27 results on '"Jansman AJM"'
Search Results
2. SNAPIG: a model to study nutrient digestion and absorption kinetics in growing pigs based on diet and ingredient properties.
- Author
-
Schop M, Nguyen-Ba H, Jansman AJM, de Vries S, Ellis JL, Bannink A, and Gerrits WJJ
- Subjects
- Animals, Diet veterinary, Starch metabolism, Ileum metabolism, Nutrients, Amino Acids, Animal Nutritional Physiological Phenomena, Digestion physiology, Animal Feed analysis
- Abstract
Current feed formulation and evaluation practices rely on static values for the nutritional value of feed ingredients and assume additivity. Hereby, the complex interplay among nutrients in the diet and the highly dynamic digestive processes are ignored. Nutrient digestion kinetics and diet × animal interactions should be acknowledged to improve future predictions of the nutritional value of complex diets. Therefore, an in silico nutrient-based mechanistic digestion model for growing pigs was developed: "SNAPIG" (Simulating Nutrient digestion and Absorption kinetics in PIGs). Aiming to predict the rate and extent of nutrient absorption from diets varying in ingredient composition and physicochemical properties, the model represents digestion kinetics of ingested protein, starch, fat, and non-starch polysaccharides, through passage, hydrolysis, absorption, and endogenous secretions of nutrients along the stomach, proximal small intestine, distal small intestine, and caecum + colon. Input variables are nutrient intake and the physicochemical properties (i.e. solubility, and rate and extent of degradability). Data on the rate and extent of starch and protein hydrolysis of different ingredients per digestive segment were derived from in vitro assays. Passage of digesta from the stomach was modelled as a function of feed intake level, dietary nutrient solubility and diet viscosity. Model evaluation included testing against independent data from in vivo studies on nutrient appearance in (portal) blood of growing pigs. When simulating diets varying in physicochemical properties and nutrient source, SNAPIG can explain variation in glucose absorption kinetics (postprandial time of peak, TOP: 20-100 min observed vs 25-98 min predicted), and predict variation in the extent of ileal protein and fat digestion (root mean square prediction errors (RMSPE) = 12 and 16%, disturbance error = 12 and 86%, and concordance correlation coefficient = 0.34 and 0.27). For amino acid absorption, the observed variation in postprandial TOP (61 ± 11 min) was poorly predicted despite accurate mean predictions (58 ± 34 min). Recalibrating protein digestion and amino acid absorption kinetics require data on net-portal nutrient appearance, combined with observations on digestion kinetics, in pigs fed diets varying in ingredient composition. Currently, SNAPIG can be used to forecast the time and extent of nutrient digestion and absorption when simulating diets varying in ingredient and nutrient composition. It enhances our quantitative understanding of nutrient digestion kinetics and identifies knowledge gaps in this field of research. Already useful as research tool, SNAPIG can be coupled with a postabsorptive metabolism model to predict the effects of dietary and feeding-strategies on the pig's growth response., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
3. Amino acid supplementation counteracts negative effects of low protein diets on tail biting in pigs more than extra environmental enrichment.
- Author
-
Minussi I, Gerrits WJJ, Jansman AJM, Gerritsen R, Lambert W, Zonderland JJ, and Bolhuis JE
- Subjects
- Swine, Animals, Dietary Supplements, Amino Acids, Eating, Animal Feed analysis, Diet, Protein-Restricted adverse effects, Tail
- Abstract
Low protein (LP) diets may increase the occurrence of damaging behaviours, like tail biting, in pigs. We investigated the effect of supplementing a LP diet with indispensable amino acids (IAA) or environmental enrichment on tail biting. Undocked pigs (n = 48 groups of 12) received either a normal protein diet (NP), a LP, LP with supplemented IAA (LP
+ ), or LP diet with extra environmental enrichment (LP-E+ ) during the starter, grower, and finisher phase. Performance, activity, behaviour, and body damage were recorded. LP and LP-E+ had a lower feed intake, growth, and gain-to-feed ratio, and were more active than NP and LP+ pigs. LP-E+ pigs interacted most often with enrichment materials, followed by LP, LP+ , and NP pigs. LP pigs showed more tail biting than all other groups during the starter phase and the finisher phase (tendency) compared to NP and LP+ pigs. Thus, LP-E+ only reduced tail biting in the starter phase, whereas LP+ tended to do so throughout. Tail damage was more severe in LP pigs than in NP and LP+ , with LP-E+ in between. In conclusion, IAA supplementation was more effective than extra environmental enrichment in countering the negative effects of a low protein diet on tail biting in pigs., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
4. Dietary supplementation of zinc oxide modulates intestinal functionality during the post-weaning period in clinically healthy piglets.
