Ian Marius Peters, Dennis van der Meer, Frank Vignola, Marius Paulescu, Christian A. Gueymard, Âzeddine Frimane, Hans Georg Beyer, J. Antonanzas, Jie Zhang, Stefano Alessandrini, Philippe Lauret, Sven Killinger, Tao Hong, Ruben Urraca, Viorel Badescu, Jan Kleissl, Yves-Marie Saint-Drenan, Carlos F.M. Coimbra, Richard Perez, F. Antonanzas-Torres, Yong Shuai, Elke Lorenz, Gordon Reikard, Cyril Voyant, John Boland, Hadrien Verbois, David Renné, Jamie M. Bright, Mathieu David, Dazhi Yang, Oscar Perpiñán-Lamigueiro, Merlinde Kay, Robert Blaga, Sciences pour l'environnement (SPE), Centre National de la Recherche Scientifique (CNRS)-Université Pascal Paoli (UPP), Singapore Institute of Manufacturing Technology (SIMTech), Research Applications Laboratory [Boulder] (RAL), National Center for Atmospheric Research [Boulder] (NCAR), University of South Australia [Adelaide], Department of Mechanical and Aerospace Engineering [La Jolla] (UCSD), University of California [San Diego] (UC San Diego), University of California-University of California, Physique et Ingénierie Mathématique pour l'Énergie, l'environnemeNt et le bâtimenT (PIMENT), Université de La Réunion (UR), University Ibn Tofail, Université Ibn Tofaïl (UIT), Solar Consulting Services, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales [Sydney] (UNSW), Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE), Fraunhofer (Fraunhofer-Gesellschaft), Atmospheric Sciences Research Center (ASRC), University at Albany [SUNY], State University of New York (SUNY)-State University of New York (SUNY), Department of Mechanical Engineering [Massachusetts Institute of Technology] (MIT-MECHE), Massachusetts Institute of Technology (MIT), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL), Centre Observation, Impacts, Énergie (O.I.E.), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of Oregon, Okayama University, Yang, Dazhi, Alessandrini, Stefano, Antonanzas, Javier, Antonanzas-Torres, Fernando, Badescu, Viorel, Boland, John, Zhang, Jie, and Publica
The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods. Refereed/Peer-reviewed