1. Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants
- Author
-
Jakub Ridl, Jachym Suman, Serena Fraraccio, Miluse Hradilova, Michal Strejcek, Tomas Cajthaml, Andrea Zubrova, Tomas Macek, Hynek Strnad, and Ondrej Uhlik
- Subjects
Pseudomonas alcaliphila JAB1 ,Pseudomonadaceae ,Genome ,Dioxygenase ,Monooxygenase ,Biodegradation ,Genetics ,QH426-470 - Abstract
Abstract In this study, following its isolation from contaminated soil, the genomic sequence of Pseudomonas alcaliphila strain JAB1 (=DSM 26533), a biphenyl-degrading bacterium, is reported and analyzed in relation to its extensive degradative capabilities. The P. alcaliphila JAB1 genome (GenBank accession no. CP016162) consists of a single 5.34 Mbp-long chromosome with a GC content of 62.5%. Gene function was assigned to 3816 of the 4908 predicted genes. The genome harbors a bph gene cluster, permitting degradation of biphenyl and many congeners of polychlorinated biphenyls (PCBs), a ben gene cluster, enabling benzoate and its derivatives to be degraded, and phe gene cluster, which permits phenol degradation. In addition, P. alcaliphila JAB1 is capable of cometabolically degrading cis-1,2-dichloroethylene (cDCE) when grown on phenol. The strain carries both catechol and protocatechuate branches of the β-ketoadipate pathway, which is used to funnel the pollutants to the central metabolism. Furthermore, we propose that clustering of MALDI-TOF MS spectra with closest phylogenetic relatives should be used when taxonomically classifying the isolated bacterium; this, together with 16S rRNA gene sequence and chemotaxonomic data analyses, enables more precise identification of the culture at the species level.
- Published
- 2018
- Full Text
- View/download PDF