconstruction (NAR) may be complicated by scars or previous nipple reconstruction. V-Y advancement flap NAR is a reliable technique for both novice and experienced surgeons when treating patients with vertical mastectomy or Wise-pattern scar of the breast. A traditional V-Y advancement flap is lifted at the site of the future nipple. Scars from prior mastectomy, mammoplasty, or nipple reconstruction can be incorporated into the flap. The flap is folded caudally upon itself and the donor site is linearly closed. This method is easy to perform and reproducible, has low operative morbidity, and yields minimal to no additional scar burden while producing an acceptable aesthetic result.
- Published
- 2017
- Full Text
- View/download PDF
33. The Incidence of Complex Regional Pain Syndrome in Simultaneous Surgical Treatment of Carpal Tunnel Syndrome and Dupuytren Contracture
- Author
-
Mitchell Buller, Morton L. Kasdan, Bradon J. Wilhelmi, and Steven Schulz
- Subjects
medicine.medical_specialty ,medicine.medical_treatment ,Dupuytren Contracture ,030230 surgery ,Fasciotomy ,03 medical and health sciences ,0302 clinical medicine ,Postoperative Complications ,medicine ,Humans ,Orthopedics and Sports Medicine ,Carpal tunnel ,Surgical treatment ,Carpal tunnel syndrome ,Surgery Articles ,030222 orthopedics ,business.industry ,Incidence (epidemiology) ,Incidence ,medicine.disease ,Carpal Tunnel Syndrome ,Surgery ,nervous system diseases ,Complex regional pain syndrome ,medicine.anatomical_structure ,business ,Complex Regional Pain Syndromes - Abstract
Background: To determine the incidence of complex regional pain syndrome (CRPS) in the concurrent surgical treatment of Dupuytren contracture (DC) and carpal tunnel syndrome (CTS) through a thorough review of evidence available in the literature. Methods: The indices of 260 hand surgery books and PubMed were searched for concomitant references to DC and CTS. Studies were eligible for inclusion if they evaluated the outcome of patients treated with simultaneous fasciectomy or fasciotomy for DC and carpal tunnel release using CRPS as a complication of treatment. Of the literature reviewed, only 4 studies met the defined criteria for use in the study. Data from the 4 studies were pooled, and the incidence of recurrence and complications, specifically CRPS, was noted. Results: The rate of CRPS was found to be 10.4% in the simultaneous treatment group versus 4.1% in the fasciectomy-only group. This rate is nearly half the 8.3% rate of CRPS found in a randomized trial of patients undergoing carpal tunnel release. Conclusions: Our analysis demonstrates a marginal increase in the occurrence of CRPS by adding the carpal tunnel release to patients in need of fasciectomy, contradicting the original reports demonstrating a much higher rate of CRPS. This indicates that no clear clinical risk is associated with simultaneous surgical treatment of DC and CTS. In some patients, simultaneous surgical management of DC and CTS can be accomplished safely with minimal increased risk of CRPS type 1.
- Published
- 2017
34. Cryogenic Characterization of FBK RGB-HD SiPMs
- Author
-
C. E. Aalseth, F. Acerbi, P. Agnes, I. F. M. Albuquerque, T. Alexander, A. Alici, A. K. Alton, P. Ampudia, P. Antonioli, S. Arcelli, R. Ardito, I. J. Arnquist, D. M. Asner, H. O. Back, G. Batignani, E. Bertoldo, S. Bettarini, M. G. Bisogni, V. Bocci, A. Bondar, G. Bonfini, W. Bonivento, M. Bossa, B. Bottino, R. Bunker, S. Bussino, A. Buzulutskov, M. Cadeddu, M. Cadoni, A. Caminata, N. Canci, A. Candela, C. Cantini, M. Caravati, M. Cariello, M. Carlini, M. Carpinelli, A. Castellani, S. Catalanotti, V. Cataudella, P. Cavalcante, R. Cereseto, Y. Chen, A. Chepurnov, A. Chiavassa, C. Cicalò, L. Cifarelli, M. Citterio, A. G. Cocco, M. Colocci, S. Corgiolu, G. Covone, P. Crivelli, I. D'Antone, M. D'Incecco, M. D. Da Rocha Rolo, M. Daniel, S. Davini, A. De Candia, S. De Cecco, M. De Deo, G. De Filippis, G. De Guido, G. De Rosa, G. Dellacasa, P. Demontis, A. V. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, C. Dionisi, A. Dolgov, I. Dormia, S. Dussoni, A. Empl, A. Ferri, C. Filip, G. Fiorillo, K. Fomenko, D. Franco, G. E. Froudakis, F. Gabriele, A. Gabrieli, C. Galbiati, P. Garcia Abia, A. Gendotti, A. Ghisi, S. Giagu, G. Gibertoni, C. Giganti, M. Giorgi, G. K. Giovanetti, M. L. Gligan, A. Gola, O. Gorchakov, A. M. Goretti, F. Granato, M. Grassi, J. W. Grate, G. Y. Grigoriev, M. Gromov, M. Guan, M. B. B. Guerra, M. Guerzoni, M. Gulino, R. K. Haaland, B. Harrop, E. W. Hoppe, S. Horikawa, B. Hosseini, D. Hughes, P. Humble, E. V. Hungerford, An. Ianni, S. Jimenez Cabre, T. N. Johnson, K. Keeter, C. L. Kendziora, S. Kim, G. Koh, D. Korablev, G. Korga, A. Kubankin, R. Kugathasan, M. Kuss, X. Li, M. Lissia, G. U. Lodi, B. Loer, G. Longo, R. Lussana, L. Luzzi, Y. Ma, A. A. Machado, I. N. Machulin, L. Mais, A. Mandarano, L. Mapelli, M. Marcante, A. Margotti, S. M. Mari, M. Mariani, J. Maricic, M. Marinelli, D. Marras, C. J. Martoff, M. Mascia, A. Messina, P. D. Meyers, R. Milincic, A. Moggi, S. Moioli, S. Monasterio, J. Monroe, A. Monte, M. Morrocchi, W. Mu, V. N. Muratova, S. Murphy, P. Musico, R. Nania, J. Napolitano, A. Navrer Agasson, I. Nikulin, V. Nosov, A. O. Nozdrina, N. N. Nurakhov, A. Oleinik, V. Oleynikov, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, S. Palmas, L. Pandola, E. Pantic, E. Paoloni, G. Paternoster, V. Pavletcov, F. Pazzona, K. Pelczar, L. A. Pellegrini, N. Pelliccia, F. Perotti, R. Perruzza, C. Piemonte, F. Pilo, A. Pocar, D. Portaluppi, S. S. Poudel, D. A. Pugachev, H. Qian, B. Radics, F. Raffaelli, F. Ragusa, K. Randle, M. Razeti, A. Razeto, V. Regazzoni, C. Regenfus, B. Reinhold, A. L. Renshaw, M. Rescigno, Q. Riffard, A. Rivetti, A. Romani, L. Romero, B. Rossi, N. Rossi, A. Rubbia, D. Sablone, P. Salatino, O. Samoylov, W. Sands, M. Sant, R. Santorelli, C. Savarese, E. Scapparone, B. Schlitzer, G. Scioli, E. Sechi, E. Segreto, A. Seifert, D. A. Semenov, S. Serci, A. Shchagin, L. Shekhtman, E. Shemyakina, A. Sheshukov, M. Simeone, P. N. Singh, M. D. Skorokhvatov, O. Smirnov, G. Sobrero, A. Sokolov, A. Sotnikov, C. Stanford, G. B. Suffritti, Y. Suvorov, R. Tartaglia, G. Testera, A. Tonazzo, A. Tosi, P. Trinchese, E. V. Unzhakov, A. Vacca, M. Verducci, T. Viant, F. Villa, A. Vishneva, B. Vogelaar, M. Wada, J. Wahl, S. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, J. Wilhelmi, R. Williams, M. M. Wojcik, S. Wu, X. Xiang, X. Xiao, C. Yang, Z. Ye, F. Zappa, G. Zappalà, C. Zhu, A. Zichichi, G. Zuzel, Aalseth, C. E., Acerbi, F., Agnes, P., Albuquerque, I. F. M., Alexander, T., Alici, A., Alton, A. K., Ampudia, P., Antonioli, P., Arcelli, S., Ardito, R., Arnquist, I. J., Asner, D. M., Back, H. O., Batignani, G., Bertoldo, E., Bettarini, S., Bisogni, M. G., Bocci, V., Bondar, A., Bonfini, G., Bonivento, W., Bossa, M., Bottino, B., Bunker, R., Bussino, S., Buzulutskov, A., Cadeddu, M., Cadoni, M., Caminata, A., Canci, N., Candela, A., Cantini, C., Caravati, M., Cariello, M., Carlini, M., Carpinelli, M., Castellani, A., Catalanotti, S., Cataudella, V., Cavalcante, P., Cereseto, R., Chen, Y., Chepurnov, A., Chiavassa, A., Cicalò, C., Cifarelli, L., Citterio, M., Cocco, A. G., Colocci, M., Corgiolu, S., Covone, G., Crivelli, P., D'Antone, I., D'Incecco, M., Rolo, M. D. Da Rocha, Daniel, M., Davini, S., Candia, A. De, Cecco, S. De, Deo, M. De, Filippis, G. De, De Guido, Giorgia, De Rosa, Gianfranca, Dellacasa, G., Demontis, P., Derbin, A. V., Devoto, A., Eusanio, F. Di, Pietro, G. Di, Dionisi, C., Dolgov, A., Dormia, I., Dussoni, S., Empl, A., Ferri, A., Filip, C., Fiorillo, G., Fomenko, K., Franco, D., Froudakis, G. E., Gabriele, F., Gabrieli, A., Galbiati, C., Abia, P. Garcia, Gendotti, A., Ghisi, A., Giagu, S., Gibertoni, G., Giganti, C., Giorgi, M., Giovanetti, G. K., Gligan, M. L., Gola, A., Gorchakov, O., Goretti, A. M., Granato, F., Grassi, M., Grate, J. W., Grigoriev, G. Y., Gromov, M., Guan, M., Guerra, M. B. B., Guerzoni, M., Gulino, M., Haaland, R. K., Harrop, B., Hoppe, E. W., Horikawa, S., Hosseini, B., Hughes, D., Humble, P., Hungerford, E. V., Ianni, An., Cabre, S. Jimenez, Johnson, T. N., Keeter, K., Kendziora, C. L., Kim, S., Koh, G., Korablev, D., Korga, G., Kubankin, A., Kugathasan, R., Kuss, M., Li, X., Lissia, M., Lodi, G. U., Loer, B., Longo, G., Lussana, R., Luzzi, L., Ma, Y., Machado, A. A., Machulin, I. N., Mais, L., Mandarano, A., Mapelli, L., Marcante, M., Margotti, A., Mari, S. M., Mariani, M., Maricic, J., Marinelli, M., Marras, D., Martoff, C. J., Mascia, M., Messina, A., Meyers, P. D., Milincic, R., Moggi, A., Moioli, S., Monasterio, S., Monroe, J., Monte, A., Morrocchi, M., Mu, W., Muratova, V. N., Murphy, S., Musico, P., Nania, R., Napolitano, J., Agasson, A. Navrer, Nikulin, I., Nosov, V., Nozdrina, A. O., Nurakhov, N. N., Oleinik, A., Oleynikov, V., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