- Author
-
Schokker D, Kar SK, Willems E, Bossers A, Dekker RA, and Jansman AJM
- Abstract
Background: To improve our understanding of host and intestinal microbiome interaction, this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets. In study 1, piglets received either a high concentration of zinc (Zn) as zinc oxide (ZnO, Zn, 2,690 mg/kg) or a low Zn concentration (100 mg/kg) in the diet during the post weaning period (d 14-23). The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated. In study 2, the impact of timing of the dietary zinc intervention was investigated, i.e., between d 0-14 and/or d 14-23 post weaning, and the consecutive effects on the piglet's intestinal functionality, here referring to microbiota composition and diversity and gene expression profiles., Results: Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration ZnO content. A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change, where mainly the commensals inter-changed. In the immediate post weaning period, i.e., d 0-14, the highest number of differentially expressed genes (DEGs) in intestinal tissue were observed between animals receiving a diet with a low or high concentration ZnO content, i.e., 23 DEGs in jejunal tissue and 11 DEGs in ileal tissue. These genes are involved in biological processes related to immunity and inflammatory responses. For example, genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration ZnO content compared to low ZnO content in both jejunum and ileum tissue. In the second study, a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration ZnO content compared to low ZnO content., Conclusions: Supplementing a diet with a pharmaceutical level of Zn as ZnO for clinically healthy post weaning piglets influences various aspects intestinal functionality, in particular in the first two weeks post-weaning. The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue. The effects do not seem related to a direct antimicrobial effect of ZnO., (© 2023. Chinese Association of Animal Science and Veterinary Medicine.)
- Published
- 2023
- Full Text
- View/download PDF
5. Review: Composition and utilisation of feed by monogastric animals in the context of circular food production systems.
- Author
-
Bikker P and Jansman AJM
- Subjects
- Humans, Animals, Swine, Animal Feed, Nutrients, Animal Nutritional Physiological Phenomena, Animals, Domestic, Refuse Disposal
- Abstract
Food production has a major impact on environmental emissions, climate change and land-use. To reduce this impact, the circularity of future food production systems is expected to become increasingly important. In a circular food system, crop land is primarily used for plant-based food production, while low-opportunity cost feed materials (LCF), i.e. crop residues, co-products of the food industry, grass from marginal land and food waste form the basis of future, animal feeds. Animal diets thus contain much less cereals and soybean meal and include a higher proportion of diverse co-products, residues and novel human-inedible ingredients. These diets are characterised by a lower starch content, and a higher content of fibre, protein, fat, and phytate compared to present diets. In this review, possible consequences of the development towards a more circular food system for the type, volume and nutritional characteristics of feed materials and complete feeds are addressed and related research questions in the area of animal nutrition, physiology and metabolism are discussed. Additional attention is given to possible effects on intestinal health and gut functionality and to (bio)technological processing of LCF to improve their suitability for feeding farm animals, with a focus on the effects in pigs and poultry. It is concluded that an increased use of LCF may limit the use of presently used criteria for the efficiency of animal production and nutrient utilisation. Development of characteristics that reflect the efficacy and efficiency of the net contribution of animal production in a circular food system is required. Animal scientists can have an important role in the development of more circular food production systems by focussing on the optimal use of LCF in animal diets for the production of animal-source food, while minimising the use of human-edible food in animal feed., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
6. Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs.
- Author
-
Kar SK, Te Pas MFW, Kruijt L, Vervoort JJM, Jansman AJM, and Schokker D
- Abstract
The aim of this study was to use fecal metabolite profiling to evaluate the effects of contrasting sanitary conditions and the associated subclinical health status of pigs. We analyzed fecal metabolite profiles by nuclear magnetic resonance (1H NMR) from pigs aged 14 and 22 weeks. Pigs kept under low and high sanitary conditions differed in fecal metabolites related to the degradation of dietary starch, metabolism of the gut microbiome, and degradation of components of animal (host) origin. The metabolites that differed significantly (FDR < 0.1) were from metabolic processes involved in either maintaining nutrient digestive capacity, including purine metabolism, energy metabolism, bile acid breakdown and recycling, or immune system metabolism. The results show that the fecal metabolite profiles reflect the sanitary conditions under which the pigs are kept. The fecal metabolite profiles closely resembled the profiles of metabolites found in the colon of pigs. Fecal valerate and kynurenic acid could potentially be used as “non-invasive” biomarkers of immune or inflammatory status that could form the basis for monitoring subclinical health status in pigs.
