17 results on '"Jagpal, B"'
Search Results
2. Comparison of 1.5T and 3T in assessment of suspicious breast lesions
- Author
-
Ragupathy, SK Arcot, Gagliardi, T, Redpath, TW, Flynn, S, Jagpal, B, Begley, JKP, and Gilbert, FJ
- Published
- 2010
- Full Text
- View/download PDF
3. Single voxel proton magnetic resonance spectroscopy of breast cancer at 3T
- Author
-
Begley, JKP, Redpath, TW, Jagpal, B, and Gilbert, FJ
- Published
- 2010
- Full Text
- View/download PDF
4. Protocol: does sodium nitrite administration reduce ischaemia-reperfusion injury in patients presenting with acute ST segment elevation myocardial infarction? Nitrites in acute myocardial infarction (NIAMI)
- Author
-
Siddiqi, N, Bruce, M, Neil, CJ, Jagpal, B, Maclennon, G, Cotton, SC, Papadopoulo, SA, Bunce, N, Lim, P, Schwarz, K, Singh, S, Hildick-Smith, D, Horowitz, JD, Madhani, M, Boon, N, Kaski, J-C, Dawson, D, Frenneaux, MP, Siddiqi, N, Bruce, M, Neil, CJ, Jagpal, B, Maclennon, G, Cotton, SC, Papadopoulo, SA, Bunce, N, Lim, P, Schwarz, K, Singh, S, Hildick-Smith, D, Horowitz, JD, Madhani, M, Boon, N, Kaski, J-C, Dawson, D, and Frenneaux, MP
- Abstract
BACKGROUND: Whilst advances in reperfusion therapies have reduced early mortality from acute myocardial infarction, heart failure remains a common complication, and may develop very early or long after the acute event. Reperfusion itself leads to further tissue damage, a process described as ischaemia-reperfusion-injury (IRI), which contributes up to 50% of the final infarct size. In experimental models nitrite administration potently protects against IRI in several organs, including the heart. In the current study we investigate whether intravenous sodium nitrite administration immediately prior to percutaneous coronary intervention (PCI) in patients with acute ST segment elevation myocardial infarction will reduce myocardial infarct size. This is a phase II, randomised, placebo-controlled, double-blinded and multicentre trial. METHODS AND OUTCOMES: The aim of this trial is to determine whether a 5 minute systemic injection of sodium nitrite, administered immediately before opening of the infarct related artery, results in significant reduction of IRI in patients with first acute ST elevation myocardial infarction (MI). The primary clinical end point is the difference in infarct size between sodium nitrite and placebo groups measured using cardiovascular magnetic resonance imaging (CMR) performed at 6-8 days following the AMI and corrected for area at risk (AAR) using the endocardial surface area technique. Secondary end points include (i) plasma creatine kinase and Troponin I measured in blood samples taken pre-injection of the study medication and over the following 72 hours; (ii) infarct size at six months; (iii) Infarct size corrected for AAR measured at 6-8 days using T2 weighted triple inversion recovery (T2-W SPAIR or STIR) CMR imaging; (iv) Left ventricular (LV) ejection fraction measured by CMR at 6-8 days and six months following injection of the study medication; and (v) LV end systolic volume index at 6-8 days and six months. FUNDING, ETHICS AND REGULAT
- Published
- 2013
5. 1015Assessment of Myocardial Area at Risk: A Comparison of T1 Mapping, T2-SPAIR, Endocardial Surface Area and Angiography
- Author
-
Siddiqi, N, primary, Cameron, D, additional, Neil, C, additional, Jagpal, B, additional, Singh, S, additional, Schwarz, K, additional, Papadopoulou, S, additional, Frenneaux, MP, additional, and Dawson, D, additional
- Published
- 2013
- Full Text
- View/download PDF
6. Abstracts
- Author
-