Palmas, S., Pandola, L., Pantic, E., Paoloni, E., Paternoster, G., Pavletcov, V., Pazzona, F., Pelczar, K., Pellegrini, L. A., Pelliccia, N., Perotti, F., Perruzza, R., Piemonte, C., Pilo, F., Pocar, A., Portaluppi, D., Poudel, S. S., Pugachev, D. A., Qian, H., Radics, B., Raffaelli, F., Ragusa, F., Randle, K., Razeti, M., Razeto, A., Regazzoni, V., Regenfus, C., Reinhold, B., Renshaw, A. L., Rescigno, M., Riffard, Q., Rivetti, A., Romani, A., Romero, L., Rossi, B., Rossi, N., Rubbia, A., Sablone, D., Salatino, P., Samoylov, O., Sands, W., Sant, M., Santorelli, R., Savarese, C., Scapparone, E., Schlitzer, B., Scioli, G., Sechi, E., Segreto, E., Seifert, A., Semenov, D. A., Serci, S., Shchagin, A., Shekhtman, L., Shemyakina, E., Sheshukov, A., Simeone, M., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sobrero, G., Sokolov, A., Sotnikov, A., Stanford, C., Suffritti, G. B., Suvorov, Y., Tartaglia, R., Testera, G., Tonazzo, A., Tosi, A., Trinchese, P., Unzhakov, E. V., Vacca, A., Verducci, M., Viant, T., Villa, F., Vishneva, A., Vogelaar, B., Wada, M., Wahl, J., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Williams, R., Wojcik, M. M., Wu, S., Xiang, X., Xiao, X., Yang, C., Ye, Z., Zappa, F., Zappalà, G., Zhu, C., Zichichi, A., Zuzel, G., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DarkSide, Aalseth, C, Acerbi, F, Agnes, P, Albuquerque, I, Alexander, T, Alici, A, Alton, A, Ampudia, P, Antonioli, P, Arcelli, S, Ardito, R, Arnquist, I, Asner, D, Back, H, Batignani, G, Bertoldo, E, Bettarini, S, Bisogni, M, Bocci, V, Bondar, A, Bonfini, G, Bonivento, W, Bossa, M, Bottino, B, Bunker, R, Bussino, S, Buzulutskov, A, Cadeddu, M, Cadoni, M, Caminata, A, Canci, N, Candela, A, Cantini, C, Caravati, M, Cariello, M, Carlini, M, Carpinelli, M, Castellani, A, Catalanotti, S, Cataudella, V, Cavalcante, P, Cereseto, R, Chen, Y, Chepurnov, A, Chiavassa, A, Cicalò, C, Cifarelli, L, Citterio, M, Cocco, A, Colocci, M, Corgiolu, S, Covone, G, Crivelli, P, D'Antone, I, D'Incecco, M, Rolo, M, Daniel, M, Davini, S, Candia, A, Cecco, S, Deo, M, Filippis, G, Guido, G, Rosa, G, Dellacasa, G, Demontis, P, Derbin, A, Devoto, A, Eusanio, F, Pietro, G, Dionisi, C, Dolgov, A, Dormia, I, Dussoni, S, Empl, A, Ferri, A, Filip, C, Fiorillo, G, Fomenko, K, Franco, D, Froudakis, G, Gabriele, F, Gabrieli, A, Galbiati, C, Abia, P, Gendotti, A, Ghisi, A, Giagu, S, Gibertoni, G, Giganti, C, Giorgi, M, Giovanetti, G, Gligan, M, Gola, A, Gorchakov, O, Goretti, A, Granato, F, Grassi, M, Grate, J, Grigoriev, G, Gromov, M, Guan, M, Guerra, M, Guerzoni, M, Gulino, M, Haaland, R, Harrop, B, Hoppe, E, Horikawa, S, Hosseini, B, Hughes, D, Humble, P, Hungerford, E, Ianni, A, Cabre, S, Johnson, T, Keeter, K, Kendziora, C, Kim, S, Koh, G, Korablev, D, Korga, G, Kubankin, A, Kugathasan, R, Kuss, M, Li, X, Lissia, M, Lodi, G, Loer, B, Longo, G, Lussana, R, Luzzi, L, Ma, Y, Machado, A, Machulin, I, Mais, L, Mandarano, A, Mapelli, L, Marcante, M, Margotti, A, Mari, S, Mariani, M, Maricic, J, Marinelli, M, Marras, D, Martoff, C, Mascia, M, Messina, A, Meyers, P, Milincic, R, Moggi, A, Moioli, S, Monasterio, S, Monroe, J, Monte, A, Morrocchi, M, Mu, W, Muratova, V, Murphy, S, Musico, P, Nania, R, Napolitano, J, Agasson, A, Nikulin, I, Nosov, V, Nozdrina, A, Nurakhov, N, Oleinik, A, Oleynikov, V, Orsini, M, Ortica, F, Pagani, L, Pallavicini, M, Palmas, S, Pandola, L, Pantic, E, Paoloni, E, Paternoster, G, Pavletcov, V, Pazzona, F, Pelczar, K, Pellegrini, L, Pelliccia, N, Perotti, F, Perruzza, R, Piemonte, C, Pilo, F, Pocar, A, Portaluppi, D, Poudel, S, Pugachev, D, Qian, H, Radics, B, Raffaelli, F, Ragusa, F, Randle, K, Razeti, M, Razeto, A, Regazzoni, V, Regenfus, C, Reinhold, B, Renshaw, A, Rescigno, M, Riffard, Q, Rivetti, A, Romani, A, Romero, L, Rossi, B, Rossi, N, Rubbia, A, Sablone, D, Salatino, P, Samoylov, O, Sands, W, Sant, M, Santorelli, R, Savarese, C, Scapparone, E, Schlitzer, B, Scioli, G, Sechi, E, Segreto, E, Seifert, A, Semenov, D, Serci, S, Shchagin, A, Shekhtman, L, Shemyakina, E, Sheshukov, A, Simeone, M, Singh, P, Skorokhvatov, M, Smirnov, O, Sobrero, G, Sokolov, A, Sotnikov, A, Stanford, C, Suffritti, G, Suvorov, Y, Tartaglia, R, Testera, G, Tonazzo, A, Tosi, A, Trinchese, P, Unzhakov, E, Vacca, A, Verducci, M, Viant, T, Villa, F, Vishneva, A, Vogelaar, B, Wada, M, Wahl, J, Walker, S, Wang, H, Wang, Y, Watson, A, Westerdale, S, Wilhelmi, J, Williams, R, Wojcik, M, Wu, S, Xiang, X, Xiao, X, Yang, C, Ye, Z, Zappa, F, Zappalà, G, Zhu, C, Zichichi, A, Zuzel, G, Bussino, Severino Angelo Maria, Da Rocha Rolo, M. D., De Candia, A., De Cecco, S., De Deo, M., De Filippis, G., De Guido, G., De Rosa, G., Di Eusanio, F., Di Pietro, G., Garcia Abia, P., Ianni, A. n., Jimenez Cabre, S., Mari, Stefano Maria, Navrer Agasson, A., Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Cicalã², C., G. De, Filippi, Guido, G. De, G. De, Rosa, and Zappalã , G.
- Subjects
visible and IR photons ,Physics - Instrumentation and Detectors ,data acquisition ,SiPMs ,1ST PROTOTYPES ,01 natural sciences ,Photon detectors forUV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc) ,etc) ,Data acquisition ,EMCCDs etc) ,APDs ,Photon detectors for UV ,visible and IR photons (solid-state) ,Instrumentation ,Mathematical Physics ,Physics ,EBCCDs ,Si-PMTs ,Instrumentation and Detectors (physics.ins-det) ,Cryogenic detectors ,Photon detectors for UV, visible and IR photons (solid-state) ,G-APDs ,Physics - Instrumentation and Detector ,performance ,Dark current ,noise ,ionization: yield ,Dark matter ,quenching ,High density ,Cryogenic detector ,FOS: Physical sciences ,DarkSide ,Noise (electronics) ,programming ,Optics ,0103 physical sciences ,Analysis software ,photomultiplier: silicon ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,(solid-state) (PIN diodes ,visible and IR photons (solid-state) (PIN diodes ,010306 general physics ,SILICON ,010308 nuclear & particles physics ,business.industry ,CCDs ,dark matter: detector ,ITC-IRST ,(solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs ,time projection chamber: liquid argon ,(solid-state) ,Photon detectors forUV ,EMCCDs ,RGB color model ,business - Abstract
International audience; We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A cryogenic setup was used to operate the SiPMs at varying temperatures and a custom data acquisition system and analysis software were used to precisely characterize the primary dark noise, the correlated noise, and the gain of the devices. We demonstrate that FBK RGB-HD SiPMs with low quenching resistance (RGB-HD-LRq) can be operated from 40 K to 300 K with gains in the range 10(5) to 10(6) and noise rates at a level of around 1 Hz/mm(2).
- Published
- 2017
- Full Text
- View/download PDF
35. Immediate Breast Reconstruction of a Nipple Areolar Lumpectomy Defect With the L-Flap Skin Paddle Breast Reduction Design and Contralateral Reduction Mammoplasty Symmetry Procedure: Optimizing the Oncoplastic Surgery Multispecialty Approach
- Author
-
Mitchell, Buller, Adee, Heiman, Jared, Davis, Thomas J, Lee, Nicolás, Ajkay, and Bradon J, Wilhelmi
- Subjects
lumpectomy ,oncoplastic ,Journal Article ,mammoplasty ,areola ,symmetry - Abstract
Objective: We describe a modification of the inferior pedicle reduction mammoplasty for oncoplastic reconstruction of a central tumor defect. Our technique involved a deepithelialized L-shaped medial inferior based flap with removal of lateral breast tissue after central lumpectomy with a contralateral Wise-pattern mastopexy with inferior pedicle for symmetry. This technique is ideal for patients with large, ptotic breasts that desire breast conservation with immediate reconstruction. Methods: A 47-year-old woman with size 38 DD breasts presented with a palpable 2-cm subareolar mass of the left breast. Surgical oncology performed a left lumpectomy with nipple-areola complex excision and a sentinel lymph node biopsy. Immediate left breast reconstruction was performed with an inferior pedicle island flap. An additional 30 g of breast tissue was excised laterally for contour, and the neo–nipple-areola complex was rotated into the defect to facilitate inverted-T closure. A standard Wise-pattern mastopexy with inferior pedicle was then performed on the right breast and an additional 205 g of tissue was removed for symmetry. Results: The patient showed excellent symmetry at the conclusion of the procedure. Final pathology demonstrated complete excision of the tumor with negative margins. The entire neo–nipple-areola complex skin island was viable postoperatively. Conclusions: Immediate reconstruction of a nipple-areola complex lumpectomy defect with a L-shaped medial inferior based skin paddle flap and contralateral reduction mammoplasty provides an excellent cosmetic outcome in patients with large, ptotic breasts and central defects following oncologic tumor resection.
