1. Shock wave propagation in layered planetary interiors: Revisited
- Author
-
Julien Monteux, Jafar Arkani-Hamed, Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS), Department of Earth and Planetary Sciences [Montréal] (EPS), McGill University = Université McGill [Montréal, Canada], ANR-10-LABX-0006,CLERVOLC,Clermont-Ferrand centre for research on volcanism(2010), ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Shock wave ,Physics ,010504 meteorology & atmospheric sciences ,Projectile ,[SDU.STU.PE]Sciences of the Universe [physics]/Earth Sciences/Petrography ,Astronomy and Astrophysics ,Near and far field ,Radius ,Mars Exploration Program ,Mechanics ,01 natural sciences ,Power law ,Mantle (geology) ,Space and Planetary Science ,Planet ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Co-auteur étranger; International audience; While major impacts during late accretion of a Mars type planet occur on a differentiated body, the characteristics of the shockwave propagation are poorly knownwithin these layered objects. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocitiesranging from 5 to 20 km/s, impactor radii ranging from 50 to 200 km, and different rheologies. To better represent the distribution of shock pressure as a function ofdistance from the impact site at the surface, we propose two distinct regions in the mantle: a near field region that extends to 7–15 times the projectile radius into thetarget, where the peak shock pressure decays exponentially with increasing the distance from the impact site, and a far field region where the pressure decaysstrongly with the distance following a power law. At the core-mantle boundary, the peak shock pressure increases from the mantle side to the core side. The refractedshockwave travels within the core where the shock pressure decreases following a second power law. In this study, we fit the output obtained from iSALE hydrocodesimulations to determine scaling laws that illustrate the influence of the distance from the impact site, the ray angle, the target rheology, the impactor size and theimpact velocity. Finally we combine these shock-pressure scaling laws with the formalism proposed by Watters et al. [2009] to determine the impact heating inducedby large impacts within a differentiated Mars
- Published
- 2019
- Full Text
- View/download PDF