16 results on '"Jacques Parent du Chatelet"'
Search Results
2. An Improved M-PRT Technique for Spectral Analysis of Weather Radar Observations.
- Author
-
Mohammed Tahanout, Abd El Hamid Adane, and Jacques Parent Du Chatelet
- Published
- 2015
- Full Text
- View/download PDF
3. FILCOH—A Novel Technique to Reduce Ground Clutter Echoes in Precipitation Radars Operating in Multiple PRT
- Author
-
Jacques Parent Du Chatelet, Mohammed Tahanout, Université Mouloud Mammeri [Tizi Ouzou] (UMMTO), Laboratoire d'Analyse & Modélisation des Phénomènes Aléatoires [Tizi-Ouzou] (LAMPA), Laboratoire de Conception et Conduite des systèmes de Production (L2CSP), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Acoustics ,Attenuation ,Doppler radar ,Autocorrelation ,0211 other engineering and technologies ,02 engineering and technology ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,Wind profiler ,law.invention ,Meteorology ,13. Climate action ,law ,Radar antennas ,Clutter ,General Earth and Planetary Sciences ,Coherence (signal processing) ,Weather radar ,Electrical and Electronic Engineering ,Radar ,Radar clutter ,Meteorological radar ,021101 geological & geomatics engineering ,Mathematics - Abstract
International audience; FILtering by COHerence (FILCOH) is a novel technique for mitigating ground clutter echoes of weather radar, particularly those transmitting in multiple pulse repetition time (PRT) schemes. FILCOH takes advantage of the differences in correlation time for separating rain and ground echoes. In short, the longest time-lag coefficients of the autocorrelation function are used to estimate the ground clutter contribution which is then subtracted from the shortest lag coefficients before the extraction of the meteorological parameters using the conventional estimators. The initial results are obtained for uniform PRT data provided by the Degreane Horizon wind profiler radar. The analysis illustrates the behavior of FILCOH filtering and its high performance in such cases. The simulation results are then presented for 2- and 3-PRT pulse schemes using standard PRT ratios. For the 2-PRT scheme, FILCOH filters out the ground clutter echoes up to a clutter to signal ratio (CSR) of 65 dB for the received power and up to 45 and 60 dB for the radial velocity and spectrum width, respectively. For the 3-PRT scheme, ground clutter filtering is effective up to CSR = 45 dB for the received power and up to CSR = 35 dB for radial velocity and spectrum width. These results are confirmed by 3-PRT real data issued from the French X- and C-band radars. The observed performances are, however, a little less than those of the simulation since we observed a maximum 40-dB attenuation of the ground clutter echoes of the studied rain events.
- Published
- 2021
- Full Text
- View/download PDF
4. BASTA: A 95-GHz FMCW Doppler Radar for Cloud and Fog Studies
- Author
-
Jean-Paul Vinson, Fabrice Bertrand, Jean-Charles Dupont, Ruben Hallali, Julien Delanoë, Laurent Barthès, Williams Brett, Alain Protat, Jacques Parent du Chatelet, Christophe Caudoux, Martial Haeffelin, SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Australian Bureau of Meteorology [Melbourne] (BoM), Australian Government, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), CNES (Centre National d'Etudes Spatiales), INSU (Institut National des Sciences de l'Univers), Ecole Polytechnique, Région Ile de France, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Paris (ENS Paris)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,Doppler radar ,Ocean Engineering ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,010502 geochemistry & geophysics ,01 natural sciences ,law.invention ,Man-portable radar ,Bistatic radar ,Radar engineering details ,law ,Radar imaging ,Environmental science ,Radar ,Low-frequency radar ,Radar configurations and types ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Doppler cloud radars are amazing tools to characterize cloud and fog properties and to improve their representation in models. However, commercially available cloud radars (35 and 95 GHz) are still very expensive, which hinders their widespread deployment. This study presents the development of a lower-cost semioperational 95-GHz Doppler cloud radar called the Bistatic Radar System for Atmospheric Studies (BASTA). To drastically reduce the cost of the instrument, a different approach is used compared to traditional pulsed radars: instead of transmitting a large amount of energy for a very short time period (as a pulse), a lower amount of energy is transmitted continuously. By using a specific signal processing technique, the radar can challenge expensive radars and provide high-quality measurements of cloud and fog. The latest version of the instrument has a sensitivity of about −50 dBZ at 1 km for 3-s integration and a vertical resolution of 25 m. The BASTA radar currently uses four successive modes for specific applications: the 12.5-m vertical resolution mode is dedicated to fog and low clouds, the 25-m mode is for liquid and ice midtropospheric clouds, and the 100- and 200-m modes are ideal for optically thin high-level ice clouds. The advantages of such a radar for calibration procedures and field operations are also highlighted. The radar comes with a set of products dedicated to cloud and fog studies. For instance, cloud mask, corrected Doppler velocity, and multimode products combining the high-sensitivity mode and high-resolution modes are provided.