- Published
- 2017
36. Champagne Groove Lipectomy: A Safe Technique to Contour the Upper Abdomen in Abdominoplasty
- Author
-
Ron, Brooks, Jonathan, Nguyen, Saeed, Chowdhry, John Paul, Tutela, Sean, Kelishadi, David, Yonick, Joshua, Choo, and Bradon J, Wilhelmi
- Subjects
upper abdomen contouring ,abdominoplasty techniques ,lipoabdominoplasty alternative ,supra-scarpal fat excision ,Journal Article ,champagne groove lipectomy - Abstract
Objective: Combined liposuction and abdominoplasty, or lipoabdominoplasty, is particularly helpful in sculpting a more aesthetically pleasing abdominal contour, particularly in the supraumbilical midline groove. This groove, coined the “champagne groove” by one of our patients, is a frequently sought-after attribute by patients. However, liposuction adds time and cost to an already costly abdominoplasty. We sought to create this groove without the addition of liposuction, utilizing what we call a champagne groove lipectomy. This study reports on our champagne groove lipectomy technique and compares our complication rates with those reported in the literature for standard abdominoplasty techniques. Methods: This is a retrospective review of a single surgeon's experience at our institution over a 6-year period (2007-2012). A total of 74 patients undergoing consecutive abdominoplasty were studied, all female nonsmokers. Two groups were recognized: 64 of 74 patients underwent abdominoplasty, partial belt lipectomy, and champagne groove lipectomy, while 10 of 74 patients underwent fleur-de-lis abdominoplasty without champagne groove lipectomy. Results: Overall, 10 of 74 patients (13.5%) suffered some type of complication, which compares favorably with reported rates in the literature. The majority of complications were related to delayed wound healing or superficial wound dehiscence. Among those patients who underwent champagne groove lipectomy, complications occurred in 6 of 64 patients (9.3%), versus 4 of 10 (40%) patients undergoing fleur-de-lis abdominoplasty. Conclusions: Champagne groove lipectomy is a cost-effective alternative to lipoabdominoplasty for achieving an aesthetically pleasing upper midline abdominal contour, with complication rates comparing favorably with those reported in the literature.
- Published
- 2017
37. The DarkSide Experiment: Present Status and Future
- Author
-
S. Odrowski, M. Gromov, E. Segreto, D. Sablone, Peter Daniel Meyers, D. Rountree, Y. Suvorov, S. Westerdale, E. V. Unzhakov, C. Stanford, J. Brodsky, S. M. Mari, P. Saggese, A. M. Goretti, A. S. Chepurnov, S. Walker, Andrea Ianni, T. N. Johnson, E. V. Hungerford, Mariano Cadoni, Hui Wang, M. Guan, L. Pagani, Q. Riffard, Thomas Alexander, Maria Rescigno, A. Devoto, A. Sotnikov, M. D. Skorokhvatov, N. Rossi, A. Navrer Agasson, L. Grandi, F. Di Eusanio, A. K. Alton, Jim Napolitano, A. Tonazzo, M. Carlini, H. O. Back, M. Orsini, I. N. Machulin, Marcello Lissia, K. Biery, Yanchu Wang, P. N. Singh, Paolo Lombardi, J. Tatarowicz, G. Fiorillo, N. Canci, Aldo Romani, G. Di Pietro, Giovanni Covone, R. Saldanha, K. Fomenko, N. Pelliccia, B. J. Mount, J. Maricic, B. Reinhold, P. Agnes, S. Pordes, Marco Pallavicini, D. Korablev, A. Zec, M. Cariello, A. V. Derbin, F. Budano, D. M. Asner, B. Baldin, D. D'Angelo, M. De Vincenzi, A. L. Renshaw, A. Brigatti, G. Testera, D. Franco, K. Randle, K. Pelczar, Cristiano Galbiati, Irina James, D. Semenov, R. Milincic, M. D'Incecco, W. Zhong, S. De Cecco, G. Forster, C. J. Martoff, D. Hughes, M. Caravati, Anselmo Meregaglia, H. Qian, C. Dionisi, C. L. Kendziora, J. Wilhelmi, Chung-Yao Yang, Monica Verducci, G. Bonfini, A. Vishneva, Ivone F. M. Albuquerque, G. K. Giovanetti, B. R. Hackett, P. Cavalcante, A. Empl, M. Wada, W. Bonivento, M. De Deo, S. Davini, Frank Calaprice, X. Xiang, Y. Guardincerri, B. Vogelaar, M. Razeti, S. Catalanotti, S. Bussino, J. D. Miller, Paul H. Humble, E. Pantic, C. Savarese, K. Keeter, C. Giganti, Laura Cadonati, A. S. Kubankin, G. Zuzel, A. G. Cocco, Stefano Giagu, Giuseppe Longo, A. Razeto, R. Tartaglia, Al. Ianni, Xiaoyuan Li, E. Edkins, D. Montanari, V. Bocci, Fausto Ortica, Cécile Jollet, A. Candela, B. Loer, B. Schlitzer, C. Zhu, F. Gabriele, G. Korga, Gioacchino Ranucci, P. Trinchese, F. Granato, E. Shields, K. Herner, M. Cadeddu, C. Cicalo, Paolo Musico, A. Fan, D. A. Pugachev, V. N. Muratova, B. Bottino, A. Monte, A. Pocar, Jilei Xu, O. Smirnov, S. Parmeggiano, Marcin Wójcik, W. Sands, Y. Q. Ma, L. Marini, M. Bossa, B. Rossi, G. Koh, Alan Watson, A. Mandarano, Xiang Xiao, Zuzel, G., Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Asner, D. M., Back, H. O., Baldin, B., Biery, K., Bocci, V., Bonfini, G., Bonivento, W., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, F., Bussino, S., Cadeddu, M., Cadonati, L., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Caravati, M., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cicalo, C., Cocco, A. G., Covone, G., D'Angelo, D., D'Incecco, M., Davini, S., De Cecco, S., De Deo, M., De Vincenzi, M., Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Dionisi, C., Edkins, E., Empl, A., Fan, A., Fiorillo, G., Fomenko, K., Forster, G., Franco, D., Gabriele, F., Galbiati, C., Giagu, S., Giganti, C., Giovanetti, G. K., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K., Hughes, D., Humble, P., Hungerford, E. V., Ianni, A. L., Ianni, A. N., James, I., Johnson, T. N., Jollet, C., Keeter, K., Kendziora, C. L., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Loer, B., Lombardi, P., Longo, G., Ma, Y., Machulin, I. N., Mandarano, Marina, Mari, S. M., Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Milincic, R., Miller, J. D., Montanari, D., Monte, A., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Agasson, A. Navrer, Odrowski, S., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeti, M., Razeto, A., Reinhold, B., Renshaw, A. L., Rescigno, M., Riffard, Q., Romani, A., Rossi, B., Rossi, N., Rountree, D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Savarese, C., Schlitzer, B., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Verducci, M., Vishneva, A., Vogelaar, B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X. I., Xiao, X., Xu, J., Yang, C., Zec, A., Zhong, W., Zhu, C., Budano, Federico, Bussino, Severino Angelo Maria, DE VINCENZI, Mario, Eusanio, F. Di, Pietro, G. Di, Ianni, A. l., Ianni, A. n., James, Irina, Mandarano, A., Mari, Stefano Maria, Xiang, X. i., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
WIMP nucleon: scattering ,History ,Physics::Instrumentation and Detectors ,Dark matter ,WIMP: mass ,chemistry.chemical_element ,talk: Moscow 2016/10/10 ,DarkSide ,4/3 ,spin: dependence ,WIMP: dark matter ,channel cross section: upper limit ,01 natural sciences ,argon: target ,dark matter ,Education ,Nuclear physics ,Physics and Astronomy (all) ,WIMP ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Physics ,Argon ,Time projection chamber ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,WIMP nucleon: cross section ,time projection chamber: liquid argon ,Gran Sasso ,Computer Science Applications ,Elementary particle physics ,Double phase ,chemistry ,Liquid argon ,High Energy Physics::Experiment ,MATTER ,experimental results - Abstract
International audience; DarkSide is a multi-stage program devoted to direct searches of Dark Matter particles with detectors based on double phase liquid Argon Time Projection Chamber. The DarkSide-50 setup is running underground at the Laboratori Nazionali del Gran Sasso. First it was operated with Atmospheric Argon and during that run (1422 ± 67) kg×d of truly background-free exposure has been accumulated. Obtained data made it possible to set a 90% C.L. upper limit on the WIMP-nucleon cross section of 6.1 × 10(−)(44) cm(2) (for a WIMP mass of 100 GeV/c(2)). Presently the detector is filled with Underground Argon, which is depleted in (39)Ar by a factor of (1.4 ± 0.2)×10(3) with respect to Atmospheric Argon. Acquired so far (2616 ± 43) kg×d (71 live days) in combination with the data from the Atmospheric Argon run give us the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10(−)(44) cm(2) for a WIMP mass of 100 GeV/c(2). Up to date this is the best limit obtained with an argon target.