Doulaptsis, C, Masci, PG, Goetschalckx, K, Janssens, S, Bogaert, J, Ferreira, VM, Piechnik, SK, DallArmellina, E, Karamitsos, TD, Francis, JM, Ntusi, N, Holloway, C, Choudhury, RP, Kardos, A, Robson, MD, Friedrich, MG, Neubauer, S, Miszalski-Jamka, T, Sokolowska, B, Szczeklik, W, Karwat, K, Miszalski-Jamka, K, Belzak, K, Malek, L, Mazur, W, Kereiakes, DJ, Jazwiec, P, Musial, J, Pedrotti, P, Masciocco, G, DAngelo, L, Milazzo, A, Quattrocchi, G, Zanotti, F, Frigerio, M, Roghi, A, Rimoldi, O, Kaasalainen, T, Kivistö, S, Holmström, M, Pakarinen, S, Hänninen, H, Sipilä, O, Lauerma, K, Banypersad, S.M, Fontana, M, Maestrini, V, Sado, D.M, Pinney, J, Wechalekar, A.D, Gillmore, J.D, Lachmann, H, Hawkins, P.N, Moon, J.C, Barone-Rochette, G, Pierard, S, Seldrum, S, de Ravensteen, CM, Melchior, J, Maes, F, Pouleur, A-C, Vancraeynest, D, Pasquet, A, Vanoverschelde, J-L, L Gerber, B, Captur, G, Muthurangu, V, Flett, AS, Wilson, R, Barison, A, Anderson, S, Cook, C, Sado, DM, McKenna, WJ, Mohun, TJ, Elliott, PM, Moon, JC, Pepe, A, Meloni, A, Gulino, L, Rossi, G, Paci, C, Spasisno, A, keilberg, P, Restaino, G, Resta, MC, Positano, V, lombardi, M, Reiter, U, Reiter, G, Kovacs, G, Schmidt, A, Olschewski, H, Fuchsjäger, M, Macmillan, A, Dabir, D, Rogers, T, Monaghan, M, Nagel, E, Puntmann, V, Semaan, E, Spottiswoode, B, Freed, B, Carr, M, Wasielewski, M, Fortney-Campione, K, Shah, S, Carr, J, Markl, M, Collins, J, Sung, YM, Hinojar, R, Ucar, EA, Dabir, D, Voigt, T, Gaddum, N, Schaeffter, T, Nagel, E, Puntmann, VO, Dabir, D, Rogers, T, Ucar, EA, Kidambi, A, Plein, S, Gebker, R, Schnackenburg, B, Voigt, T, Schaeffter, T, Nagel, E, Puntmann, VO, McAlindon, E, Bucciarelli-Ducci, C, Sado, D, Maestrini, V, Piechnik, S, Porter, J, Yamamura, J, Fischer, R, Moon, J, Symons, R, Doulaptsis, C, Masci, P.G, Goetschalckx, K, Dymarkowski, S, Janssens, S, Bogaert, J, Yalin, K, Golcuk, E, Ozer, CS, Buyukbayrak, H, Yilmaz, R, Dursun, M, Bilge, AK, Adalet, K, Reinstadler, SJ, Klug, G, Feistritzer, HJ, Mayr, A, Harrasser, B, Krauter, L, Mair, J, Schocke, MF, Pachinger, O, Metzler, B, Rigolli, M, To, A, Edwards, C, Ding, P, Christiansen, J, Rodríguez-Palomares, JF, Ortiz, JT, Bucciarelli, C, Lee, D, Wu, E, Bonow, RO, Karwat, K, Tomala, M, Miszalski-Jamka, K, Licholaj, S, Mazur, W, Kereiakes, DJ, Nessler, J, Zmudka, K, Jazwiec, P, Miszalski-Jamka, T, Peltonen, J, Kaasalainen, T, Kivistö, S, Holmström, M, Lauerma, K, Rutz, T, Meierhofer, C, Martinoff, S, Ewert, P, Hess, J, Stern, H, Fratz, S, Groarke, JD, Waller, AH, Blankstein, R, Kwong, RY, Steigner, M, Alizadeh, Z, Alizadeh, A, Khajali, Z, Mohammadzadeh, A, Kaykhavani, A, Heidarali, M, Singh, A, Bekele, S, Gunarathne, A, Khan, J, Nazir, SN, Steadman, CD, Kanagala, P, Horsfield, MA, McCann, GP, Duncan, RF, Dundon, BK, Nelson, AJ, Williams, K, Carbone, A, Worthley, MI, Zaman, A, Worthley, SG, Monney, P, Piccini, D, Rutz, T, Vincenti, G, Koestner, S, Stuber, M, Schwitter, J, Gripari, P, Maffessanti, F, Pontone, G, Andreini, D, Bertella, E, Mushtaq, S, Caiani, EG, Pepi, M, El ghannudi, S, Nghiem, A, Germain, P, Jeung, M-J, Roy, C, Gangi, A, Nucifora, G, Muser, D, Masci, PG, Barison, A, Piccoli, G, Rebellato, L, Puppato, M, Gasparini, D, Lombardi, M, Proclemer, A, Nucifora, G, Muser, D, Masci, PG, Barison, A, Piccoli, G, Rebellato, L, Puppato, M, Gasparini, D, Lombardi, M, Proclemer, A, Pöyhönen, P, Kivistö, S, Holmströn, M, Hänninen, H, Thorning, C, Bickelhaupt, S, Kampmann, C, Wentz, KU, Widmer, U, Juli, CF, Miszalski-Jamka, K, Klys, J, Glowacki, J, Kijas, M, Miszalski-Jamka, T, Adamczyk, T, Kwiecinski, R, Bogucka-Czapska, J, Ozaist, M, Mazur, W, Kluczewska, E, Kalarus, Z, Kukulski, T, Karakus, G, Marzluf, B, Bonderman, D, Tufaro, C, Pfaffenberger, S, Babyev, J, Maurer, G, Mascherbauer, J, Kockova, R, Tintera, J, Kautznerova, D, Cerna, D, Sedlacek, K, Kryze, L, El-Husseini, W, Sikula, V, Segetova, M, Kautzner, J, Vasconcelos, M, Lebreiro, A, Martins, E, Cardoso, JS, Madureira, AJ, Ramos, I, Maciel, MJ, Florian, A, Ludwig, A, Rösch, S, Sechtem, U, Yilmaz, A, Monmeneu, J.V, López-Lereu, M.P, Bonanad, C, Sanchis, J, Chaustre, F, Merlos, P, Valero, E, Bodí, V, Chorro, F.J, Yalin, K, Golcuk, E, Ozer, CS, Buyukbayrak, H, Yilmaz, R, Dursun, M, Bilge, AK, Adalet, K, Klug, G, Reinstadler, SJ, Feistritzer, HJ, Mayr, A, Riegler, N, Schocke, M, Esterhammer, R, Kremser, C, Pachinger, O, Metzler, B, Siddiqi, N, Cameron, D, Neil, C, Jagpal, B, Singh, S, Schwarz, K, Papadopoulou, S, Frenneaux, MP, Dawson, D, Robbers, LFHJ, Eerenberg, ES, Teunissen, PFA, Jansen, MF, Hollander, MR, Horrevoets, AJG, Knaapen, P, Nijveldt, R, Levi, MM, van