- Published
- 2016
- Full Text
- View/download PDF
5. Links Between Weather Phenomena and Characteristics of Refractivity Measured by Precipitation Radar
- Author
-
Chiraz Boudjabi, Lucas Besson, Jacques Parent du Chatelet, Olivier Caumont, Météo-France [Paris], Météo France, SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Météo-France, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Convection ,Atmospheric Science ,Aliasing ,010504 meteorology & atmospheric sciences ,Meteorology ,Vapour pressure of water ,0211 other engineering and technologies ,02 engineering and technology ,Refractivity ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,01 natural sciences ,law.invention ,law ,Weather radar ,Meso-NH numerical model ,Radar ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Remote sensing ,021110 strategic, defence & security studies ,Radar network ,Convective available potential energy ,Atmospheric simulation ,13. Climate action ,Environmental science ,Turbulent flux - Abstract
International audience; Refractivity depends on meteorological parameters such as temperature and water vapour pressure and can be measured using a weather radar. A realistic atmospheric simulation from the Meso-NH numerical model is used in order to describe and establish the relation between refractivity and the dynamic and thermodynamic phenomena responsible for the development and propagation of convection. These investigations lead to discussion of the complementarity between the refractivity and the convective available potential energy. The relation observed between the refractivity signal and the meteorological parameters calls the refractivity measurement into question, since it is based on phase differentiation with time and space and can be degraded by phase aliasing problems. These aliasing problems increase with the radar frequency (perceptible in the S-band, serious in the C-band, and more serious in the X-band) and also with the integration range and sampling time. Thus, a statistical approach permits us to simulate the possibility of measuring the refractivity with operational radar during convective events. A typical case in the south-east region of France is selected to simulate measurements by radar (S-band, C-band, X-band) in convective systems, in order to evaluate the measurement feasibility, particularly in terms of phase ambiguity, related to temporal and spatial sampling, of a future implementation of the refractivity measurement over the French operational radar network. This numerical statistical approach is completed with a similar study using in-situ measurements performed at the Trappes station. The seasonal and diurnal dependencies of aliasing are investigated, leading to clarification of the impact of the turbulent fluxes on the refractivity measurement.
- Published
- 2011
- Full Text
- View/download PDF
6. Comparison Between Radar and Automatic Weather Station Refractivity Variability
- Author
-
Jacques Parent du Chatelet, Ruben Hallali, Francis Dalaudier, SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), STRATO - LATMOS, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,Automatic weather station ,Planetary boundary layer ,0208 environmental biotechnology ,02 engineering and technology ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,01 natural sciences ,law.invention ,Radar Refractivity ,Atmosphere ,law ,Range (statistics) ,Radar ,Atmospheric humidity ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Remote sensing ,Turbulence ,Humidity ,Field (geography) ,020801 environmental engineering ,13. Climate action ,Environmental science - Abstract
International audience; Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor’s hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.
- Published
- 2016
- Full Text
- View/download PDF
7. A Fuzzy Logic Algorithm for the Separation of Precipitating from Nonprecipitating Echoes Using Polarimetric Radar Observations
- Author
-
Jacques Parent du Chatelet, Jonathan J. Gourley, and Pierre Tabary
- Subjects
Radar observations ,Atmospheric Science ,law ,C band ,Computer science ,Separation (aeronautics) ,Polarimetry ,Ocean Engineering ,Fuzzy logic algorithm ,Radar ,Remote sensing ,law.invention - Abstract
A fuzzy logic algorithm has been developed for the purpose of segregating precipitating from nonprecipitating echoes using polarimetric radar observations at C band. Adequate polarimetric descriptions for each type of scatterer are required for the algorithm to be effective. An observations-based approach is presented in this study to derive membership functions and objectively weight them so that they apply directly to conditions experienced at the radar site and to the radar wavelength. Three case studies are examined and show that the algorithm successfully removes nonprecipitating echoes from rainfall accumulation maps.