- Published
- 2017
- Full Text
- View/download PDF
38. THE DARKSIDE-50 EXPERIMENT: A LIQUID ARGON TARGET FOR DARK MATTER PARTICLES
- Author
-
R. Tartaglia, A. Razeto, B. R. Hackett, A. Zec, N. Canci, Thomas Alexander, S. Pordes, H. O. Back, M. Gromov, A. L. Renshaw, C. Giganti, A. Empl, S. De Cecco, Ivone F. M. Albuquerque, J. Tatarowicz, A. M. Goretti, J. Maricic, M. Cariello, Samuele Sangiorgio, D. Franco, M. Lissia, L. Crippa, G. Zuzel, A. Devoto, P. D. Meyers, W. Zhong, E. V. Hungerford, G. Di Pietro, J. P. Brodsky, B. Vogelaar, S. Westerdale, R. Milincic, Mariano Cadoni, N. Rossi, E. Pantic, J. Wilhelmi, M. Wada, L. Agostino, Nicomede Pelliccia, P. N. Singh, A. Sotnikov, M. E. Monzani, K. Arisaka, M. D. Skorokhvatov, B. Baldin, L. Grandi, A. Meregaglia, E. Edkins, L. Marini, M. Bossa, E. Shields, C. Stanford, G. Fiorillo, D. Rountree, G. Forster, M. Carlini, Gioacchino Ranucci, L. Pagani, P. Cavalcante, G. Koh, K. Randle, A. Vishneva, X. Li, Paolo Lombardi, B. Rossi, B. Reinhold, S. Bussino, A. Pocar, P. Trinchese, P. J. Mosteiro, Michele Montuschi, M. D'Incecco, M. De Vincenzi, E. Segreto, Alan Watson, An. Ianni, H. Qian, C. Jollet, C. J. Martoff, G. Bonfini, A. Mandarano, V. N. Muratova, M. Orsini, B. Bottino, K. Herner, B. J. Mount, K. J. Keeter, K. Biery, Yanchu Wang, G. Korga, K. Fomenko, Frank Calaprice, X. Xiang, F. Budano, V. V. Kobychev, P. Saggese, C. Savarese, Laura Cadonati, D. Sablone, F. Granato, A. Candela, J. Yoo, Jingke Xu, A. S. Kubankin, S. Davini, M. Cadeddu, T. Miletic, K. Pelczar, Fausto Ortica, Sandra Zavatarelli, W. Sands, Y. Guardincerri, Giovanni Covone, A. Monte, S. Luitz, Min-Xin Guan, Paolo Musico, D. Montanari, O. Smirnov, A. Fan, D. A. Pugachev, E. V. Unzhakov, Han Wang, R. Saldanha, Ann E. Nelson, I. N. Machulin, Al. Ianni, Caoxiang Zhu, Y. Suvorov, Stuart Derek Walker, S. Perasso, D. D'Angelo, Yanhui Ma, C. L. Kendziora, Irina James, M. De Deo, S. Catalanotti, A. G. Cocco, Marco Pallavicini, F. Gabriele, F. Di Eusanio, M. M. Wojcik, Jim Napolitano, Aldo Romani, A. Tonazzo, P. Agnes, S. Parmeggiano, D. A. Semenov, Chung-Yao Yang, A. V. Derbin, Augusto Brigatti, Denis Korablev, A. K. Alton, C. Galbiati, S. M. Mari, A. S. Chepurnov, H. Cao, S. Odrowski, G. Testera, Alexander I. Studenikin, Agnes, P., Agostino, L., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Arisaka, K., Back, H. O., Baldin, B., Biery, K., Bonfini, G., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, Federico, Bussino, Severino Angelo Maria, Cadeddu, M., Cadonati, L., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Cao, H., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cocco, A. G., Covone, G., Crippa, L., D’Angelo, D., D’Incecco, M., Davini, S., De Cecco, S., De Deo, M., DE VINCENZI, Mario, Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Edkins, E., Empl, A., Fan, A., Fiorillo, G., Fomenko, K., Forster, G., Franco, D., Gabriele, F., Galbiati, C., Giganti, C., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K., Hungerford, E. V., Ianni, A. l., Ianni, A. n., James, Irina, Jollet, C., Keeter, K., Kendziora, C. L., Kobychev, V., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Lombardi, P., Luitz, S., Ma, Y., Machulin, I. N., Mandarano, A., Mari, Stefano Maria, Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Miletic, T., Milincic, R., Montanari, D., Monte, A., Montuschi, M., Monzani, M., Mosteiro, P., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Nelson, A., Odrowski, S., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Perasso, S., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeto, A., Reinhold, B., Renshaw, A. L., Romani, A., Rossi, B., Rossi, N., Rountree, D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Sangiorgio, S., Savarese, C., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Vishneva, A., Vogelaar, B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X., Xu, J., Yang, C., Yoo, J., Zavatarelli, S., Zec, A., Zhong, W., Zhu, C., Zuzel, G., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Budano, F., Bussino, S., D'Angelo, D., D'Incecco, M., de Cecco, S., de Deo, M., de Vincenzi, M., di Eusanio, F., di Pietro, G., Ianni, A., James, I., and Mari, S. M.
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Dark matter ,scintillation counter: liquid ,chemistry.chemical_element ,WIMP Argon Programme ,Scintillator ,dark matter: direct detection ,liquid argon: target ,7. Clean energy ,Nuclear physics ,Nuclear Experiment ,Physics ,Argon ,Time projection chamber ,shielding ,background ,Astronomy and Astrophysics ,Gran Sasso ,time projection chamber ,dark matter: scattering ,chemistry ,Electromagnetic shielding ,atmosphere ,dark matter, argon, time projection chamber ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Directional Recoil Identification from Tracks ,ArDM - Abstract
International audience; The DarkSide-50 experiment, located at the “Laboratori Nazionali del Gran Sasso (INFN)”, is based on low-radioactivity argon double phase time projection chamber, surrounded by an active liquid scintillator veto, designed for the zero background achievement. The liquid argon features sufficient self shielding and easy scalability to multi-tons scale. The impressive reduction of the 39Ar isotope (compared to the atmospheric argon), along with the excellent pulse shape discrimination, make this technology a possible candidate for the forthcoming generation of multi-ton Dark Matter experiments.
- Published
- 2017
- Full Text
- View/download PDF
39. A low mass optical grid for the PROSPECT reactor antineutrino detector
- Author
-
M. V. Diwan, J. J. Cherwinka, Hans P. Mumm, K. Gilje, D. Norcini, Michael Febbraro, B. Viren, J. T. Matta, D. E. Jaffe, K. M. Heeger, Y-R Yen, J. A. Nikkel, A. B. Hansell, K. H. Hermanek, X. Lu, T. J. Langford, D. Davee, J. Wilhelmi, D. C. Jones, J. Insler, A.E. Detweiler, J. Ashenfelter, Dmitry A. Pushin, A. J. Conant, A. B. Balantekin, D. A. Martinez Caicedo, O. Kyzylova, H. R. Band, E. Romero-Romero, C. D. Bass, B. T. Foust, M. J. Dolinski, Nathaniel Bowden, C.E. Gilbert, Minfang Yeh, P. E. Mueller, M. A. Tyra, D. J. Dean, C. E. Lane, R. Rosero, J. M. Minock, Xin Qian, Denis E. Bergeron, G. Deichert, R. L. Varner, R. D. McKeown, J. P. Brodsky, Chao Zhang, M. P. Mendenhall, S. Hans, R. Neilson, S. Nour, Anna Erickson, J. LaRosa, T. Wise, D. Berish, Y. Gebre, Jim Napolitano, Aiwu Zhang, A. Galindo-Uribarri, B. R. Littlejohn, P. T. Surukuchi, X. Zhang, B. Hackett, Dusan Sarenac, Ian Gustafson, Christopher G. White, T. Classen, J. K. Gaison, and C. D. Bryan
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Optics ,business.industry ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,business ,Low Mass ,Grid ,Instrumentation ,Mathematical Physics - Abstract
PROSPECT, the Precision Reactor Oscillation and SPECTrum experiment, is a short-baseline reactor antineutrino experiment designed to provide precision measurements of the $^{235}$U product $\overline{\nu}_e$ spectrum of utilizing an optically segmented 4-ton liquid scintillator detector. PROSPECT's segmentation system, the optical grid, plays a central role in reconstructing the position and energy of $\overline{\nu}_e$ interactions in the detector. This paper is the technical reference for this PROSPECT subsystem, describing its design, fabrication, quality assurance, transportation and assembly in detail. In addition, the dimensional, optical and mechanical characterizations of optical grid components and the assembled PROSPECT target are also presented. The technical information and characterizations detailed here will inform geometry-related inputs for PROSPECT physics analysis, and can guide a variety of future particle detection development efforts, such as those using optically reflecting materials or filament-based 3D printing., Comment: 31 pages, 28 figures
- Published
- 2019
- Full Text
- View/download PDF
40. Lithium-loaded liquid scintillator production for the PROSPECT experiment
- Author
-
R. L. Varner, X. Lu, M. V. Diwan, P. E. Mueller, B. Hackett, J. LaRosa, R. Neilson, D. A. Martinez Caicedo, A. J. Conant, A. B. Hansell, D. Davee, Aiwu Zhang, Lindsey J. Bignell, J. T. Matta, X. Zhang, J. J. Cherwinka, B. T. Foust, D. E. Jaffe, A. Galindo-Uribarri, B. R. Littlejohn, P. T. Surukuchi, Y-R Yen, G. Deichert, J. A. Nikkel, Dmitry A. Pushin, J. Wilhelmi, C. Camilo Reyes, T. J. Langford, Christopher G. White, C. D. Bryan, T. Classen, J. Ashenfelter, H. R. Band, Michael Febbraro, S. Campos, B. Hayes, J. K. Gaison, B. Viren, Nathaniel Bowden, M. A. Tyra, Dusan Sarenac, R. Diaz Perez, Xin Qian, C.E. Gilbert, S. Nour, Anna Erickson, T. Wise, D. Berish, C. D. Bass, M. J. Dolinski, S. Hans, J. P. Brodsky, R. Rosero, Denis E. Bergeron, R. D. McKeown, E. Romero-Romero, Minfang Yeh, D. Norcini, Hans P. Mumm, D. J. Dean, K. M. Heeger, Jim Napolitano, D. C. Jones, J. Insler, A. B. Balantekin, O. Kyzylova, C. E. Lane, Chao Zhang, and M. P. Mendenhall
- Subjects
Optical absorbance ,Physics - Instrumentation and Detectors ,Materials science ,Fabrication ,010308 nuclear & particles physics ,Analytical chemistry ,FOS: Physical sciences ,chemistry.chemical_element ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,7. Clean energy ,01 natural sciences ,Photon yield ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,chemistry ,Yield (chemistry) ,0103 physical sciences ,Lithium ,Instrumentation ,Mass fraction ,Mathematical Physics - Abstract
This work reports the production and characterization of lithium-loaded liquid scintillator (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 liter batches of LiLS (${}^6{\rm Li}$ mass fraction 0.082%$\pm$0.001%) were produced and samples from all batches were characterized by measuring their optical absorbance relative to air, light yield relative to a pure liquid scintillator reference, and pulse shape discrimination capability. Fifty-seven batches passed the quality assurance criteria and were used for the PROSPECT experiment., 16 pages, 15 figures
- Published
- 2019
- Full Text
- View/download PDF
41. The Double Opposing Semiocclusive Drain Dressing
- Author
-
S. Sean Kelishadi, John Paul Tutela, Bradon J. Wilhelmi, Darrell W. Freeman, and Matthew R. Zeiderman
- Subjects
Suction (medicine) ,medicine.medical_specialty ,Treatment outcome ,Insertion site ,Occlusive Dressings ,Suction ,030230 surgery ,Cutaneous tissue ,03 medical and health sciences ,Catheters, Indwelling ,0302 clinical medicine ,Suction drain ,medicine ,Humans ,Tube (container) ,Letters to the Editor ,Wound Healing ,integumentary system ,business.industry ,General Medicine ,Middle Aged ,Surgery ,Occlusive dressing ,Treatment Outcome ,030220 oncology & carcinogenesis ,Drainage ,Female ,Suction drainage ,business - Abstract
Suction drainage with a Jackson-Pratt, Blake, or Hemovac drain is commonly employed for postoperative drainage of a variety of sites including the abdomen, pelvis, cutaneous tissue flaps, and skin grafts.1-3 Some patients may express complaints of discomfort and pain around the skin at the tube's insertion site and/or where it is sutured in place.4 There is no consensus in the literature on the ideal drain dressing; techniques vary and are mainly performed based on surgeon preference or accepted institutional norms. A simple, quick, and inexpensive method for minimizing patient efforts for drain dressing care and potentially, their discomfort, is described. After the suction drain has been placed and secured, two double opposing semiocclusive film dressings are placed around the suction tube at the site of insertion. At our facility, two 6x8 inch Tegaderm (3M, St. Paul, MN, USA) dressings are used. One of these clear semiocclusive dressings is placed on one side of the tube, with half of the dressing in contact with the skin and the other half supporting the tube (Figure 1A). The second is placed on the other side of the tube, directly opposite from the first dressing, again with half of it in contact with the skin, and the other half around the tube (Figure 1B). …
- Published
- 2015
- Full Text
- View/download PDF
42. The Safe Zone for Placement of Chin Implants
- Author
-
Ron Hazani, Michael J. Yaremchuk, Bradon J. Wilhelmi, Arun Rao, and Rachel S. Ford
- Subjects
Orthodontics ,Chin ,business.industry ,Alveolar process ,Mandible ,Dentistry ,Prostheses and Implants ,Plastic Surgery Procedures ,Prosthesis Implantation ,Mental foramen ,medicine.anatomical_structure ,stomatognathic system ,Cadaver ,Chin augmentation ,Alveolar ridge ,medicine ,Humans ,Surgery ,Mentalis ,business - Abstract
Background Alloplastic chin augmentation requires the surgeon to predict the location of the mental foramen and the origin of the mentalis muscle to avoid the postoperative sequelae lower lip parasthesia, lower lip incompetence, or chin ptosis. The authors define a safe zone of dissection along the inferior border of the mandible for placement of alloplastic chin implants. Methods Fourteen fresh cadaveric hemifaces were dissected with the aid of loupe magnification. Previously described anatomic landmarks were used to identify the origin of the mentalis muscle and the location of the mental foramen along the alveolar ridge of the mandible. Vertical distances were then measured from the mandibular border to the inferior aspect of the mentalis muscle origin and the lower edge of the mental foramen to construct the zone of safe dissection. Results The mentalis was identified as a fan-shaped muscle originating from the alveolar process below the incisors roots and inserting into the chin just below the labiomental sulcus. The mental foramen was located most commonly below the roots of the first and second premolars or in the space between the roots. The mentalis origin and the mental foramen were 1.8 ± 0.3 cm and 1.5 ± 0.2 cm cephalad to the inferior edge of the mandible, respectively. These distances define the borders of a safe zone above the mandibular border. Conclusions A safe zone of dissection for alloplastic chin augmentation is identified. This study is applicable to implant placement through a submental or an intraoral incision. This safe zone is also useful for reconstructive or orthognathic mandible procedures.