Rossum, AC, Niessen, HWM, Marcu, CB, Beek, AM, van Royen, N, Everaars, H, Robbers, LFHJ, Nijveldt, R, Beek, AM, Teunissen, PFA, Hirsch, A, van Royen, N, Zijlstra, F, Piek, JJ, van Rossum, AC, Goitein, O, Grupper, A, Hamdan, A, Eshet, Y, Beigel, R, Medvedofsky, D, Herscovici, R, Konen, E, Hod, H, Matetzky, S, Cadenas, R, Iniesta, AM, Refoyo, E, Antorrena, I, Guzman, G, Cuesta, E, Salvador, O, López, T, Moreno, M, López-Sendon, JL, Alam, SR, Spath, N, Richards, J, Dweck, M, Shah, A, Lang, N, Semple, S, MacGillivray, T, Mckillop, G, Mirsadraee, S, Pessotto, R, Zamvar, V, Newby, DE, Henriksen, P, Reiter, G, Reiter, U, Kovacs, G, Olschewski, H, Fuchsjäger, M, Ahmad, S, Raza, U, Malik, A, Sun, JP, Eisner, R, Mazur, W, ODonnell, R, Positano, V, Meloni, A, Santarelli, MF, Landini, L, Tassi, C, Grimaldi, S, Gulino, L, De Marchi, D, Chiodi, E, Renne, S, Lombardi, M, Pepe, A, Wu, L, Germans, T, Güçlü, A, Allaart, CP, van Rossum, AC, Kalisz, K, Lehenbauer, K, Katz, D, Bi, X, Cordts, M, Guetter, C, Jolly, M-P, Freed, B, Shah, S, Markl, M, Flukiger, J, Carr, J, Collins, J, Osiak, A, Tyrankiewicz, U, Jablonska, M, Jasinski, K, Jochym, PT, Chlopicki), S, Skorka, T, Kalisz, K, Semaan, E, Katz, D, Bi, X, Cordts, M, Guetter, C, Jolly, MP, Freed, B, Flukiger, J, Lee, D, Kansal, P, Shah, S, Markl, M, Carr, J, Collins, J, Groarke, JD, Shah, RV, Waller, AH, Abbasi, SA, Kwong, RY, Blankstein, R, Steigner, M, Chin, CWL, Semple, S, Malley, T, White, A, Prasad, S, Newby, DE, Dweck, M, Pepe, A, Meloni, A, Lai, ME, Vaquer, S, Gulino, L, De Marchi, D, Cuccia, L, Midiri, M, Vallone, A, Positano, V, Lombardi, M, Pedrotti, P, Milazzo, A, Quattrocchi, G, Roghi, A, Rimoldi, O, Barison, A, De Marchi, D, Masci, P, Milanesi, M, Aquaro, GD, Keilberg, P, Positano, V, Lombardi, M, Positano, Vincenzo, Barison, Andrea, Pugliese, Nicola Riccardo, Masci, Piergiorgio, Del Franco, Annamaria, Aquaro, Giovanni Donato, Landini, Luigi, Lombardi, Massimo, Dieringer, MA, Deimling, M, Fuchs, K, Winter, L, Kraus, O, Knobelsdorff-Brenkenhoff, FV, Schulz-Menger, J, Niendorf, T, Hinojar, R, Ucar, EA, DCruz, D, Sangle, S, Dabir, D, Voigt, T, Gaddum, N, Schaeffter, T, Nagel, E, Puntmann, VO, Sung, YM, Pontone, G, Andreini, D, Bertella, E, Mushtaq, S, Gripari, P, Cortinovis, S, Loguercio, M, Baggiano, A, Conte, E, Pepi, M, El ghannudi, S, Hop, O, Germain, P, Jeung, M-J, De Cesare, A, Roy, C, Gangi, A, Barone-Rochette, G, Pierard, S, Seldrum, S, De Meester de Ravensteen, C, Melchior, J, Maes, F, Pouleur, A-C, Vancraeynest, D, Pasquet, A, Vanoverschelde, J-L, L Gerber, B, Bekele, S, Singh, A, Khan, JN, Nazir, SA, Kanagala, P, McCann, GP, Singh, A, Steadman, CD, Bekele, S, Khan, JN, Nazir, SA, Kanagala, P, McCann, GP, Paelinck, BP, Vandendriessche, T, De Bock, D, De Maeyer, C, Parizel, PM, Christiaan, J, Trauzeddel, RF, Gelsinger, C, Butter, C, Barker, A, Markl, M, Schulz-Menger, J, von Knobelsdorff, F, Florian, A, Schäufele, T, Ludwig, A, Rösch, S, Wenzelburger, I, Yilmaz, A, Sechtem, U, López-Lereu, M.P, Bonanad, C, Monmeneu, J.V, Sanchís, J, Estornell, J, Igual, B, Maceira, A, Chorro, F.J, Focardi, M, Cameli, M, Bennati, E, Massoni, A, Solari, M, Carbone, F, Banchi, B, Mondillo, S, Miia, H, Kirsi, L, Helena, H, Tiina, H, Jyri, L, Pauli, P, Sari, K, Schumm, J, Greulich, S, Grün, S, Ong, P, Klingel, K, Kandolf, R, Sechtem, U, Mahrholdt, H, Raimondi, F, Ou, P, Boudjemline, Y, Bajolle, F, Iserin, F, Bonnet, D, Collins, J, Kalisz, K, Benefield, B, Sarnari, R, Katz, D, Bi, X, Cordts