- Published
- 2022
- Full Text
- View/download PDF
7. Variation in faecal digestibility values related to feed efficiency traits of grower-finisher pigs.
- Author
-
Verschuren LMG, Schokker D, Bergsma R, van Milgen J, Molist F, Calus MPL, and Jansman AJM
- Subjects
- Animals, Diet veterinary, Feces, Female, Male, Nutrients, Swine, Animal Feed analysis, Digestion
- Abstract
Providing pigs a diet that matches their nutrient requirements involves optimizing the diet based on the nutrient digestibility values of the considered feed ingredients. Feeding the same quantity of a diet to pigs with similar BW but with different requirements, however, can result in a different average daily gain (ADG) and backfat thickness (BF) between pigs. Digestibility may contribute to this variation in efficiency. We investigated variation in feed efficiency traits in grower-finisher pigs associated with variation in faecal digestibility values, independent of feed intake at the time of measuring faecal digestibility. Considered traits were ADG, average daily feed intake (ADFI), feed conversion ratio (FCR), BF and residual feed intake (RFI). Feed intake, BW, and BF data of one hundred and sixty three-way crossbreed grower-finisher pigs (eighty female and eighty male) were collected during two phases, from day 0 of the experiment (mean BW 23 kg) till day 56 (mean BW 70 kg) and from day 56 to slaughter (mean BW 121 kg). Pigs were either fed a diet based on corn/soybean meal or a more fibrous diet based on wheat/barley/by-products, with titanium dioxide as indigestible marker. Faecal samples of one hundred and five pigs were collected on the day before slaughter and used to determine apparent faecal digestibility of DM, ash, organic matter (OM), CP, crude fat (CFat), crude fibre (CF), and to calculate the digestibility of nonstarch polysaccharides (NSPs) and energy (E). The effects of diet, sex and covariate feed intake at sampling (FIs) on faecal digestibility values were estimated and were significant for all except for CFat. Faecal digestibility values of each individual pig determined at the day before slaughter, corrected for diet, sex and FIs, were used to estimate their association with ADG, ADFI, FCR, BF, and RFI. In the first phase, a one percent unit increase in faecal digestibility of DM, ash, OM, E, CP, CFat, CF, NSP, and Ash individually was related to 0.01-0.03 unit reduction in FCR and 6-23 g/day reduction in RFI. A unit increase in CP digestibility was related to 0.1 mm increase in BF and 10 g/day increase in ADG. In the second phase, a one percent unit increase in faecal digestibility of DM, CP and Ash was related to a decrease of 16-20 g/day in RFI. In conclusion, the relationship between variation in feed efficiency traits and faecal digestibility values is different across the developmental stages of a pig., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
8. Local intestinal microbiota response and systemic effects of feeding black soldier fly larvae to replace soybean meal in growing pigs.
- Author
-
Kar SK, Schokker D, Harms AC, Kruijt L, Smits MA, and Jansman AJM
- Subjects
- Animal Feed, Animals, Diet, Dietary Proteins metabolism, Male, Meals physiology, Nutrients metabolism, Glycine max, Diptera growth & development, Diptera physiology, Gastrointestinal Microbiome physiology, Larva physiology, Swine microbiology, Swine physiology
- Abstract
Black soldier fly (Hermetia illucens; BSF) larvae as dietary protein source have the ability to deliver nutrients and could possess functional properties that positively support animal productivity and health. More knowledge, however, is needed to assess the impact of feeding a BSF based diet on gut and animal health. Sixteen post-weaned male pigs were randomly assigned to two groups and fed for three weeks with iso-caloric and iso-proteinaceous experimental diets prepared with either soybean meal (SBM) as reference protein source or with BSF as single source of dietary protein. At the end of the trial, the pigs were sacrificed to collect relevant digesta, gut tissue and blood samples to study changes induced by the dietary treatments using ~ omics based analyses. Inclusion of BSF in the diet supports the development of the intestinal microbiome that could positively influence intestinal health. By amine metabolite analysis, we identified two metabolites i.e. sarcosine and methionine sulfoxide, in plasma that serve as markers for the ingestion of insect based ingredients. BSF seems to possess functional properties indicated by the appearance of alpha-aminobutyric acid and taurine in blood plasma of pigs that are known to induce health beneficial effects., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
9. The effects of birth weight and estimated breeding value for protein deposition on nitrogen efficiency in growing pigs.