- Published
- 2013
- Full Text
- View/download PDF
43. The electronics and data acquisition system for the DarkSide-50 veto detectors
- Author
-
V. N. Muratova, B. Bottino, E. V. Unzhakov, C. Stanford, G. Koh, B. Baldin, J. Brodsky, J. Wilhelmi, S. De Cecco, P. Saggese, Chung-Yao Yang, C. Savarese, A. Tonazzo, S. D. Rountree, M. Montuschi, Paolo Lombardi, S. Davini, C. J. Martoff, M. Carlini, Peter Daniel Meyers, Yufeng Wang, M. D. Skorokhvatov, L. Grandi, P. N. Singh, M. Gromov, A. Mandarano, A. Kubankin, M. Guan, Y. Suvorov, G. Zuzel, S. Luitz, E. Segreto, A. Candela, S. Westerdale, G. Testera, A. M. Goretti, A. S. Chepurnov, F. Budano, V. V. Kobychev, Mariano Cadoni, E. Pantic, P. J. Mosteiro, A. K. Alton, A. Sotnikov, Aldo Ianni, B. Reinhold, B. R. Hackett, A. Empl, F. Gabriele, E. Edkins, B. J. Mount, A. Zec, L. Agostino, H. Cao, D. Semenov, M. Orsini, J. Maricic, Hui Wang, R. B. Vogelaar, M. De Vincenzi, N. Canci, Caoxiang Zhu, M. De Deo, R. Tartaglia, D. Montanari, Ivone F. M. Albuquerque, A. L. Renshaw, A. Devoto, Griffin Foster, P. Cavalcante, Samuele Sangiorgio, M. Cadeddu, Stefano Maria Mari, J. Tatarowicz, T. Alexander, S. Odrowski, T. Miletic, D. Franco, Sandra Zavatarelli, W. Zhong, C. Giganti, K. Arisaka, K. Herner, R. Saldanha, Fausto Ortica, G. Fiorillo, L. Crippa, K. Fomenko, M. Wada, F. Calaprice, M. D'Incecco, Stuart Derek Walker, A. Vishneva, K. Randle, Anselmo Meregaglia, X. Li, H. Qian, Irina James, Y. Guardincerri, M. E. Monzani, A. Pocar, K. Keeter, A. Monte, Jilei Xu, Q. Riffard, S. Parmeggiano, D. Korablev, A. Brigatti, Jim Napolitano, D. Sablone, N. Pelliccia, X. Xiang, E. Shields, Gioacchino Ranucci, Y. Q. Ma, L. Marini, M. Bossa, B. Rossi, Alan Watson, K. Biery, A. Fan, D. A. Pugachev, Oleg Smirnov, S. Catalanotti, A. G. Cocco, F. Di Eusanio, Aldo Romani, P. Agnes, A. Razeto, P. Musico, W. Sands, M. Cariello, Andrea Ianni, A. V. Derbin, K. Pelczar, Cristiano Galbiati, C. L. Kendziora, M. M. Wojcik, G. Korga, F. Granato, Ann E. Nelson, I. N. Machulin, N. Rossi, Marco Pallavicini, D. D'Angelo, E. Hungerford, R. Milincic, S. Pordes, Henning O. Back, G. Bonfini, Cécile Jollet, J. Yoo, G. Di Pietro, Giovanni Covone, Severino Angelo Maria Bussino, L. Pagani, Marcello Lissia, P. Trinchese, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département Recherches Subatomiques (DRS-IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Centre Hospitalier Universitaire de Nice (CHU de Nice), Biomécanique et Bioingénierie (BMBI), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut de Recherches Subatomiques (IReS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Cancéropôle du Grand Est-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford University [Stanford], Max-Planck-Institut für Kernphysik (MPIK), Max-Planck-Gesellschaft, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Departamento de Engenharia Elétrica [Minas Gerais] (DEE - UFMG), Universidade Federal de Minas Gerais, Rhodes University, inconnu, Inconnu, Key Lab of Computer System and Architecture, Institute of Computing Technology [Beijing] (ICT), Chinese Academy of Sciences [Beijing] (CAS), Institut Européen des membranes (IEM), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS), Agnes, P., Agostino, L., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Arisaka, K., Back, H. O., Baldin, B., Biery, K., Bonfini, G., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, F., Bussino, S., Cadeddu, M., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Cao, H., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cocco, A. G., Covone, G., Crippa, L., D'Angelo, D., D'Incecco, M., Davini, S., Dececco, S., De Deo, M., De Vincenzi, M., Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Edkins, E., Empl, A., Fan, A., Fiorillo, G., Fomenko, K., Foster, G., Franco, D., Gabriele, F., Galbiati, C., Giganti, C., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K. R., Hungerford, E. V., Ianni, Aldo, Ianni, Andrea, James, I., Jollet, C., Keeter, K., Kendziora, C. L., Kobychev, V., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Lombardi, P., Luitz, S., Ma, Y., Machulin, I. N., Mandarano, A., Mari, S. M., Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Miletic, T., Milincic, R., Montanari, D., Monte, A., Montuschi, M., Monzani, M. E., Mosteiro, P., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Nelson, A., Odrowski, S., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeto, A., Reinhold, B., Renshaw, A. L., Riffard, Q., Romani, A., Rossi, B., Rossi, N., Rountree, S. D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Sangiorgio, S., Savarese, C., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Vishneva, A., Vogelaar, R. B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X., Xu, J., Yang, C., Yoo, J., Zavatarelli, S., Zec, A., Zhong, W., Zhu, C., Zuzel, G., Budano, Federico, Bussino, Severino Angelo Maria, DE VINCENZI, Mario, James, Irina, and Mari, Stefano Maria
- Subjects
Physics - Instrumentation and Detectors ,gas and liquid scintillators) ,architecture ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,Scintillator ,algorithms ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Data acquisition ,Front-end electronics for detector readout ,0103 physical sciences ,hardware ,Neutron ,Detector control systems (detector and experiment monitoring and slow control systems ,010306 general physics ,Instrumentation ,Cherenkov radiation ,ComputingMilieux_MISCELLANEOUS ,Mathematical Physics ,Physics ,[PHYS]Physics [physics] ,Time projection chamber ,Data acquisition concepts ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Detector control systems (detector and experiment monitoring and slow control systems, architecture, hardware, algorithms, databases) ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,scintillation and light emission processes (solid ,Weakly interacting massive particles ,Scintillators ,High Energy Physics::Experiment ,databases) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector
- Published
- 2016
- Full Text
- View/download PDF
44. Journal of Instrumentation
- Author
-
P. Agnes, I.F.M. Albuquerque, T. Alexander, A.K. Alton, D.M. Asner, H.O. Back, B. Baldin, K. Biery, V. Bocci, G. Bonfini, W. Bonivento, M. Bossa, B. Bottino, A. Brigatti, J. Brodsky, F. Budano, S. Bussino, M. Cadeddu, L. Cadonati, M. Cadoni, F. Calaprice, N. Canci, A. Candela, M. Caravati, M. Cariello, M. Carlini, S. Catalanotti, P. Cavalcante, A. Chepurnov, C. Cicalò, A.G. Cocco, G. Covone, D. D'Angelo, M. D'Incecco, S. Davini, S. De Cecco, M. De Deo, M. De Vincenzi, A. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, C. Dionisi, E. Edkins, A. Empl, A. Fan, G. Fiorillo, K. Fomenko, G. Forster, D. Franco, F. Gabriele, C. Galbiati, S. Giagu, C. Giganti, G.K. Giovanetti, A.M. Goretti, F. Granato, L. Grandi, M. Gromov, M. Guan, Y. Guardincerri, B.R. Hackett, K. Herner, D. Hughes, P. Humble, E.V. Hungerford, Al. Ianni, An. Ianni, I. James, T.N. Johnson, C. Jollet, K. Keeter, C.L. Kendziora, G. Koh, D. Korablev, G. Korga, A. Kubankin, X. Li, M. Lissia, B. Loer, P. Lombardi, G. Longo, Y. Ma, A.A. Machado, I.N. Machulin, A. Mandarano, S.M. Mari, J. Maricic, L. Marini, C.J. Martoff, A. Meregaglia, P.D. Meyers, R. Milincic, J.D. Miller, D. Montanari, A. Monte, B.J. Mount, V.N. Muratova, P. Musico, J. Napolitano, A. Navrer Agasson, S. Odrowski, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, E. Pantic, S. Parmeggiano, K. Pelczar, N. Pelliccia, A. Pocar, S. Pordes, D.A. Pugachev, H. Qian, K. Randle, G. Ranucci, M. Razeti, A. Razeto, B. Reinhold, A.L. Renshaw, M. Rescigno, Q. Riffard, A. Romani, B. Rossi, N. Rossi, D. Rountree, D. Sablone, P. Saggese, R. Saldanha, W. Sands, C. Savarese, B. Schlitzer, E. Segreto, D.A. Semenov, E. Shields, P.N. Singh, M.D. Skorokhvatov, O. Smirnov, A. Sotnikov, C. Stanford, Y. Suvorov, R. Tartaglia, J. Tatarowicz, G. Testera, A. Tonazzo, P. Trinchese, E.V. Unzhakov, M. Verducci, A. Vishneva, B. Vogelaar, M. Wada, S. Walker, H. Wang, Y. Wang, A.W. Watson, S. Westerdale, J. Wilhelmi, M.M. Wojcik, Xi. Xiang, X. Xiao, J. Xu, C. Yang, A. Zec, W. Zhong, C. Zhu, G. Zuzel, AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Pluridisciplinaire Hubert Curien ( IPHC ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ), DarkSide, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Physics, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Asner, D. M., Back, H. O., Baldin, B., Biery, K., Bocci, V., Bonfini, G., Bonivento, W., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, F., Bussino, S., Cadeddu, M., Cadonati, L., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Caravati, M., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cicalo, C., Cocco, A. G., D'Angelo, D., D'Incecco, M., Davini, S., De Cecco, S., De Deo, M., De Vincenzi, M., Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Dionisi, C., Edkins, E., Empl, A., Fan, A., Fiorillo, G., Fomenko, K., Forster, G., Franco, D., Gabriele, F., Galbiati, C., Giagu, S., Giganti, C., Giovanetti, G. K., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K., Hughes, D., Humble, P., Hungerford, E. V., Ianni, Al., Ianni, An., James, I., Johnson, T. N., Jollet, C., Keeter, K., Kendziora, C. L., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Loer, B., Lombardi, P., Longo, G., Ma, Y., Machado, A. A., Machulin, I. N., Mandarano, A., Mari, S. M., Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Milincic, R., Miller, J. D., Montanari, D., Monte, A., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Agasson, A. Navrer, Odrowski, S., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeti, M., Razeto, A., Reinhold, B., Renshaw, A. L., Rescigno, M., Riffard, Q., Romani, A., Rossi, B., Rossi, N., Rountree, D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Savarese, C., Schlitzer, B., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Verducci, M., Vishneva, A., Vogelaar, B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, Xi., Xiao, X., Xu, J., Yang, C., Zec, A., Zhong, W., Zhu, C., Zuzel, G., Covone, G., Navrer Agasson, A., and Semenova, D. A.