, M, Guetter, C, Jolly, M-P, Freed, B, Flukiger, J, Kansal, P, Lee, D, Shah, S, Markl, M, Carr, J, Sokolowska, B, Miszalski-Jamka, T, Szczeklik, W, Karwat, K, Miszalski-Jamka, K, Belzak, K, Mazur, W, Kereiakes, DJ, Jazwiec, P, Musial, J, Silva, G, Almeida, AG, Resende, C, Marques, JS, Silva, D, David, C, Amaro, C, Costa, P, Silva, JAP, Diogo, AN, Tsokolov, AV, Senchilo, VG, Vertelkin, AV, Hoffmann, P, Mykjåland, G, Wangberg, H, Tønnessen, T, Sjaastad, I, Nordsletten, L, Hjørnholm, U, Løset, A, Rostrup, M, Meloni, A, Gulino, L, Keilberg, P, Palazzi, G, Maddaloni, D, Ascioti, C, Missere, M, Salvatori, C, Positano, V, Lombardi, M, Pepe, A, Meloni, A, Filosa, A, Gulino, L, Pulini, S, Salvatori, C, Chiodi, E, Ascioti, C, Keilberg, P, Positano, V, Lombardi, M, Pepe, A, Meloni, A, Gulino, L, Pietrapertosa, A, Izzi, G, De Marchi, D, Valeri, G, Preziosi, P, Positano, V, Lombardi, M, Pepe, A, Meloni, A, Ruffo, GB, Keilberg, P, Gulino, L, Gerardi, C, Sallustio, G, Tudisca, C, Positano, V, Lombardi, M, Pepe, A, Greulich, S, Backes, M, Schumm, J, Grün, S, Sechtem, U, Mahrholdt, H, Dorniak, K, MSc, AS, Szurowska, E, Fijalkowski, M, Rawicz-Zegrzda, D, Dudziak, M, Raczak, G, Hamdan, A, Baker, FA, Klein, M, Di Segni, E, Goitein, O, Fibisch, G, Konen, E, Müller-Bierl, B, Tanaka, K, Buls, N, Fierens, Y, van Cauteren, T, Willekens, I, van Laere, S, Luypaert, R, de Mey, J, Muzzarelli, S, Faragasso, E, Pedrazzini, G, Sürder, D, Pasotti, E, Moccetti, T, Faletra, F, Qayyum, AA, Hasbak, P, Larsson, HB, Mathiasen, AB, Vejlstrup, NG, Kjaer, A, Kastrup, J, Moschetti, K, Favre, D, Pinget, C, Pilz, G, Petersen, S, Wagner, A, Wasserfallen, JB, Schwitter, J, Ghosh Dastidar, A, Cengarle, M, McAlindon, E, Augustine, D, Nightingale, AK, Bucciarelli-Ducci, C, Dandekar, VK, Ertel, AW, Dickens, C, Gonzalez, RC, Farzaneh-Far, A, Ripley, DP, Higgins, D, McDiarmid, AK, Bainbridge, GJ, Uddin, A, Kidambi, A, Herzog, B, Greenwood, JP, Plein, S, Khanji, M, Newton, T, Westwood, M, Sekhri, N, and Petersen, SE
- Abstract
Background-Aims: Early post-infarction pericardial injury is a common finding but its diagnosis remains elusive. Though C-reactive protein (CRP) is considered a marker of myocardial damage, reflecting myocardial inflammation at the infarcted area, we sought to assess the relationship between CRP and pericardial injury depicted by cardiovascular magnetic resonance (CMR) imaging in patients with ST elevation myocardial infarction (MI). Methods and results: 181 MI patients (84% male) were studied with CMR in the first week and at 4 months post-infarction to assess infarct characteristics, left ventricular volumes/function and pericardial injury. The latter was defined as pericardial fluid >4mm and/or enhancement on late gadolinium enhancement CMR. The CRP-value at day 2 (according to previous literature) was used for correlation with CMR and clinical parameters. Pericardial injury was noted in 87 patients, i.e. effusion (n = 30), inflammation (n = 46), both (n = 11). Patients with pericardial injury had significantly higher peak values of cardiac biomarkers (p<0.001) and higher peak CRP-values than patients with normal pericardium (median 13 vs 43 mg/dl, p<0.001). A strong correlation was found between peak CRP-values and a) left venticular ejection fraction and infarct size both at 1 week and 4 months, b) myocardial hemorrhage, microvascular obstruction (MVO) and pericardial injury at 1 week, c) cardiac biomarkers values and time to PCI. However in a multiple regression model only pericardial injury (p = 0.003) and less importantly time to PCI (p = 0.022) were the independent predictors of CRP values. Conclusion: Pericardial damage described by cardiac MRI occurs often after acute ST elevation MI. CRP-values at the acute phase of MI reflect not only inflammation at the infarcted area but even more the inflammation of the surrounding pericardial tissue.