- Author
-
Van der Peet-Schwering CMC, Verschuren LMG, Bergsma R, Hedemann MS, Binnendijk GP, and Jansman AJM
- Subjects
- Animals, Birth Weight, Diet, Dietary Proteins, Male, Swine, Animal Feed analysis, Nitrogen
- Abstract
The effects of birth weight (BiW; low BiW [LBW] vs. high BiW [HBW]) and estimated breeding value (EBV) for protein deposition (low EBV [LBV] vs. high EBV [HBV]) on N retention, N efficiency, and concentrations of metabolites in plasma and urine related to N efficiency in growing pigs were studied. At an age of 14 wk, 10 LBW-LBV (BiW: 1.07 ± 0.09 [SD] kg; EBV: -2.52 ± 3.97 g/d, compared with an average crossbred pig with a protein deposition of 165 g/d), 10 LBW-HBV (BiW: 1.02 ± 0.13 kg; EBV: 10.47 ± 4.26 g/d), 10 HBW-LBV (BiW: 1.80 ± 0.13 kg; EBV: -2.15 ± 2.28 g/d), and 10 HBW-HBV (BiW: 1.80 ± 0.15 kg; EBV: 11.18 ± 3.68 g/d) male growing pigs were allotted to the experiment. The pigs were individually housed in metabolism cages and were subjected to an N balance study in two sequential periods of 5 d, after an 11-d dietary adaptation period. Pigs were assigned to a protein adequate (A) or protein restricted (R, 70% of A) regime in a change-over design. Pigs were fed 2.8 times the energy requirements for maintenance. Nontargeted metabolomics analyses were performed in urine and blood plasma samples. The N retention (in g/d) was higher in the HBW than in the LBW pigs (P < 0.001). The N retention (in g/[kg metabolic body weight (BW0.75) · d]) and N efficiency, however, were not affected by the BiW of the pigs. The N retention (P = 0.04) and N efficiency (P = 0.04) were higher in HBV than in LVB pigs on the A regime but were not affected by EBV in pigs on the R regime. Restricting the dietary protein supply with 30% decreased the N retention (P < 0.001) but increased the N efficiency (P = 0.003). Nontargeted metabolomics showed that a hexose, free amino acids (AA), and lysophosphatidylcholines were the most important metabolites in plasma for the discrimination between HBV and LBV pigs, whereas metabolites of microbial origin contributed to the discrimination between HBV and LBV pigs in urine. This study shows that BiW does not affect N efficiency in the later life of pigs. Nitrogen efficiency and N retention were higher in HBV than in LBV pigs on the A regime but similar in HBV and LBV pigs on the R regime. In precision feeding concepts aiming to further optimize protein and AA efficiency in pigs, the variation in EBV for protein deposition of pigs should be considered as a factor determining N retention, growth performance, and N efficiency., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2021
- Full Text
- View/download PDF
10. Sanitary Conditions Affect the Colonic Microbiome and the Colonic and Systemic Metabolome of Female Pigs.
- Author
-
Te Pas MFW, Jansman AJM, Kruijt L, van der Meer Y, Vervoort JJM, and Schokker D
- Abstract
Differences in sanitary conditions, as model to induce differences in subclinical immune stimulation, affect the growth performance and nutrient metabolism in pigs. The objective of the present study was to evaluate the colonic microbiota and the colonic and systemic metabolome of female pigs differing in health status induced by sanitary conditions. We analyzed blood and colon digesta metabolite profiles using Nuclear Magnetic Resonance (1H NMR) and Triple quadrupole mass spectrometry, as well as colonic microbiota profiles. 1H NMR is a quantitative metabolomics technique applicable to biological samples. Weaned piglets of 4 weeks of age were kept under high or low sanitary conditions for the first 9 weeks of life. The microbiota diversity in colon digesta was higher in pigs subjected to low sanitary conditions ( n = 18 per treatment group). The abundance of 34 bacterial genera was higher in colon digesta of low sanitary condition pigs, while colon digesta of high sanitary status pigs showed a higher abundance for four bacterial groups including the Megasphaera genus ( p < 0.003) involved in lactate fermentation. Metabolite profiles ( n = 18 per treatment group) in blood were different between both groups of pigs. These different profiles suggested changes in general nutrient metabolism, and more specifically in amino acid metabolism. Moreover, differences in compounds related to the immune system and responses to stress were observed. Microbiome-specific metabolites in blood were also affected by sanitary status of the pigs. We conclude that the microbiome composition in colon and the systemic metabolite profiles are affected by sanitary conditions and related to suboptimal health. These data are useful for exploring further relationships between health, metabolic status and performance and for the identification of biomarkers related to health (indices) and performance., (Copyright © 2020 te Pas, Jansman, Kruijt, van der Meer, Vervoort and Schokker.)
- Published
- 2020
- Full Text
- View/download PDF
11. Low sanitary conditions increase energy expenditure for maintenance and decrease incremental protein efficiency in growing pigs.