- Subjects
axions ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Detector alignment and calibration methods (lasers, sources, particle-beams) ,scintillation counter: liquid ,remote operation ,01 natural sciences ,Dark Matter detectors (WIMPs, axions, etc.) ,Instrumentation ,Mathematical Physics ,Low-background detectors ,etc.) ,hardware ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics ,Radioactive source calibration ,Time projection chamber ,Detector ,Instrumentation and Detectors (physics.ins-det) ,particle-beams) ,Physics - Instrumentation and Detector ,organic compounds ,sources ,Fabrication ,WIMP ,Dark matter ,Noble liquid detectors ,FOS: Physical sciences ,fabrication ,Scintillator ,Optics ,0103 physical sciences ,Calibration ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Dark Matter detectors (WIMPs ,detector: design ,010308 nuclear & particles physics ,business.industry ,dark matter: detector ,calibration ,time projection chamber: liquid argon ,Liquid scintillators ,calibration device ,insertion device ,Detector alignment and calibration methods (lasers ,efficiency ,Neutron source ,business - Abstract
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below., 21 pages, 11 figures
- Published
- 2016
- Full Text
- View/download PDF
45. The DarkSide awakens
- Author
-
B. Bottino, R. Tartaglia, A. K. Alton, K. Randle, A. Vishneva, Mariano Cadoni, Denis Korablev, P. Cavalcante, P. J. Mosteiro, J. Brodsky, Michele Montuschi, L. Marini, M. Bossa, P. Saggese, I. N. Machulin, Samuele Sangiorgio, B. J. Mount, N. Rossi, L. Agostino, E. Pantic, A. M. Goretti, N. Canci, C. L. Kendziora, Irina James, B. Rossi, M. Orsini, D. Montanari, S. Catalanotti, Marco Pallavicini, D. D'Angelo, M. Cariello, E. Shields, A. G. Cocco, Jingke Xu, Alan Watson, A. Mandarano, P Trinchese, V. N. Muratova, K. Biery, Yanchu Wang, L. Pagani, K. Pelczar, Cristiano Galbiati, S. Perasso, M. D. Skorokhvatov, S. De Cecco, P. D. Meyers, S. Bussino, Nicomede Pelliccia, L. Grandi, K. Arisaka, G. Korga, C. Stanford, B. Vogelaar, G. Fiorillo, Anton Empl, B. Reinhold, M. M. Wojcik, Chung-Yao Yang, E. Edkins, Paolo Musico, A. V. Derbin, A. Razeto, J. Wilhelmi, A. Fan, M. Wada, Y. Guardincerri, D. A. Pugachev, M. D'Incecco, Anselmo Meregaglia, J. Yoo, M. Lissia, H. Qian, F. Gabriele, G. Zuzel, E. V. Hungerford, G. Testera, D. Sablone, A. Candela, O. Smirnov, M. Gromov, G. Di Pietro, Giovanni Covone, A. Sotnikov, Jim Napolitano, A. S. Kubankin, F. Di Eusanio, A. Tonazzo, S. Parmeggiano, J. Maricic, Aldo Romani, E. V. Unzhakov, P. Agnes, S. Walker, Yanhui Ma, C. Savarese, M. De Deo, W. Sands, Thomas Alexander, M. E. Monzani, Andrea Ianni, Sandra Zavatarelli, A. Pocar, M. Cadeddu, Xiujiang Li, D. Franco, Gioacchino Ranucci, K. Herner, T. Miletic, W. Zhong, Griffin Foster, R. Saldanha, J. Tatarowicz, D. A. Semenov, Caoxiang Zhu, H. Cao, S. Luitz, F. Granato, Cécile Jollet, Han Wang, A. Devoto, Y. Suvorov, S. Westerdale, B. Baldin, S. M. Mari, A. S. Chepurnov, S. Davini, Henning O. Back, S. D. Rountree, Paolo Lombardi, E. Segreto, A. Monte, V. V. Kobychev, B. R. Hackett, A. Brigatti, C. J. Martoff, G. Bonfini, K. J. Keeter, Frank Calaprice, X. Xiang, A. Zec, S. Pordes, R. Milincic, G. Koh, A. L. Renshaw, Aldo Ianni, M. Carlini, P. N. Singh, K. Fomenko, F. Budano, C. Giganti, Laura Cadonati, Fausto Ortica, Min-Xin Guan, M. De Vincenzi, Ivone F. M. Albuquerque, Davini, S., Agnes, P., Agostino, L., M. Albuquerque, I. F., Alexander, T., Alton, A. K., Arisaka, K., Back, H. O., Baldin, B., Biery, K., Bonfini, G., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, Federico, Bussino, Severino Angelo Maria, Cadeddu, M., Cadonati, L., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Cao, H., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cocco, A. G., Covone, G., D'Angelo, D., D'Incecco, M., De Cecco, S., De Deo, M., DE VINCENZI, Mario, Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Edkins, E., Empl, A., Fan, A., Fiorillo, G., Fomenko, K., Foster, G., Franco, D., Gabriele, F., Galbiati, C., Giganti, C., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K. R., Hungerford, E. V., Ianni, Aldo, Ianni, Andrea, James, Irina, Jollet, C., Keeter, K., Kendziora, C. L., Kobychev, V., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Lombardi, P., Luitz, S., Ma, Y., Machulin, I. N., Mandarano, A., Mari, Stefano Maria, Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Miletic, T., Milincic, R., Montanari, D., Monte, A., Montuschi, M., Monzani, M. E., Mosteiro, P., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Perasso, S., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeto, A., Reinhold, B., Renshaw, A. L., Romani, A., Rossi, B., Rossi, N., Rountree, S. D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Sangiorgio, S., Savarese, C., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Vishneva, A., Vogelaar, B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X., Xu, J., Yang, C., Yoo, J., Zavatarelli, S., Zec, A., Zhong, W., Zhu, C., Zuzel, G., Gran Sasso Science Institute (GSSI), Istituto Nazionale di Fisica Nucleare (INFN), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), DarkSide, Albuquerque, I. F. M., Back, H., Budano, F., Bussino, S., Catalanotti, Sergio, Cocco, ALFREDO GIUSEPPE, Covone, Giovanni, De Vincenzi, M., Di Pietra, G., Fiorillo, Giuliana, James, I., Mari, S. M., Muratova, N., and Walker, Susan Elizabeth
- Subjects
History ,chemistry.chemical_element ,DarkSide ,WIMP Argon Programme ,WIMP: detector ,01 natural sciences ,Education ,Atmosphere ,Nuclear physics ,Physics and Astronomy (all) ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,Physics ,Argon ,010308 nuclear & particles physics ,Astronomy ,suppression ,time projection chamber: liquid argon ,Computer Science Applications ,Gran Sasso ,chemistry ,radioactivity ,argon ,atmosphere ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive $^{39}$Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of $^{39}$Ar by a factor (1.4 ± 0.2) × 10$^3$ relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.
