Yuting Wang, Héctor Gil-Marín, Peter M. Frinchaboy, Rossana Ruggeri, Andreu Font-Ribera, Jean-Paul Kneib, Christophe Balland, Mark A. Klaene, Jiamin Hou, Graziano Rossi, Abhishek Prakash, Adam D. Myers, Richard Neveux, Kathleen Grabowski, Chia-Hsun Chuang, M. C. Cousinou, Andrea Muñoz-Gutiérrez, Matthew M. Pieri, Patrick Petitjean, C. Yeche, Adam S. Bolton, Hui Kong, Pauline Zarrouk, Johan Comparat, Thomas Etourneau, Audrey Oravetz, Ashley J. Ross, Dmitry Bizyaev, Romain Paviot, Mehdi Rezaie, Amélie Tamone, James C. Parker, Gong-Bo Zhao, Faizan G. Mohammad, Santiago Avila, Jeffrey A. Newman, F. Javier Sánchez, Joel R. Brownstein, Kyle S. Dawson, Sylvain de la Torre, Peter Doohyun Choi, Daniel Long, Julian E. Bautista, Sicheng Lin, Alex Smith, José R. Sánchez-Gallego, Andrei Variu, Seshadri Nadathur, Daniel Oravetz, Stephanie Escoffier, Eva Maria Mueller, Jeongin Moon, Etienne Burtin, Mariana Vargas-Magaña, Julianna Stermer, Axel de la Macorra, Matthew A. Bershady, Hee-Jong Seo, Anand Raichoor, Paul Martini, Solène Chabanier, Ignasi Pérez-Ràfols, J. Rich, Anne-Marie Weijmans, Ariel G. Sánchez, Benjamin A. Weaver, Conor Sayres, Violeta Gonzalez-Perez, Kaike Pan, Will J. Percival, Corentin Ravoux, Adam J. Hawken, Jeremy L. Tinker, Zheng Zheng, Anže Slosar, Nathalie Palanque-Delabrouille, Cheng Zhao, Alma X. Gonzalez-Morales, Andrei Cuceu, P. Noterdaeme, V. Ruhlmann-Kleider, Arnaud de Mattia, Julien Guy, James Farr, Jo Bovy, Brad W. Lyke, Marie Aubert, Michael J. Chapman, Jean Marc Le Goff, Hélion du Mas des Bourboux, S. Fromenteau, Jonathan Brinkmann, Shadab Alam, Rita Tojeiro, Arman Shafieloo, Michael R. Blanton, Donald P. Schneider, Karen L. Masters, Victoria de Sainte Agathe, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), eBOSS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE31-0021,eBOSS,Sondes cosmologiques de la gravitation et de l'énergie noire(2016), UAM. Departamento de Física Teórica, Alfred P. Sloan Foundation, Department of Energy (US), University of St Andrews. School of Physics and Astronomy, and University of St Andrews. Centre for Contemporary Art
Shadab, Alam et al., We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Lyα forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, rd, from eight different samples and six measurements of the growth rate parameter, fσ8, from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, ΛCDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat ΛCDM cosmological model when combined with Planck measurements. The combined BAO and RSD measurements indicate σ8=0.85±0.03, implying a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a ΛCDM model. Regardless of cosmological model, the precision on each of the three parameters, ωΛ, H0, and σ8, remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint ωk=-0.0022±0.0022. The dark energy constraints lead to w0=-0.909±0.081 and wa=-0.49-0.30+0.35, corresponding to an equation of state of wp=-1.018±0.032 at a pivot redshift zp=0.29 and a Dark Energy Task Force Figure of Merit of 94. The inverse distance ladder measurement under this model yields H0=68.18±0.79 km s-1 Mpc-1, remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H0 that are independent of the CMB data, with similar central values and precision under a ΛCDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at mν, This paper represents an effort by both the SDSS-III and SDSS-IV collaborations. Funding for SDSS-III was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, the Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.