- Author
-
van der Meer Y, Jansman AJM, and Gerrits WJJ
- Subjects
- Animal Nutritional Physiological Phenomena, Animals, Diet, Dietary Supplements, Energy Intake, Female, Animal Feed analysis, Energy Metabolism, Swine physiology
- Abstract
Requirements for energy and particular amino acids (AAs) are known to be influenced by the extent of immune system stimulation. Most studies on this topic use models for immune system stimulation mimicking clinical conditions. Extrapolation to conditions of chronic, low-grade immune system stimulation is difficult. We aimed to quantify differences in maintenance energy requirements and efficiency of energy and protein used for growth (incremental energy and protein efficiency) of pigs kept under low (LSC) or high sanitary conditions (HSC) that were fed either a basal diet or a diet with supplemented AA. Twenty-four groups of six 10-week-old female pigs were kept under either LSC or HSC conditions for 2 weeks and fed a diet supplemented or not with 20% extra methionine, threonine and tryptophan. In week 1, feed was available ad libitum. In week 2, feed supply was restricted to 70% of the realized feed intake (kJ/(kg BW)0.6 per day) in week 1. After week 2, fasting heat production (FHP) was measured. Energy balances and incremental energy and protein efficiencies were measured and analyzed using a GLM. Low sanitary condition increased FHP of pigs by 55 kJ/(kg BW)0.6 per day, regardless of diet. Low sanitary condition did not alter the response of faecal energy output to incremental gross energy (GE) intake, but it reduced the incremental response of metabolizable energy intake (12% units), heat production (6% units) and energy retained as protein (6% units) to GE intake, leaving energy retained as fat unaltered. Incremental protein efficiency was reduced in LSC pigs by 20% units. Incremental efficiencies for energy and protein were not affected by dietary AA supplementation. Chronic, low-grade immune stimulation by LSC treatment increases FHP in pigs. Under such conditions, the incremental efficiency of nitrogen utilization for body protein deposition is reduced, but the incremental efficiency of absorbed energy for energy or fat deposition is unaffected.
- Published
- 2020
- Full Text
- View/download PDF
12. Birth weight affects body protein retention but not nitrogen efficiency in the later life of pigs.
- Author
-
van der Peet-Schwering CMC, Verschuren LMG, Hedemann MS, Binnendijk GP, and Jansman AJM
- Subjects
- Amino Acids metabolism, Animal Feed analysis, Animals, Diet veterinary, Dietary Proteins metabolism, Feces chemistry, Male, Swine blood, Swine physiology, Swine urine, Urea blood, Birth Weight physiology, Dietary Proteins administration & dosage, Nitrogen metabolism, Swine growth & development
- Abstract
Exploring factors that might affect nitrogen (N) efficiency in pigs could support the development of precision feeding concepts. Therefore, an experiment was conducted to determine the effects of birth weight (BiW) on N retention, N efficiency, and concentrations of metabolites in plasma and urine related to N efficiency in male pigs of 14 wk of age. BiW of the low BiW (LBW) and high BiW (HBW) pigs was 1.11 ± 0.14 and 1.79 ± 0.12 kg, respectively. Twenty LBW and 20 HBW pigs were individually housed in metabolism cages and were subjected to an N balance study in two sequential periods of 5 d, after an 11-d adaptation period. Pigs were assigned to a protein adequate (A) or protein restricted (R, 70% of A) regime in a change-over design and fed restrictedly 2.8 times the energy requirements for maintenance. Nontargeted metabolomics analyses were performed in urine and blood plasma samples. The N retention in g/d was higher in the HBW than in the LBW pigs (P < 0.001). The N retention in g/(kg BW0.75·d) and N efficiency (= 100% × N retention / N intake), however, were not affected by BiW of the pigs. Moreover, fecal digestibility of N and urinary concentration of N and urea were not affected by BiW of the pigs. The concentration of insulin (P = 0.08) and insulin-like growth factor-1 (IGF-1;P = 0.05) in blood plasma was higher in HBW pigs, whereas the concentration of α-amino N tended to be lower in HBW pigs (P = 0.06). The LBW and HBW pigs could not be discriminated based on the plasma and urinary metabolites retrieved by nontargeted metabolomics. Restricting dietary protein supply decreased N retention (P < 0.001), N efficiency (P = 0.07), fecal N digestibility (P < 0.001), urinary concentration of N and urea (P < 0.001), and concentration of urea (P < 0.001), IGF-1 (P < 0.001), and α-amino N (P < 0.001) in blood plasma. The plasma and urinary metabolites differing between dietary protein regime were mostly amino acids (AA) or their derivatives, metabolites of the tricarboxylic acid cycle, and glucuronidated compounds, almost all being higher in the pigs fed the A regime. This study shows that BiW affects absolute N retention but does not affect N efficiency in growing pigs. Therefore, in precision feeding concepts, BiW of pigs should be considered as a factor determining protein deposition capacity but less as a trait determining N efficiency., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
13. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers.