- Published
- 2016
- Full Text
- View/download PDF
46. Effect of Low Electric Fields on Alpha Scintillation Light Yield in Liquid Argon
- Author
-
D. Rountree, T. N. Johnson, A. Kubankin, M. Guan, B. Loer, N. Canci, A. L. Renshaw, Giuseppe Longo, M. De Vincenzi, P. Humble, A. Razeto, P. Cavalcante, A. Empl, G. Testera, G. Di Pietro, Giovanni Covone, G. Korga, F. Granato, Al. Ianni, Caoxiang Zhu, B. Schlitzer, M. Cadeddu, E. V. Unzhakov, C. Stanford, K. Pelczar, B. J. Mount, Cristiano Galbiati, J. Tatarowicz, Mariano Cadoni, P. Trinchese, A. Navrer Agasson, Jilei Xu, N. Rossi, E. Shields, O. Smirnov, M. Verducci, Severino Angelo Maria Bussino, B. Baldin, A. Tonazzo, C. Dionisi, M. D. Skorokhvatov, Stefano Maria Mari, S. Parmeggiano, J. Brodsky, P. Saggese, P. Musico, Cécile Jollet, E. Segreto, V. N. Muratova, A. Monte, A. Alton, G. Fiorillo, B. Bottino, I. N. Machulin, J. Wilhelmi, G. Forster, M. Carlini, Chung-Yao Yang, M. Cariello, A. Candela, V. Bocci, M. D'Incecco, Xiang Xiao, P. N. Singh, Marco Pallavicini, D. D'Angelo, Q. Riffard, L. Pagani, Anselmo Meregaglia, H. Qian, D. Hughes, Maria Rescigno, S. De Cecco, Jim Napolitano, R. Milincic, Hui Wang, G. Koh, Marcello Lissia, S. Odrowski, A. V. Derbin, D. M. Asner, Thomas Alexander, W. Sands, J. Miller, M. Orsini, R. Tartaglia, N. Pelliccia, A. Pocar, J. Maricic, D. Montanari, Stuart Derek Walker, A. Vishneva, M. Gromov, Gioacchino Ranucci, Paolo Lombardi, Y. Q. Ma, L. Marini, M. Bossa, D. Korablev, M. Wada, Ivone F. M. Albuquerque, Peter Daniel Meyers, Irina James, D. Franco, S. Pordes, Y. Guardincerri, D. Semenov, A. Brigatti, D. Sablone, W. Zhong, Frank Calaprice, Y. Suvorov, S. Westerdale, K. Fomenko, G. K. Giovanetti, Alan Watson, A. Mandarano, X. Xiang, Marcin Wójcik, A. M. Goretti, A. S. Chepurnov, C. Giganti, E. Pantic, G. Zuzel, F. Gabriele, B. Reinhold, C. Savarese, E. V. Hungerford, M. De Deo, F. Budano, Stefano Giagu, B. Vogelaar, A. Sotnikov, G. Bonfini, K. Randle, X. Li, A. Oleinik, Fausto Ortica, H. O. Back, Yanchu Wang, S. Davini, C. J. Martoff, A. Devoto, B. R. Hackett, C. Cicalò, M. Razeti, K. Keeter, W. Bonivento, Biagio Rossi, E. Edkins, K. Biery, A. Fan, D. A. Pugachev, S. Catalanotti, A. G. Cocco, F. Di Eusanio, K. Herner, Aldo Romani, P. Agnes, C. L. Kendziora, M. Caravati, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), DarkSide, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Asner, D. M., Back, H. O., Baldin, B., Biery, K., Bocci, V., Bonfini, G., Bonivento, W., Bossa, Maria, Bottino, B., Brigatti, A., Brodsky, J., Budano, F., Bussino, S., Cadeddu, M., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Caravati, M., Cariello, M., Carlini, M., Catalanotti, Sergio, Cavalcante, P., Chepurnov, A., Cicalo, C., Cocco, ALFREDO GIUSEPPE, Covone, Giovanni, D'Angelo, D., D'Incecco, M., Davini, S., De Cecco, S., De Deo, M., De Vincenzi, M., Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Dionisi, C., Edkins, E., Empl, A., Fan, A., Fiorillo, Giuliana, Fomenko, K., Forster, G., Franco, D., Gabriele, F., Galbiati, C., Giagu, S., Giganti, C., Giovanetti, G. K., Goretti, A. M., Granato, F., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K., Hughes, D., Humble, P., Hungerford, E. V., Ianni, A., James, I., Johnson, T. N., Jollet, C., Keeter, K., Kendziora, C. L., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Loer, B., Lombardi, P., Longo, Giuseppe, Ma, Y., Machulin, I. N., Mandarano, A., Mari, S. M., Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Milincic, R., Miller, J. D., Montanari, D., Monte, A., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Agasson, A. Navrer, Odrowski, S., Oleinik, A., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeti, M., Razeto, A., Reinhold, B., Renshaw, A. L., Rescigno, M., Riffard, Q., Romani, A., Rossi, B., Rossi, N., Rountree, D., Sablone, D., Saggese, P., Sands, W., Savarese, C., Schlitzer, B., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Verducci, M., Vishneva, A., Vogelaar, B., Wada, M., Walker, Susan Elizabeth, Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X., Xiao, X., Xu, J., Yang, C., Zhong, W., Zhu, C., Zuzel, G., AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Pluridisciplinaire Hubert Curien ( IPHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Bossa, M., Budano, Federico, Bussino, Severino Angelo Maria, Catalanotti, S., Cicalò, C., Cocco, A. G., Covone, G., Cecco, S. De, Deo, M. De, Vincenzi, M. De, Eusanio, F. Di, Pietro, G. Di, Fiorillo, G., James, Irina, Longo, G., Mari, Stefano Maria, Stanford, C, and Walker, S.
- Subjects
radon: decay ,Physics - Instrumentation and Detectors ,Yield (engineering) ,Materials science ,Field (physics) ,MATÉRIA ESCURA ,Physics::Instrumentation and Detectors ,Alpha (ethology) ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,electric field: effect ,Dark Matter detectors (WIMPs, axions, etc.) ,Electric field ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation ,Mathematical Physics ,scintillation counter ,Scintillation ,Time projection chamber ,helium: irradiation ,010308 nuclear & particles physics ,Alpha particle ,Instrumentation and Detectors (physics.ins-det) ,time projection chamber: liquid argon ,Large detector systems for particle and astroparticle physic ,Decay chain ,Atomic physics ,photon: yield - Abstract
Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field., Comment: 5 pages, 5 figures
- Published
- 2016
- Full Text
- View/download PDF
47. The veto system of the DarkSide-50 experiment
- Author
-
E. Shields, J. Yoo, Nicomede Pelliccia, A. G. Cocco, B. Reinhold, E. Pantic, C. Giganti, Laura Cadonati, Cécile Jollet, Fausto Ortica, Mariano Cadoni, Andrea Ianni, Sandra Zavatarelli, M. Carlini, E. Edkins, P. N. Singh, K. Fomenko, F. Budano, O. Smirnov, K. Biery, Yanchu Wang, M. D. Skorokhvatov, N. Rossi, L. Agostino, Henning O. Back, L. Grandi, Griffin Foster, H. Cao, S. Parmeggiano, B. R. Hackett, B. Baldin, S. Perasso, A. Zec, Paolo Musico, T. Miletic, A. Fan, D. A. Pugachev, E. V. Unzhakov, E. Segreto, J. Tatarowicz, Ivone F. M. Albuquerque, C. Savarese, A. K. Alton, S. Pordes, S. Walker, Hui Wang, L. Pagani, K. Arisaka, P. Trinchese, P. J. Mosteiro, E. V. Hungerford, S. Davini, A. Brigatti, M. Orsini, L. Crippa, G. Fiorillo, D. Sablone, C. J. Martoff, G. Bonfini, R. Saldanha, Michele Montuschi, A. Candela, S. Odrowski, P. D. Meyers, Thomas Alexander, Jingke Xu, S. Westerdale, G. Testera, D. A. Semenov, K. Pelczar, Cristiano Galbiati, Yanhui Ma, G. Di Pietro, Giovanni Covone, J. Wilhelmi, R. Milincic, M. De Deo, A. Nelson, M. Wada, M. D'Incecco, Stefano Maria Mari, A. S. Kubankin, R. Tartaglia, K. J. Keeter, Frank Calaprice, X. Xiang, Severino Angelo Maria Bussino, G. Koh, Anselmo Meregaglia, H. Qian, Y. Guardincerri, A. Sotnikov, A. Mandarano, S. Catalanotti, D. Franco, W. Zhong, B. J. Mount, Y. Suvorov, M. Gromov, S. Luitz, V. N. Muratova, V. V. Kobychev, A. S. Chepurnov, W. Sands, C. Zhu, P. Cavalcante, B. Bottino, M. E. Monzani, A. Devoto, F. Di Eusanio, C. Stanford, A. Pocar, Denis Korablev, Samuele Sangiorgio, Aldo Romani, J. Brodsky, P. Saggese, P. Agnes, S. D. Rountree, D. Montanari, M. Cadeddu, Paolo Lombardi, M. Lissia, A. Monte, A. V. Derbin, S. De Cecco, Chung-Yao Yang, L. Marini, M. Bossa, B. Rossi, Alan Watson, G. Zuzel, Gioacchino Ranucci, K. Herner, F. Gabriele, Jim Napolitano, K. Randle, A. Tonazzo, A. Vishneva, X. Li, C. L. Kendziora, Irina James, J. Maricic, G. Korga, F. Granato, I. N. Machulin, N. Canci, Marco Pallavicini, D. D'Angelo, Anton Empl, M. M. Wojcik, A. L. Renshaw, Aldo Ianni, A. M. Goretti, M. Cariello, A. Razeto, T. N. Johnson, R. B. Vogelaar, Min-Xin Guan, M. De Vincenzi, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), DarkSide, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Agnes, P., Agostino, L., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Arisaka, K., Back, H. O., Baldin, B., Biery, K., Bonfini, G., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, F., Bussino, S., Cadeddu, M., Cadonati, L., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Cao, H., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cocco, A. G., Covone, G., Crippa, L., D'Angelo, D., D'Incecco, M., Davini, S., De Cecco, S., De Deo, M., De Vincenzi, M., Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Edkins, E., Empl, A., Fan, A., Fiorillo, Giuliana, Fomenko, K., Foster, G., Franco, D., Gabriele, F., Galbiati, C., Giganti, C., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Guardincerri, Y., Hackett, B. R., Herner, K. R., Hungerford, E. V., Ianni, Aldo, Ianni, Andrea, James, I., Johnson, T., Jollet, C., Keeter, K., Kendziora, C. L., Kobychev, V., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Lombardi, P., Luitz, S., Ma, Y., Machulin, I. N., Mandarano, A., Mari, S. M., Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Miletic, T., Milincic, R., Montanari, D., Monte, A., Montuschi, M., Monzani, M. E., Mosteiro, P., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Nelson, A., Odrowski, S., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Perasso, S., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeto, A., Reinhold, B., Renshaw, A. L., Romani, A., Rossi, B., Rossi, N., Rountree, S. D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Sangiorgio, S., Savarese, C., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Vishneva, A., Vogelaar, R. B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X., Xu, J., Yang, C., Yoo, J., Zavatarelli, S., Zec, A., Zhong, W., Zhu, C., Zuzel, G., AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Pluridisciplinaire Hubert Curien ( IPHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ), Bussino, Severino Angelo Maria, DE VINCENZI, Mario, Fiorillo, G., James, Irina, Mari, Stefano Maria, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0023,UnivEarthS,Earth - Planets - Universe: observation, modeling, transfer(2010), and ANR-11-IDEX-0005,USPC,Université Sorbonne Paris Cité(2011)
- Subjects
fast neutrons) ,Physics - Instrumentation and Detectors ,axions ,gas and liquid scintillators) ,Cherenkov detector ,Cherenkov and transition radiation ,Physics::Instrumentation and Detectors ,Cherenkov counter: water ,Nuclear Theory ,scintillation counter: liquid ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,Particle detector ,High Energy Physics - Experiment ,law.invention ,thermal ,Dark Matter detectors (WIMPs, axions, etc.) ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,WIMP ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,law ,etc.) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron detection ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation ,Dark Matter detectors (WIMPs ,Mathematical Physics ,Event reconstruction ,nucleus: recoil ,Physics ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Neutron detectors (cold, thermal, fast neutrons) ,Neutron detectors (cold ,scintillation and light emission processes (solid ,Scintillators ,High Energy Physics::Experiment ,performance - Abstract