- Published
- 2007
- Full Text
- View/download PDF
8. Empirical Estimation of Attenuation from Differential Propagation Phase Measurements at C Band
- Author
-
Jonathan J. Gourley, Pierre Tabary, and Jacques Parent du Chatelet
- Subjects
Physics ,Atmospheric Science ,C band ,business.industry ,Advection ,Mie scattering ,Attenuation ,Phase (waves) ,Differential phase ,Computational physics ,Optics ,Disdrometer ,Attenuation coefficient ,business - Abstract
A polarimetric method is devised to correct for attenuation effects at C band on reflectivity ZH and differential reflectivity ZDR measurements. An operational cross-correlation analysis is used to derive advection vectors and to displace echoes over a 5-min time step. These advected echoes are then compared with observations valid at the same time. The method assumes that the mean change in the intrinsic ZH and ZDR over a 5-min period when considering 1–2 h of observations over the entire radar umbrella is approximately zero. Correction coefficients are retrieved through the minimization of a cost function that links observed decreases in ZH and ZDR due to attenuation effects with increases in differential phase shift (ΦDP). The retrieved coefficients are consistent with published values for the typical ranges of temperatures and drop sizes encountered at midlatitudes, even when Mie scattering effects are present. Measurements of ZH and ZDR corrected using retrieved coefficients are compared with raw measurements and to measurements adjusted by mean coefficients found in the literature. The empirical retrieval method shows improvement over using mean correction coefficients based on comparisons of ZH from neighboring, unattenuated radars, disdrometer measurements, and analysis of ZH and ZDR as a function of ΦDP.
- Published
- 2007
- Full Text
- View/download PDF
9. Data Quality of the Meteo-France C-Band Polarimetric Radar
- Author
-
Pierre Tabary, Jacques Parent du Chatelet, and Jonathan J. Gourley
- Subjects
Atmospheric Science ,Offset (computer science) ,Computer science ,C band ,Polarimetry ,Ocean Engineering ,Radar network ,law.invention ,Azimuth ,Radar engineering details ,law ,Data quality ,Radar ,Remote sensing - Abstract
The French operational radar network is being upgraded and expanded from 2002 to 2006 by Meteo-France in partnership with the French Ministry of the Environment. A detailed examination of the quality of the raw polarimetric variables is reported here. The analysis procedures determine the precision of the measurements and quantify errors resulting from miscalibration, near-radome interference, and noise effects. Correction methods to remove biases resulting from effective noise powers in the horizontal and vertical channels, radar miscalibration, and the system offset in differential propagation phase measurements are presented and evaluated. Filtering methods were also required in order to remove azimuthal dependencies discovered with fields of differential reflectivity and differential propagation phase. The developed data quality analysis procedures may be useful to the agencies that are in the process of upgrading their radar networks with dual-polarization capabilities.
- Published
- 2006
- Full Text
- View/download PDF
10. A Radar Simulator for High-Resolution Nonhydrostatic Models
- Author
-
Georges Scialom, Guy Delrieu, Jacques Parent du Chatelet, Marielle Gosset, Olivier Caumont, Yvon Lemaître, Hervé Andrieu, Jean-Pierre Pinty, Véronique Ducrocq, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'aérologie (LA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Météo-France [Paris], Météo France, Division Eau et Environnement (LCPC/EAU), Laboratoire Central des Ponts et Chaussées (LCPC)-PRES Université Nantes Angers Le Mans (UNAM), Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'aérologie (LAERO), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Météo-France
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Scattering ,0207 environmental engineering ,Mesoscale meteorology ,High resolution ,Ocean Engineering ,02 engineering and technology ,Numerical weather prediction ,01 natural sciences ,Earth radius ,law.invention ,symbols.namesake ,law ,Vertical gradient ,symbols ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,Rayleigh scattering ,Radar ,020701 environmental engineering ,Physics::Atmospheric and Oceanic Physics ,Geology ,Simulation ,0105 earth and related environmental sciences ,Remote sensing - Abstract
A full radar simulator for high-resolution (1–5 km) nonhydrostatic models has been developed within the research nonhydrostatic mesoscale atmospheric (Meso-NH) model. This simulator is made up of building blocks, each of which describes a particular physical process (scattering, beam bending, etc.). For each of these blocks, several formulations have been implemented. For instance, the radar simulator offers the possibility to choose among Rayleigh, Rayleigh–Gans, Mie, or T-matrix scattering methods, and beam bending can be derived from an effective earth radius or can depend on the vertical gradient of the refractive index of air. Moreover, the radar simulator is fully consistent with the microphysical parameterizations used by the atmospheric numerical model. Sensitivity experiments were carried out using different configurations for the simulator. They permitted the specification of an observation operator for assimilation of radar reflectivities by high-resolution nonhydrostatic numerical weather prediction systems, as well as for their validation. A study of the flash flood of 8–9 September 2002 in southeastern France, which was well documented with volumetric data from an S-band radar, serves to illustrate the capabilities of the radar simulator as a validation tool for a mesoscale model.
