1. Cellular Uptake and Transport Mechanism Investigations of PEGylated Niosomes for Improving the Oral Delivery of Thymopentin
- Author
-
Mengyang Liu, Darren Svirskis, Thomas Proft, Jacelyn Loh, Yuan Huang, and Jingyuan Wen
- Subjects
cellular uptake ,cellular transport ,niosome ,PEGylation ,thymopentin ,oral delivery ,Pharmacy and materia medica ,RS1-441 - Abstract
Background: Although its immunomodulatory properties make thymopentin (TP5) appealing, its rapid metabolism and inactivation in the digestive system pose significant challenges for global scientists. PEGylated niosomal nanocarriers are hypothesized to improve the physicochemical stability of TP5, and to enhance its intestinal permeability for oral administration. Methods: TP5-loaded PEGylated niosomes were fabricated using the thin film hydration method. Co-cultured Caco-2 and HT29 cells with different ratios were screened as in vitro intestinal models. The cytotoxicity of TP5 and its formulations were evaluated using an MTT assay. The cellular uptake and transport studies were investigated in the absence or presence of variable inhibitors or enhancers, and their mechanisms were explored. Results and Discussion: All TP5 solutions and their niosomal formulations were nontoxic to Caco-2 and HT-29 cells. The uptake of TP5-PEG-niosomes by cells relied on active endocytosis, exhibiting dependence on time, energy, and concentration, which has the potential to significantly enhance its cellular uptake compared to TP5 in solution. Nevertheless, cellular transport rates were similar between TP5 in solution and its niosomal groups. The cellular transport of TP5 in solution was carried out mainly through MRP5 endocytosis and a passive pathway and effluxed by MRP5 transporters, while that of TP5-niosomes and TP5-PEG-niosomes was carried out through adsorptive- and clathrin-mediated endocytosis requiring energy. The permeability and transport rate was further enhanced when EDTA and sodium taurocholate were used as the penetration enhancers. Conclusions: This research has illustrated that PEG-niosomes were able to enhance the cellular uptake and maintain the cellular transport of TP5. This study also shows this formulation’s potential to serve as an effective carrier for improving the oral delivery of peptides.
- Published
- 2024
- Full Text
- View/download PDF