1. Applications and training sets of machine learning potentials
- Author
-
Changho Hong, Jaehoon Kim, Jaesun Kim, Jisu Jung, Suyeon Ju, Jeong Min Choi, and Seungwu Han
- Subjects
machine learning potential ,training set ,potential energy surface ,density functional theory ,molecular dynamics ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
Recently, machine learning potentials (MLPs) have been attracting interest as an alternative to the computationally expensive density-functional theory (DFT) calculations. The data-driven approach in MLPs requires carefully curated training datasets, which define the valid domain of simulations. Therefore, acquiring training datasets that comprehensively span the domain of the desired simulations is important. In this review, we attempt to set guidelines for the systematic construction of training datasets according to target simulations. To this end, we extensively analyze the training sets in previous literature according to four application types: thermal properties, diffusion properties, structure prediction, and chemical reactions. In each application, we summarize characteristic reference structures and discuss specific parameters for DFT calculations such as MD conditions. We hope this review serves as a comprehensive guide for researchers and practitioners aiming to harness the capabilities of MLPs in material simulations.
- Published
- 2023
- Full Text
- View/download PDF