- Published
- 2006
- Full Text
- View/download PDF
11. An Improved M-PRT Technique for Spectral Analysis of Weather Radar Observations
- Author
-
Jacques Parent Du Chatelet, Mohammed Tahanout, Abd El Hamid Adane, Laboratoire de Traitement d’Images et Rayonnement [Alger] (LTIR), Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] (USTHB), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université des Sciences et de la Technologie Houari Boumediene [Alger] (USTHB), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), and Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pulse repetition frequency ,Early-warning radar ,Computer science ,Doppler radar ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,Spectral line ,law.invention ,Passive radar ,symbols.namesake ,Radar engineering details ,law ,Radar imaging ,Electrical and Electronic Engineering ,Radar ,Low-frequency radar ,Radar horizon ,Remote sensing ,Pulse-Doppler radar ,Continuous-wave radar ,Bistatic radar ,Monopulse radar ,symbols ,General Earth and Planetary Sciences ,Clutter ,Weather radar ,Nyquist rate ,Doppler effect - Abstract
International audience; The exploitation of Doppler radars for weather observations is strongly constrained by the well-known range-velocity dilemma. To overcome the range and velocity ambiguities, dual and triple staggered pulse-repetition time (PRT) techniques are commonly used in Doppler radar systems. Today, a triple-PRT (3-PRT) scheme is operational in France. These techniques imply nonuniform sampling of the weather signal, inducing multiple replicas in the Doppler spectrum. The situation is particularly complicated for short-wavelength radars, where larger extension factors of the unambiguous Nyquist interval are needed. To overcome these difficulties, a novel technique called OptM-PRT is proposed. It mainly consists in optimizing the transmission scheme based on multiple pulse repetition time, so that the corresponding autocorrelation function is well filled. The Doppler spectrum is therefore reconstructed with much less ambiguities, from the computation of the autocorrelation function of radar signal and its Fourier transform. Considering both 3-PRT and Opt9-PRT schemes, the magnitude and Doppler velocity of radar returns in rain are simulated for different spectral widths, with and without elimination of the spectral lines of ground clutter. When the ground clutter is filtered out, the 3-PRT is found to better reproduce the Doppler velocity, whereas the Opt9-PRT better restitutes the magnitude of the signal. In the presence of noise, the Opt9-PRT scheme produces the best result for both the magnitude and velocity. The 3- and Opt9-PRT techniques have been applied to the C-band Doppler radar operating in Bourges, France. The experimental results show that Opt9-PRT efficiently reconstructs the Doppler spectrum of rain echoes.
- Published
- 2015
- Full Text
- View/download PDF
12. Errors caused by long-term drifts of magnetron frequencies for refractivity measurement with a radar: Theoretical formulation and initial validation
- Author
-
Lucas Besson, Jacques Parent du Chatelet, Chiraz Boudjabi, Olivier Caumont, SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Météo-France, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Météo-France [Paris], Météo France, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), and Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Pulse-Doppler radar ,0211 other engineering and technologies ,Phase (waves) ,Ocean Engineering ,02 engineering and technology ,01 natural sciences ,law.invention ,Boundary layer ,Radar engineering details ,13. Climate action ,law ,Cavity magnetron ,Radar ,Low-frequency radar ,Radar horizon ,Physics::Atmospheric and Oceanic Physics ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Refractivity measurements in the boundary layer by precipitation radar could be useful for convection prediction. Until now such measurements have only been performed by coherent radars, but European weather radars are mostly equipped with noncoherent magnetron transmitters for which the phase and frequency may vary. In this paper, the authors give an analytical expression of the refractivity measurement by a noncoherent drifting-frequency magnetron radar and validate it by comparing with in situ measurements. The main conclusion is that, provided the necessary corrections are applied, the measurement can be successfully performed with a noncoherent radar. The correction factor mainly depends on the local-oscillator frequency variation, which is known perfectly. A second-order error, proportional to the transmitted frequency variation, can be neglected as long as this change remains small.