Table 1 Comparison of baseline clinical and biochemical parameters of patients with or without evidence of early post-infarct pericardial damage on CMR Normal Group (n = 94) Pericardial injury group (n = 87) p-value Agem, years 59±11 60±12 0.48 Male, n(%) 83 (88) 69 (79) 0.10 Diabets, n(%) 12 (13) 9 (10) 0.61 Smoker, n(%) 52 (55) 44 (51) 0.52 Hyperlipidemia, n(%) 56 (60) 55 (63) 0.62 BSA m2 2.0 ± 0.2 2.0 ± 0.2 0.20 Time to PCI, min 195 (155 − 274) 223 (160 − 335) 0.20 Troponin I, μ/l 44 (19 − 92) 90 (44 − 149) >0.001 CK-MB, U/L 128 (77 − 216) 250 (143 − 443) >0.001 CRP, mg/dL 13 (7 − 28) 43 (16 − 96) >0.001 Day of peak CRP 2 (1 − 3) 2 (1 − 3) 0.39 Table 2 Significant correlations between CRP Values and corresponding CMR measurements, cardic biomarkers and clinical related parameters Varibles Spearmanscorrelations r p-value CMR parameters 1 week LV EF −0.28 >0,001 Infractsize(%ofLV) 0.40 >0,001 Microvasular obstruction 0.27 >0,001 Hemorrhage 0.33 >0,001 Size of area atrisk 0.31 >0,001 Transmurality 0.30 >0,001 Pericaldial damage 0.43 >0,001 CMR parameters 4 months LVEF −0.43 >0,001 Infarctsize(%ofLV) 0.46 >0,001 Cardiac Biomarkers Peak TnI 0.34 >0,001 Peak CK-MB 0.32 >0,001 Other Time to PCI 0,182 0,007 - Published
- 2013
- Full Text
- View/download PDF
7. Cohort profile for the STratifying Resilience and Depression Longitudinally (STRADL) study: A depression-focused investigation of Generation Scotland, using detailed clinical, cognitive, and neuroimaging assessments.
- Author
-
Habota T, Sandu AL, Waiter GD, McNeil CJ, Steele JD, Macfarlane JA, Whalley HC, Valentine R, Younie D, Crouch N, Hawkins EL, Hirose Y, Romaniuk L, Milburn K, Buchan G, Coupar T, Stirling M, Jagpal B, MacLennan B, Priba L, Harris MA, Hafferty JD, Adams MJ, Campbell AI, MacIntyre DJ, Pattie A, Murphy L, Reynolds RM, Elliot R, Penton-Voak IS, Munafò MR, Evans KL, Seckl JR, Wardlaw JM, Lawrie SM, Haley CS, Porteous DJ, Deary IJ, Murray AD, and McIntosh AM
- Abstract
STratifying Resilience and Depression Longitudinally (STRADL) is a population-based study built on the Generation Scotland: Scottish Family Health Study (GS:SFHS) resource. The aim of STRADL is to subtype major depressive disorder (MDD) on the basis of its aetiology, using detailed clinical, cognitive, and brain imaging assessments. The GS:SFHS provides an important opportunity to study complex gene-environment interactions, incorporating linkage to existing datasets and inclusion of early-life variables for two longitudinal birth cohorts. Specifically, data collection in STRADL included: socio-economic and lifestyle variables; physical measures; questionnaire data that assesses resilience, early-life adversity, personality, psychological health, and lifetime history of mood disorder; laboratory samples; cognitive tests; and brain magnetic resonance imaging. Some of the questionnaire and cognitive data were first assessed at the GS:SFHS baseline assessment between 2006-2011, thus providing longitudinal measures relevant to the study of depression, psychological resilience, and cognition. In addition, routinely collected historic NHS data and early-life variables are linked to STRADL data, further providing opportunities for longitudinal analysis. Recruitment has been completed and we consented and tested 1,188 participants., Competing Interests: Competing interests: ISP-V and MRM are co-directors of Jericoe Ltd, a company that designs software for the assessment and modification of emotion recognition., (Copyright: © 2021 Habota T et al.)
- Published
- 2021
- Full Text
- View/download PDF
8. Cohort profile for the STratifying Resilience and Depression Longitudinally (STRADL) study: A depression-focused investigation of Generation Scotland, using detailed clinical, cognitive, and neuroimaging assessments.