- Author
-
Kar SK, van der Hee B, Loonen LMP, Taverne N, Taverne-Thiele JJ, Schokker D, Smits MA, Jansman AJM, and Wells JM
- Abstract
Abstract: Here, we describe the use of monolayers of intestinal epithelial cells derived from intestinal organoids and transcriptomics to investigate the direct effects of dietary protein sources on epithelial function. Mechanically dissociated 3D organoids of mouse duodenum were used to generate a polarized epithelium containing all cell types found in the tissue of origin. The organoid-derived cell monolayers were exposed to 4% (w/v) of 'undigested (non-hydrolysed)-soluble' fraction of protein sources used as feed ingredients [soybean meal (SBM) and casein], or alternative protein sources (spray dried plasma protein, and yellow meal worm), or controls for 6 h prior to RNA isolation and transcriptomics. All protein sources altered expression of unique biological processes in the epithelial cells. Exposure of intestinal organoids to SBM downregulated expression of retinol and retinoid metabolic processes as well as cholesterol and lipid biosynthetic pathways, consistent with the reported hypotriglyceridaemic effect of soy protein in vivo . These findings support the use of intestinal organoids as models to evaluate complex interactions between dietary ingredients and the intestinal epithelium and highlights some unique host effects of alternative protein sources in animal feed and potentially human food., Graphical Abstract: Schematic representation of the study. 3-dimensional organoids were generated from mouse duodenum (1). The organoids were subsequently dissociated into single cells (2) and grown as 2-dimensional polarised monolayers (3). Polarized monolayers of organoid cells were exposed to different protein sources [CAS, SBM, SDPP, YMW, or medium control (MC)] for 6 h (4) and further processed for imaging (5) gene expression (6), and biochemical assays (7), to investigate the effects of undigested protein sources on the duodenal epithelium., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2020.)
- Published
- 2020
- Full Text
- View/download PDF
14. Increased diet viscosity by oat β-glucans decreases the passage rate of liquids in the stomach and affects digesta physicochemical properties in growing pigs.
- Author
-
Schop M, Jansman AJM, de Vries S, and Gerrits WJJ
- Subjects
- Animals, Body Weight, Diet veterinary, Digestion, Gastrointestinal Contents chemistry, Gastrointestinal Tract physiology, Intestine, Small physiology, Kinetics, Male, Rheology, Stomach physiology, Viscosity, Animal Feed analysis, Swine physiology, beta-Glucans chemistry
- Abstract
Rheological properties of digesta play a role in digesta passage kinetics through the gastrointestinal tract, in turn affecting nutrient absorption kinetics. Therefore, we studied the effects of diet viscosity on digesta passage and physicochemical properties in pigs. Twenty male growing pigs (35 kg body weight at the start) were assigned to one of five diets with increasing dietary concentrations of β-glucans (BG; from 0 % to 10 %), in exchange for maize starch. After a 17-day adaptation period, pigs were euthanised and the mean retention time (MRT) of digesta solids (TiO2) and liquids (Cr-EDTA) in the stomach, and proximal and distal half of the small intestine was quantified. In the stomach, the MRT of liquids, but not of solids, increased when dietary BG level increased (6 min per % dietary BG, P = 0.008 and R2 = 0.35). Concomitantly, stomach DM content (5 g/kg per % dietary BG, P < 0.001 and R2 = 0.53) and apparent digesta viscosity (56 Pa × s at 1/s shear rate per % dietary BG, P = 0.003 and R2 = 0.41) decreased. In the proximal half of the small intestine, no effects of dietary BG level were observed. In the distal half of the small intestine, water-binding capacity (WBC) of digesta increased (0.11 g/g digesta DM per % dietary BG, P = 0.028 and R2 = 0.24) and starch digestibility decreased (0.3% per % dietary BG, P = 0.034 and R2 = 0.23) when dietary BG level increased. In the colon, apparent digesta viscosity at 45/s shear rate increased (0.1 Pa × s per % dietary BG, P = 0.03 and R2 = 0.24) in the proximal half of the colon, and digesta WBC increased (0.06 g/g digesta DM per % dietary BG, P = 0.024 and R2 = 0.26) in the distal half of the colon when dietary BG level increased. To conclude, increasing dietary BG level caused the MRT of liquids, but not that of solids, to increase in the stomach, resulting in reduced separation of the solid and liquid digesta fractions. This caused dilution of the stomach content and reduction in digesta viscosity when dietary BG levels increased. Effects of dietary BG level on physicochemical properties in the proximal small intestine were absent and may have been due to a low DM content. The WBC of digesta in the distal small intestine and colon increased when dietary BG level increased, as did apparent digesta viscosity in the proximal colon. This likely reflects the concentration of BG in digesta when moving through the gastrointestinal tract.