- Published
- 2012
- Full Text
- View/download PDF
13. Observation opérationnelle du vent 3D dans les nuages à partir des radars du réseau Aramis
- Author
-
Bousquet, Olivier, [pierre], Tabary, [jacques], Parent-Du-Chatelet, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Météo-France, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Météo-France [Paris], and Météo France
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Méthodes multivariables ,Instrument ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,Observation météorologique ,Détection radar ,Réflectivité-radar ,Interpolation ,Orage ,Radar Doppler ,Vitesse du vent ,Front ,Ligne de grains ,Direction du vent - Abstract
Titre traduit en anglais : Operational wind retrieval using data of the French weather radar network, Aramis. Résume traduit en anglais : The recent upgrading of Aramis, the French radar network, has allowed the deployment of a new Doppler technique able to collect radial velocity together with reflexivity measurements up to 250 km from the radars. The availability of these longrange Doppler data opens the way to the implementation of a real-time operational set-up to retrieve 3D wind fields which is now being tested in the greater Paris area. The analysis of the wind fields retrieved within this operational set-up shows that reliable and potentially very useful information on the flow structure within precipitation systems are, as never before, obtained, and this, whatever type this system may have. Many applications, ranging from nowcasting to checking the numerical weather prediction model verification, are concerned with these progress.; International audience; La mise à niveau récente du réseau radar opérationnel français Aramis a autorisé le déploiement d'une nouvelle technique de traitement Doppler, permettant de collecter simultanément des mesures de vitesse radiale et de réflectivité jusqu'à 250 km des radars. La disponibilité de ces mesures Doppler à longue portée a ouvert la voie à la mise en place d'une chaîne temps réel de reconstruction du champ de vent 3D, qui est actuellement testée en région parisienne. L'analyse des champs de vent reconstitués dans ce cadre opérationnel montre qu'il est possible d'obtenir, comme jamais auparavant, des informations fiables et potentiellement très utiles sur la structure et les caractéristiques de l'écoulement au sein des systèmes précipitants et cela, quel que soit le régime considéré. De nombreuses applications, allant de la prévision immédiate à la vérification des modèles numériques de prévision du temps, sont concernées par ces avancées.
- Published
- 2008
14. Comparison of advanced radar polarimetric techniques for operational attenuation correction at C band
- Author
-
Jacques Parent du Chatelet, Gianfranco Vulpiani, Pierre Tabary, and Frank S. Marzano
- Subjects
Atmospheric Science ,Meteorology ,C band ,Attenuation ,Polarimetry ,Ocean Engineering ,Differential phase ,law.invention ,law ,Weather radar ,S band ,Radar ,Correction for attenuation ,Remote sensing ,Mathematics - Abstract
Rain path attenuation correction is a challenging task for quantitative use of weather radar measurements at frequencies higher than S band. The proportionality relationship between specific attenuation αhh (specific differential attenuation αdp) and specific differential phase Kdp is the basis for simple path-integrated attenuation correction using differential phase Φdp. However, the coefficients of proportionality are known to be dependent upon temperature, on the one hand, and shape and raindrop size distribution, on the other hand. To solve this problem, a Bayesian classification scheme is proposed to empirically find the prevailing rain regime and adapt the Φdp-based method. The proposed approach herein is compared with other polarimetric techniques currently available in the literature. Several episodes observed in the Paris, France, area by the C-band dual-polarized weather radar operating in Trappes (France) are analyzed and results are discussed.
- Published
- 2008
15. Measurements and Observations of Meteorological Visibility at ITS Stations
- Author
-
Nicolas Hautière, Raouf Babari, Eric Dumont, Jacques Parent Du Chatelet, Nicolas Paparoditis, Nicolas Hautière, Raouf Babari, Eric Dumont, Jacques Parent Du Chatelet, and Nicolas Paparoditis
- Published
- 2013
- Full Text
- View/download PDF
16. Aramis, le réseau français de radars pour la surveillance des précipitations
- Author
-
Jacques Parent Du Chatelet
- Subjects
Geography ,Meteorology ,law ,language ,French ,Weather radar ,Humanities ,language.human_language ,En plein air ,law.invention - Abstract
EnglishThe French weather radar network is now in a fully growth. The present network is described here as well as the developments planed for the near future. The operational products and the main signal processing schemes are presented. francaisLe reseau francais de radars meteorologiques est en plein developpement. On decrit dans cet article sa situation actuelle et les evolutions prevues a court et moyen terme. Les produits fournis, ainsi que les principaux traitements appliques aux signaux, sont brievement presentes.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.