1. Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment
- Author
-
Cameron J. Bodenschatz, Wissam A Saidi, Jamesa L. Stokes, Rebekah I. Webster, and Gustavo Costa
- Subjects
Chemistry and Materials (General) ,Nonmetallic Materials - Abstract
Environmental barrier coatings (EBCs) are an enabling technology for silicon carbide (SiC)-based ceramic matrix composites (CMCs) in extreme environments such as gas turbine engines. However, development of new coating systems is hindered by the large design space and difficulty in predicting properties for these materials. Density Functional Theory (DFT) has successfully been used to model and predict some thermodynamic and thermo-mechanical properties of high-temperature ceramics for EBCs, although these calculations are challenging due to their high computational costs. In this work, we use machine learning to train a deep neural network potential (DNP) for Y2Si2O7, which is then applied to calculate thermodynamic and thermo-mechanical properties at near-DFT accuracy much faster and using less computational resources than DFT. We use this DNP to predict phonon-based thermodynamic properties of Y2Si2O7 with good agreement to DFT and experiments. We also utilize the DNP to calculate the anisotropic, lattice direction-dependent coefficients of thermal expansion (CTEs) for Y2Si2O7. Molecular dynamics trajectories using the DNP correctly demonstrate accurate prediction of the anisotropy of the CTE in good agreement with diffraction experiments. In the future, this DNP could be applied to accelerate additional property calculations for Y2Si2O7 compared to DFT or experiments.
- Published
- 2024
- Full Text
- View/download PDF