- Published
- 2020
- Full Text
- View/download PDF
15. Prediction of nutrient digestibility in grower-finisher pigs based on faecal microbiota composition.
- Author
-
Verschuren LMG, Schokker D, Bergsma R, Jansman AJM, Molist F, and Calus MPL
- Subjects
- Animals, Female, Male, Phenotype, Swine growth & development, Swine metabolism, Digestion, Feces microbiology, Microbiota, Nutrients metabolism, Swine microbiology, Swine physiology
- Abstract
Microbiota play an important role in total tract nutrient digestion, especially when fibrous diets are fed to pigs. This study aimed to use metagenomics to predict faecal nutrient digestibility in grower-finisher pigs. The study design consisted of 160 three-way crossbreed grower-finisher pigs (80 female and 80 male) which were either fed a diet based on corn/soybean meal or a more fibrous diet based on wheat/barley/by-products. On the day before slaughter, faecal samples were collected and used to determine faecal digestibility of dry matter, ash, organic matter, crude protein, crude fat, crude fibre and non-starch polysaccharides. The faecal samples were also sequenced for the 16S hypervariable region of bacteria (V3/V4) to profile the faecal microbiome. With these data, we calculated the between-animal variation in faecal nutrient digestibility associated with variation in the faecal microbiome, that is the "microbiability". The microbiability values were significantly greater than zero for dry matter, organic matter, crude protein, crude fibre and non-starch polysaccharides, ranging from 0.58 to 0.93, as well as for crude fat with a value of 0.37, but not significantly different from zero for ash. Using leave-one-out cross-validation, we estimated the accuracy of predicting digestibility values of individual pigs based on their faecal microbiota composition. The accuracies of prediction for crude fat and ash digestibility were virtually 0, and for the other nutrients, the accuracies ranged from 0.42 to 0.63. In conclusion, the faecal microbiota composition gave high microbiability values for faecal digestibility of dry matter, organic matter, crude protein, crude fibre and non-starch polysaccharides. The accuracies of prediction are relatively low if the interest is in precisely predicting faecal nutrient digestibility of individual pigs, but are promising from the perspective of ranking animals in a genetic selection context., (© 2019 The Authors. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.)
- Published
- 2020
- Full Text
- View/download PDF
16. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession.
- Author
-
Jurburg SD, Brouwer MSM, Ceccarelli D, van der Goot J, Jansman AJM, and Bossers A
- Subjects
- Animals, Bacteria genetics, Cluster Analysis, DNA, Bacterial chemistry, DNA, Bacterial genetics, DNA, Ribosomal chemistry, DNA, Ribosomal genetics, Phylogeny, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Time Factors, Bacteria classification, Chickens growth & development, Chickens microbiology, Feces microbiology, Microbiota
- Abstract
The fine-scale temporal dynamics of the chicken gut microbiome are unexplored, but thought to be critical for chicken health and productivity. Here, we monitored the fecal microbiome of healthy chickens on days 1-7, 10, 14, 21, 28, and 35 after hatching, and performed 16S rRNA amplicon sequencing in order to obtain a high-resolution census of the fecal microbiome over time. In the period studied, the fecal microbiomes of the developing chickens showed a linear-log increase in community richness and consistent shifts in community composition. Three successional stages were detected: the first stage was dominated by vertically transmitted or rapidly colonizing taxa including Streptococcus and Escherichia/Shigella; in the second stage beginning on day 4, these taxa were displaced by rapid-growing taxa including Lachnospiraceae and Ruminococcus-like species variants; and in the third stage, starting on day 10, slow-growing, specialist taxa including Candidatus Arthrobacter and Romboutsia were detected. The patterns of displacement and the previously reported ecological characteristics of many of the dominant taxa observed suggest that resource competition plays an important role in regulating successional dynamics in the developing chicken gut. We propose that the boundaries between successional stages (3-4 and 14-21 days after hatching) may be optimal times for microbiome interventions., (© 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