- Author
-
Habota T, Sandu AL, Waiter GD, McNeil CJ, Steele JD, Macfarlane JA, Whalley HC, Valentine R, Younie D, Crouch N, Hawkins EL, Hirose Y, Romaniuk L, Milburn K, Buchan G, Coupar T, Stirling M, Jagpal B, MacLennan B, Priba L, Harris MA, Hafferty JD, Adams MJ, Campbell AI, MacIntyre DJ, Pattie A, Murphy L, Reynolds RM, Elliot R, Penton-Voak IS, Munafò MR, Evans KL, Seckl JR, Wardlaw JM, Lawrie SM, Haley CS, Porteous DJ, Deary IJ, Murray AD, and McIntosh AM
- Abstract
STratifying Resilience and Depression Longitudinally (STRADL) is a population-based study built on the Generation Scotland: Scottish Family Health Study (GS:SFHS) resource. The aim of STRADL is to subtype major depressive disorder (MDD) on the basis of its aetiology, using detailed clinical, cognitive, and brain imaging assessments. The GS:SFHS provides an important opportunity to study complex gene-environment interactions, incorporating linkage to existing datasets and inclusion of early-life variables for two longitudinal birth cohorts. Specifically, data collection in STRADL included: socio-economic and lifestyle variables; physical measures; questionnaire data that assesses resilience, early-life adversity, personality, psychological health, and lifetime history of mood disorder; laboratory samples; cognitive tests; and brain magnetic resonance imaging. Some of the questionnaire and cognitive data were first assessed at the GS:SFHS baseline assessment between 2006-2011, thus providing longitudinal measures of depression and resilience. Similarly, routine NHS data and early-life variables are linked to STRADL data, further providing opportunities for longitudinal analysis. Recruitment has been completed and we consented and tested 1,188 participants., Competing Interests: Competing interests: ISP-V and MRM are co-directors of Jericoe Ltd, a company that designs software for the assessment and modification of emotion recognition., (Copyright: © 2019 Habota T et al.)
- Published
- 2019
- Full Text
- View/download PDF
9. Author's Reply.
- Author
-
Schwarz K, Ahearn T, Srinivasan J, Neil CJ, Scally C, Rudd A, Jagpal B, Frenneaux MP, Pislaru C, Horowitz JD, and Dawson DK
- Subjects
- Follow-Up Studies, Humans, Takotsubo Cardiomyopathy
- Published
- 2017
- Full Text
- View/download PDF
10. Alterations in Cardiac Deformation, Timing of Contraction and Relaxation, and Early Myocardial Fibrosis Accompany the Apparent Recovery of Acute Stress-Induced (Takotsubo) Cardiomyopathy: An End to the Concept of Transience.
- Author
-
Schwarz K, Ahearn T, Srinivasan J, Neil CJ, Scally C, Rudd A, Jagpal B, Frenneaux MP, Pislaru C, Horowitz JD, and Dawson DK
- Subjects
- Acute Disease, Adult, Aged, Aged, 80 and over, Arabidopsis Proteins, Diastole, Echocardiography, Female, Fibrosis complications, Fibrosis diagnosis, Fibrosis physiopathology, Follow-Up Studies, Heart Ventricles physiopathology, Humans, Magnetic Resonance Imaging, Cine, Male, Middle Aged, Nuclear Proteins, Prospective Studies, Stroke Volume physiology, Systole, Takotsubo Cardiomyopathy complications, Takotsubo Cardiomyopathy diagnosis, Heart Ventricles diagnostic imaging, Myocardial Contraction physiology, Myocardium pathology, Recovery of Function physiology, Takotsubo Cardiomyopathy physiopathology, Ventricular Function, Left physiology, Ventricular Pressure physiology
- Abstract
Background: Takotsubo syndrome is an increasingly recognized cause of chest pain and occasionally of cardiogenic shock. Despite rapid improvement of the left ventricular (LV) ejection fraction, recent registry data raise concerns about long-term prognosis. The aim of this study was to test the hypothesis that restoration of normal ejection fraction after acute takotsubo syndrome is not equivalent to full functional recovery., Methods: Fifty-two patients with takotsubo syndrome (according to the Mayo Clinic criteria plus cardiac magnetic resonance imaging to exclude myocardial infarction) and 44 healthy control subjects of the same age, gender, and cardiovascular comorbidity distribution were prospectively recruited. The focus of the investigation was on patients with takotsubo syndrome presenting with ST-segment elevation-type electrocardiographic findings or malignant arrhythmias and with LV apical ballooning variant, and a 4-month recovery endpoint was assessed. Patients underwent echocardiographic assessment of LV myocardial deformation (global longitudinal, radial, and circumferential strain; LV twist, torsion, and untwist; and time to peak twist and untwist) and assessment of LV myocardial structure by pre- and post-contrast-enhanced cardiac magnetic resonance by T1 mapping acutely and at 4-month follow-up. Control subjects underwent a single-time-point investigation. Data were analyzed using paired or unpaired tests, as appropriate for their distribution, and corrected for multiple comparisons., Results: The patients' mean age was 66 years (range, 28-87 years), and 92% were women. All abnormal echocardiographic indices observed acutely in patients with takotsubo syndrome improved (but did not necessarily normalize) at follow-up. Significant mechanotemporal alterations characterizing both systole (global longitudinal strain and apical circumferential strain, P < .01 for both; LV twist, twist rate, and torsion, P < .0001 for all) and diastole (untwist rate and time to peak untwisting, P < .001 for both) persisted at 4-month follow-up compared with control subjects, despite normalization of LV ejection fraction and volumes. Although native T1 (which demonstrates edema) normalized at 4-months follow-up only in segments contracting normally during the acute phase (T1 = 1,180 ± 40.6 msec [normally contracting segments, P = .20 vs control value of 1,189 ± 16 msec] and T1 = 1,208 ± 60.3 msec [dysfunctional segments, P < .05 vs control]), the extracellular volume fraction (which demonstrates diffuse fibrosis) remained significantly abnormal in all LV segments (whether normally contracting [0.328 ± 0.043, P < .001] or ballooning during acute presentation [0.320 ± 0.044, P < .001], both vs control value of 0.273 ± 0.045)., Conclusions: In patients with the most clinically severe spectrum of takotsubo cardiomyopathy, regional LV systolic and diastolic deformation abnormalities persist beyond the acute event, despite normalization of global LV ejection fraction and size. In addition, although myocardial edema partly subsides, a process of global microscopic fibrosis develops in its place, detected as early as 4 months., (Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