International audience; Nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
- Published
- 2016
- Full Text
- View/download PDF
48. DarkSide-50: Status of the detector and results
- Author
-
Nicomede Pelliccia, A. Meregaglia, B. Reinhold, D. Rountree, C. Savarese, M. De Vincenzi, R. Tartaglia, B. Hackett, Jingke Xu, Stefano Giagu, Q. Riffard, P. Saggese, V. Bocci, K. Pelczar, Mariano Cadoni, C. Dionisi, Al. Ianni, Caoxiang Zhu, A. Devoto, D. A. Semenov, N. Canci, E. Shields, A. L. Renshaw, B. Schlitzer, D. Montanari, N. Rossi, E. Pantic, S. Bussino, M. Cadeddu, Giovanni Covone, D. M. Asner, C. Cicalo, Y. Suvorov, M. Rescigno, P. Cavalcante, S. De Cecco, G. Di Pietro, Chung-Yao Yang, A. V. Derbin, V. N. Muratova, Augusto Brigatti, Paolo Lombardi, K. Biery, Yanchu Wang, A. Empl, G. Forster, A. Razeto, C. Stanford, G. Fiorillo, P. D. Meyers, J. Wilhelmi, M. Wada, M. D. Skorokhvatov, Min-Xin Guan, R. Saldanha, A. Zec, S. Pordes, L. Grandi, J. P. Brodsky, M. Orsini, A. Navrer Agasson, A. M. Goretti, M. D'Incecco, Y. Guardincerri, S. Parmeggiano, M. Cariello, M. Lissia, Han Wang, P. N. Singh, H. Qian, Stuart Derek Walker, Ben Loer, C. L. Kendziora, L. Pagani, Gioacchino Ranucci, P. Trinchese, D. Hughes, B. Vogelaar, C. Giganti, Thomas Alexander, J. Tatarowicz, A. Pocar, E. Segreto, B. J. Mount, G. Zuzel, Paolo Musico, A. Fan, D. A. Pugachev, Irina James, B. Baldin, Xiang Xiao, Yanhui Ma, Paul H. Humble, I. N. Machulin, E. Edkins, An. Ianni, A. K. Alton, M. De Deo, O. Smirnov, A. S. Kubankin, B. Bottino, E. V. Hungerford, D. Franco, D. D'Angelo, S. Westerdale, Giuseppe Longo, W. Zhong, D. Sablone, A. Sotnikov, A. Candela, J. Maricic, H. O. Back, E. V. Unzhakov, S. Davini, M. Gromov, W. Sands, Xiujiang Li, T. N. Johnson, M. Caravati, K. Herner, F. Di Eusanio, M. M. Wojcik, L. Marini, M. Bossa, Aldo Romani, C. Galbiati, B. Rossi, Alan Watson, A. Mandarano, P. Agnes, R. Milincic, K. Randle, S. Catalanotti, A. Vishneva, A. G. Cocco, S. M. Mari, C. Jollet, M. Razeti, A. S. Chepurnov, G. Koh, F. Granato, S. Odrowski, G. K. Giovanetti, G. Testera, Denis Korablev, C. J. Martoff, G. Bonfini, K. J. Keeter, Frank Calaprice, X. Xiang, J. Miller, Ivone F. M. Albuquerque, A. Monte, Laura Cadonati, Fausto Ortica, M. Carlini, G. Korga, K. Fomenko, F. Budano, W. Bonivento, Marco Pallavicini, F. Gabriele, Jim Napolitano, A. Tonazzo, Monica Verducci, Guardincerri, Y., Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Asner, D. M., Back, H. O., Baldin, B., Biery, K., Bocci, V., Bonfini, G., Bonivento, W., Bossa, M., Bottino, B., Brigatti, A., Brodsky, J., Budano, F., Bussino, S., Cadeddu, M., Cadonati, L., Cadoni, M., Calaprice, F., Canci, N., Candela, A., Caravati, M., Cariello, M., Carlini, M., Catalanotti, S., Cavalcante, P., Chepurnov, A., Cicalo, C., Cocco, A. G., Covone, G., D'Angelo, D., D'Incecco, M., Davini, S., De Cecco, S., De Deo, M., De Vincenzi, M., Derbin, A., Devoto, A., Di Eusanio, F., Di Pietro, G., Dionisi, C., Edkins, E., Empl, A., Fan, A., Fiorillo, G., Fomenko, K., Forster, G., Franco, D., Gabriele, F., Galbiati, C., Giagu, S., Giganti, C., Giovanetti, G. K., Goretti, A. M., Granato, F., Grandi, L., Gromov, M., Guan, M., Hackett, B. R., Herner, K., Hughes, D., Humble, P., Hungerford, E. V., Ianni, A. L., Ianni, A. N., James, I., Johnson, T. N., Jollet, C., Keeter, K., Kendziora, C. L., Koh, G., Korablev, D., Korga, G., Kubankin, A., Li, X., Lissia, M., Loer, B., Lombardi, P., Longo, G., Ma, Y., Machulin, I. N., Mandarano, A., Mari, S. M., Maricic, J., Marini, L., Martoff, C. J., Meregaglia, A., Meyers, P. D., Milincic, R., Miller, J. D., Montanari, D., Monte, A., Mount, B. J., Muratova, V. N., Musico, P., Napolitano, J., Agasson, A. N., Odrowski, S., Orsini, M., Ortica, F., Pagani, L., Pallavicini, M., Pantic, E., Parmeggiano, S., Pelczar, K., Pelliccia, N., Pocar, A., Pordes, S., Pugachev, D. A., Qian, H., Randle, K., Ranucci, G., Razeti, M., Razeto, A., Reinhold, B., Renshaw, A. L., Rescigno, M., Riffard, Q., Romani, A., Rossi, B., Rossi, N., Rountree, D., Sablone, D., Saggese, P., Saldanha, R., Sands, W., Savarese, C., Schlitzer, B., Segreto, E., Semenov, D. A., Shields, E., Singh, P. N., Skorokhvatov, M. D., Smirnov, O., Sotnikov, A., Stanford, C., Suvorov, Y., Tartaglia, R., Tatarowicz, J., Testera, G., Tonazzo, A., Trinchese, P., Unzhakov, E. V., Verducci, M., Vishneva, A., Vogelaar, B., Wada, M., Walker, S., Wang, H., Wang, Y., Watson, A. W., Westerdale, S., Wilhelmi, J., Wojcik, M. M., Xiang, X. I., Xiao, X., Xu, J., Yang, C., Zec, A., Zhong, W., Zhu, C., Zuzel, G., AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), David Schmitz, Guardincerri, Yann, Bottino, Bianca, Cocco, A., Giagu, Stefano, Giovanetti, G., Goretti, A., Hackett, B., Ianni, Al., Ianni, An., Machulin, I., Muratova, V., Navrer Agasson, A., Semenov, D., Skorokhvatov, M., Unzhakov, E., Wojcik, M., and Xiang, X.
- Subjects
Cryostat ,experimental methods ,Physics::Instrumentation and Detectors ,Dark matter ,chemistry.chemical_element ,Scintillator ,7. Clean energy ,dark matter ,Nuclear physics ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment ,Cherenkov radiation ,ComputingMilieux_MISCELLANEOUS ,scintillation counter ,Physics ,Time projection chamber ,Argon ,Multidisciplinary ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gran Sasso ,time projection chamber ,liquid argon ,Cherenkov counter ,experimental equipment ,chemistry ,High Energy Physics::Experiment - Abstract
International audience; DarkSide-50 is a direct dark matter search experiment operating underground at Laboratori Nazionali del Gran Sasso. It is based on a Time Projection Chamber (TPC) that contains 50 kg of liquid argon; the TPC cryostat sits inside an active neutron veto based on a boron-loaded organic scintillator, which is in turn installed inside a water Cherenkov muon veto. The experiment started acquiring data in Nov 2013 filled with atmospheric argon. In April 2015 it commissioned the low-radioactivity argon from underground sources and has been running in a stable manner since then. We report the current status of the detector and the latest results, including the measurement of the radioactivity of the underground argon and the most sensitive dark matter search performed with an argon target.
- Published
- 2016
- Full Text
- View/download PDF
49. A New Technique Involving a Spherical Stainless Steel Device to Optimize Positioning of the Umbilicus
- Author
-
Peter M. Huynh, Arian Mowlavi, Bradon J. Wilhelmi, and Douglas C. Huynh
- Subjects
medicine.medical_specialty ,Umbilicus ,biology ,Abdominoplasty ,business.industry ,Abdominal skin ,Umbilicoplasty ,medicine.medical_treatment ,Suture Techniques ,Equipment Design ,Stainless Steel ,biology.organism_classification ,Surgery ,Plastic surgery ,Umbilicus (genus) ,Suture (anatomy) ,Humans ,Medicine ,business - Abstract
Creating an aesthetically pleasing umbilicus may be challenging due to various factors that involve the patient limitations and suboptimal techniques available to the surgeon. Although many techniques aim to locate the umbilicus after abdominoplasty, none are ideal. The authors use a new technique involving a stainless steel spherical device for definite location of the new neo-umbilicus site. Abdominoplasty with full muscle plication and umbilicoplasty was performed to test the effectiveness of this new technique that involves a stainless steel marble called the Umbilicator. It has a diameter of 1.5 cm and three 2-mm holes drilled 120° apart in an equilateral triangle. The Umbilicator is secured to the inferior and superior dermis of the umbilical stalk to help identify the future location of the umbilicus on the abdominal skin. Once the marble is secured, the superior abdominal flap is redraped and trimmed, the suture is repaired, and the location of the umbilicus is determined by feeling for the smooth spherical surface bump with gentle downward pressure on the overlying abdominal skin located within the proximity of the umbilicus. The result of this technique produced a definitive means of identifying and delivering the umbilical stalk during abdominoplasty. This technique has been performed in 23 consecutive abdominoplasty procedures with no difficulties locating the umbilical stalk and no infections resulting from the procedure. Accurate identification of the umbilicus provides the ability to create an aesthetically pleasing neo-umbilicus, thus optimizing abdominoplasty results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
- Published
- 2012
- Full Text
- View/download PDF
50. Cortical Thickness Parameters for Endoscopic Browlift Fixation
- Author
-
Sylvia Pham, Arian Mowlavi, Rolando Lee, Peter M. Huynh, and Bradon J. Wilhelmi
- Subjects
Adult ,Temporal lobe ,Cadaver ,medicine ,Humans ,Rejuvenation ,Forehead ,Aged ,Fixation (histology) ,Aged, 80 and over ,Cerebral Cortex ,business.industry ,Skull ,Significant difference ,Temporal Bone ,Endoscopy ,General Medicine ,Anatomy ,Middle Aged ,medicine.anatomical_structure ,Frontal lobe ,Brain Injuries ,Coronal plane ,Frontal Bone ,Rhytidoplasty ,Female ,Surgery ,Tomography ,Anatomic Landmarks ,Tomography, X-Ray Computed ,business - Abstract
Background: Techniques for endoscopic browlift include bony fixation over the lateral frontal region and soft tissue fixation over the temporal region. Although bony fixation over the lateral frontal region is advocated universally, limited information exists about bicortical thickness in this area. Objectives: The authors provide bicortical thickness measurements between the frontal midline and the most inferior temporal region to assist surgeons in identifying appropriate fixation planes. Methods: Bicortical thickness was measured in the hemicraniums of 13 female cadavers, along the coronal planes that travel through the anterior border of the mandibular condyles and at the junction of the posterior mandibular condyles and the external auditory meatuses. Measurements began at the midline and coursed laterally at 1-cm intervals. Results: Average cranial thickness along the frontal region ranged from 8.9 ± 2.4 mm to 6.4 ± 2.8 mm over the anterior coronal line and 8.8 ± 2.2 mm to 5.6 ± 1.8 mm over the posterior line. Average thickness along the temporal region ranged from 5.6 ± 2.8 mm to 2.8 mm ± 1.4 mm over the anterior coronal line and 5.1 ± 1.8 mm to 3.4 ± 1.4 mm over the posterior line. Minimum thickness was 3.7 mm and 1.3 mm over the frontal and temporal regions, respectively. There was no significant difference between left and right hemicranial thickness. Conclusions: To avoid violation of the inner cortex during surgery, endoscopic browlift procedures should include measurement of cortical thickness at various fixation points. Bony fixation over the temporal region should be avoided. Minimal bicortical thickness was observed in the lateral frontal region.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.