11. The Authors Reply.
- Author
-
Dawson DK, Neil CJ, Henning A, Cameron D, Jagpal B, Bruce M, Horowitz J, and Frenneaux MP
- Published
- 2016
- Full Text
- View/download PDF
12. Right Ventricular Involvement and Recovery After Acute Stress-Induced (Tako-tsubo) Cardiomyopathy.
- Author
-
Scally C, Ahearn T, Rudd A, Neil CJ, Srivanasan J, Jagpal B, Horowitz J, Frenneaux M, and Dawson DK
- Subjects
- Acute Disease, Adult, Aged, Aged, 80 and over, Disease Progression, Echocardiography, Female, Follow-Up Studies, Humans, Magnetic Resonance Imaging, Cine, Male, Middle Aged, Prognosis, Prospective Studies, Stroke Volume physiology, Syndrome, Takotsubo Cardiomyopathy diagnosis, Takotsubo Cardiomyopathy etiology, Heart Ventricles physiopathology, Recovery of Function physiology, Stress, Psychological complications, Takotsubo Cardiomyopathy physiopathology, Ventricular Function, Right physiology
- Abstract
Acute stress-induced (Tako-tsubo) cardiomyopathy is an increasingly recognized but insufficiently characterized syndrome. Here, we investigate the pathophysiology of right ventricular (RV) involvement in Tako-tsubo and its recovery time course. We prospectively recruited 31 patients with Tako-tsubo with predominantly ST-elevation electrocardiogram and 18 controls of similar gender, age, and co-morbidity distribution. Patients underwent echocardiography and cardiac magnetic resonance (CMR) imaging on a 3T Philips scanner in the acute phase (day 0 to 3 after presentation) and at 4-months follow-up. Visually, echocardiography was able to identify only 52% of patients who showed RV wall motion abnormalities on CMR. Only CMR-derived RV ejection fraction (p = 0.01) and echocardiography-estimated pulmonary artery pressure (p = 0.01) identify RV functional involvement in the acute phase. Although RV ejection fraction normalizes in most patients by 4 months, acutely there is RV myocardial edema in both functioning and malfunctioning segments, as measured by prolonged native T1 mapping (p = 0.02 for both vs controls), and this persists at 4 months in the acutely malfunctioning segments (p = 0.002 vs controls). The extracellular volume fraction was significantly increased acutely in all RV segments and remained increased at follow-up compared with controls (p = 0.004 for all). In conclusion, in a Tako-tsubo population presenting predominantly with ST-elevation electrocardiogram, we demonstrate that although RV functional involvement is seen in only half of the patients, RV myocardial edema is present acutely throughout the RV myocardium in all patients and results in microscopic fibrosis at 4-month follow-up., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
13. T₁ mapping for assessment of myocardial injury and microvascular obstruction at one week post myocardial infarction.
- Author
-
Cameron D, Siddiqi N, Neil CJ, Jagpal B, Bruce M, Higgins DM, He J, Singh S, Redpath TW, Frenneaux MP, and Dawson DK
- Subjects
- Adult, Aged, Aged, 80 and over, Female, Humans, Male, Middle Aged, Myocardium pathology, ROC Curve, Sensitivity and Specificity, Time Factors, Coronary Vessels pathology, Magnetic Resonance Imaging methods, Microvessels pathology, Myocardial Infarction pathology
- Abstract
Objectives: To compare 3T T1 mapping to conventional T2-weighted (T2W) imaging for delineating myocardial oedema one week after ST-elevation myocardial infarction (STEMI), and to explore the confounding effects of microvascular obstruction (MVO) on each technique., Methods: T2W spectral attenuated inversion recovery and native T1 mapping were applied in 10 healthy volunteers and 62 STEMI patients, and late gadolinium enhancement was included for infarct localisation at 1 week and at 6 months post-STEMI. Segmental T1 values and T2W signal intensity ratios were calculated; oedema volumes and salvage indices were determined in patients using image thresholding-a receiver operator characteristic (ROC) derived T1 threshold, and a 2SD T2W threshold; and the results were compared between patients with/without MVO (n=35/27)., Results: Native T1 mapping delineated oedema with significantly better discriminatory power than T2W-as indicated by ROC analysis (area-under-the-curve, AUC=0.89 versus 0.83, p=0.009; and sensitivity/specificity=83/83% versus 73/73%). The optimal ROC threshold derived for T1 mapping was 1241ms, which gave significantly larger oedema volumes than 2SD T2W (p=0.006); with this threshold, patients with and without MVO showed similar oedema volumes, but patients with MVO had significantly poorer salvage indices (p<0.05) than those without. Neither method was significantly affected by MVO, the volume of which was seen to increase exponentially with infarct size., Conclusions: Native T1 mapping at 3T can delineate oedema one week post-STEMI, showing larger oedema volumes and better discriminatory power than T2W imaging, and it is suitable for quantitative thresholding. Both techniques are robust against MVO-related magnetic susceptibility., (Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
14. Tako-Tsubo Cardiomyopathy: A Heart Stressed Out of Energy?
- Author
-
Dawson DK, Neil CJ, Henning A, Cameron D, Jagpal B, Bruce M, Horowitz J, and Frenneaux MP
- Subjects
- Adult, Aged, Aged, 80 and over, Edema, Cardiac diagnosis, Female, Humans, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Male, Middle Aged, Takotsubo Cardiomyopathy physiopathology
- Published
- 2015
- Full Text
- View/download PDF
15. Randomized double-blind placebo-controlled trial of perhexiline in heart failure with preserved ejection fraction syndrome.
- Author
-
Singh S, Beadle R, Cameron D, Rudd A, Bruce M, Jagpal B, Schwarz K, Brindley G, Mckiddie F, Lang C, Dawson D, and Frenneaux M
- Subjects
- Clinical Protocols, Double-Blind Method, Humans, Outcome Assessment, Health Care, Syndrome, Cardiovascular Agents therapeutic use, Heart Failure drug therapy, Heart Failure physiopathology, Perhexiline therapeutic use, Stroke Volume physiology
- Abstract
Recently heart failure with preserved ejection fraction (HFpEF) has emerged as a huge epidemic. Increasing evidence shows the role of energy deficiency in the pathophysiology of HFpEF. In the current study, we hypothesize that the use of metabolic modulator perhexiline would correct myocardial energy deficiency and improve exercise capacity and diastolic abnormalities in patients with this syndrome.
- Published
- 2014
- Full Text
- View/download PDF
16. Protocol: does sodium nitrite administration reduce ischaemia-reperfusion injury in patients presenting with acute ST segment elevation myocardial infarction? Nitrites in acute myocardial infarction (NIAMI).
- Author
-
Siddiqi N, Bruce M, Neil CJ, Jagpal B, Maclennon G, Cotton SC, Papadopoulo SA, Bunce N, Lim P, Schwarz K, Singh S, Hildick-Smith D, Horowitz JD, Madhani M, Boon N, Kaski JC, Dawson D, and Frenneaux MP
- Subjects
- Adolescent, Adult, Aged, Cardiotonic Agents pharmacology, Double-Blind Method, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Nitric Oxide chemistry, Percutaneous Coronary Intervention, United Kingdom, Young Adult, Myocardial Infarction metabolism, Reperfusion Injury drug therapy, Sodium Nitrite therapeutic use
- Abstract
Background: Whilst advances in reperfusion therapies have reduced early mortality from acute myocardial infarction, heart failure remains a common complication, and may develop very early or long after the acute event. Reperfusion itself leads to further tissue damage, a process described as ischaemia-reperfusion-injury (IRI), which contributes up to 50% of the final infarct size. In experimental models nitrite administration potently protects against IRI in several organs, including the heart. In the current study we investigate whether intravenous sodium nitrite administration immediately prior to percutaneous coronary intervention (PCI) in patients with acute ST segment elevation myocardial infarction will reduce myocardial infarct size. This is a phase II, randomised, placebo-controlled, double-blinded and multicentre trial., Methods and Outcomes: The aim of this trial is to determine whether a 5 minute systemic injection of sodium nitrite, administered immediately before opening of the infarct related artery, results in significant reduction of IRI in patients with first acute ST elevation myocardial infarction (MI). The primary clinical end point is the difference in infarct size between sodium nitrite and placebo groups measured using cardiovascular magnetic resonance imaging (CMR) performed at 6-8 days following the AMI and corrected for area at risk (AAR) using the endocardial surface area technique. Secondary end points include (i) plasma creatine kinase and Troponin I measured in blood samples taken pre-injection of the study medication and over the following 72 hours; (ii) infarct size at six months; (iii) Infarct size corrected for AAR measured at 6-8 days using T2 weighted triple inversion recovery (T2-W SPAIR or STIR) CMR imaging; (iv) Left ventricular (LV) ejection fraction measured by CMR at 6-8 days and six months following injection of the study medication; and (v) LV end systolic volume index at 6-8 days and six months. FUNDING, ETHICS AND REGULATORY APPROVALS: This study is funded by a grant from the UK Medical Research Council. This protocol is approved by the Scotland A Research Ethics Committee and has also received clinical trial authorisation from the Medicines and Healthcare products Regulatory Agency (MHRA) (EudraCT number: 2010-023571-26)., Trial Registration: ClinicalTrials.gov: NCT01388504 and Current Controlled Trials: ISRCTN57596739.
- Published
- 2013
- Full Text
- View/download PDF
17. 3D MRI analysis of the lower legs of treated idiopathic congenital talipes equinovarus (clubfoot).
- Author
-
Duce SL, D'Alessandro M, Du Y, Jagpal B, Gilbert FJ, Crichton L, Barker S, Collinson JM, and Miedzybrodzka Z
- Subjects
- Adolescent, Adult, Child, Clubfoot classification, Female, Humans, Leg physiopathology, Male, Radiography, Young Adult, Clubfoot diagnostic imaging, Clubfoot physiopathology, Leg diagnostic imaging, Magnetic Resonance Imaging
- Abstract
Background: Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls., Methodology/principal Findings: The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12-28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed., Conclusions/significance: Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as well as treatment research and clinical audit.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.