17. In vitro protein digestion kinetics of protein sources for pigs.
- Author
-
Chen H, Wierenga PA, Hendriks WH, and Jansman AJM
- Subjects
- Amino Acids metabolism, Animal Nutritional Physiological Phenomena, Animals, Brassica rapa chemistry, Diet, Dietary Proteins chemistry, Glutens, Ileum metabolism, Insect Proteins, Kinetics, Larva, Nitrogen metabolism, Plant Proteins, Proteolysis, Glycine max metabolism, Whey Proteins metabolism, Animal Feed analysis, Dietary Proteins administration & dosage, Digestion physiology, Nutritive Value, Swine
- Abstract
In current feed evaluation systems, the nutritional value of protein sources in diets for pigs is based on the ileal digestibility of protein and amino acids, which does not account for the kinetics of protein digestion along the gastrointestinal tract. The objective of the present study was to determine the in vitro protein digestion kinetics of different protein sources (soya bean meal (SBM), wheat gluten (WG), rapeseed meal (RSM), whey powder (WP), dried porcine plasma protein, yellow meal worm larvae and black soldier fly larvae (BSF)). Protein sources were incubated with pepsin at pH 3.5 for 0 to 90 min and subsequently with pancreatin at pH 6.8 for 0 to 210 min at 39°C. The in vitro protein digestion kinetics were described as the kinetics of nitrogen (N) solubilisation and the release of low molecular weight peptides (LMW) (<500 Da). The N solubilisation rate ranged from 0.025 min-1 for BSF to 0.685 min-1 for WP during the incubation with pepsin, and from 0.027 min-1 for RSM to 0.343 min-1 for WP during the incubation with pancreatin. The release rate of LMW peptides ranged from 0.027 min-1 for WG to 0.093 min-1 for WP during the incubation with pepsin, and from 0.029 min-1 for SBM to 0.385 min-1 for WP. Black soldier fly larvae showed a similar release rate of LMW peptides as WP during the incubation with pancreatin. At the end of the sequential incubation with pepsin (90 min) and pancreatin (210 min), WG and WP showed the highest percentage of N present in LMW peptides relative to total N (78% and 79%, respectively), whereas SBM showed the lowest (35%). In conclusion, protein sources for pig diets show substantial differences in in vitro protein digestion kinetics as measured by the kinetics of N solubilisation and the release of LMW peptides. The rate of release of LMW peptides was not correlated to the rate of N solubilisation for each of the protein sources evaluated.
- Published
- 2019
- Full Text
- View/download PDF
18. Interaction and imbalance between indispensable amino acids in young piglets.
- Author
-
Jansman AJM, Cirot O, Corrent E, Lambert W, Ensink J, and van Diepen JTM
- Subjects
- Amino Acids, Essential administration & dosage, Animal Feed analysis, Animal Nutritional Physiological Phenomena drug effects, Animals, Diet veterinary, Dietary Supplements analysis, Male, Sus scrofa growth & development, Amino Acids, Essential metabolism, Feeding Behavior drug effects, Sus scrofa metabolism
- Abstract
Lowering protein level in diets for piglets urge to have knowledge on the piglet's requirements for essential amino acids (AA) and their interactions. The present studies aimed to determine the interaction between the dietary level of valine (Val) and tryptophan (Trp) and the effect of AA imbalance at two levels of dietary Val on the growth performance of post-weaning piglets. In Experiment 1 (duration 4 weeks), the effects of supplementation of free l-Val (1.0 g/kg) and/or l-Trp (0.5 g/kg) in a low-CP diet (CP 17.7%), marginal in Trp and Val, was studied in a 2×2 factorial design and using an additional reference treatment (CP 19.5%). In Experiment 2 (duration 5 weeks), the influence of a stepwise increase in excess supply of isoleucine (Ile), histidine (His) and leucine (Leu), up to 10, 10% and 30% relative to their requirement values respectively, was evaluated at 60% or 70% standardized ileal digestible (SID) Val relative to SID lysine, using a 3×2 factorial design. In Experiment 1, over the whole experimental period, feed intake (FI) was affected by dietary Trp level (P<0.05) and feed conversion ratio (FCR) by both the level of Trp and Val in the diet (both P<0.05). Increasing Trp level increased FI and decreased FCR while increasing dietary Val level reduced FI and increased FCR. For BW gain (BWG), there was an interaction between dietary level of Trp and Val (P<0.05). Valine supplementation decreased BWG using a diet marginal in Trp, whereas it increased BWG when using a Trp sufficient diet. Piglets fed the low-CP diet with adequate levels of Val and Trp showed at least same performance compared to piglets fed the high CP reference diet. In Experiment 2, increasing dietary Val improved FI and BWG (P<0.001) and tended to improve FCR. Dietary AA excess for Ile, His and Leu reduced FI and BWG (P<0.05) and only affected FCR (P<0.01) in the 1st week of the study. Dietary level of Val and AA excess did not show interactive effects, except for FCR over the final 2 weeks of the study (P<0.05). In conclusion, an interaction exists between dietary supply of Val and Trp on the zootechnical performance of post-weaning piglets and dietary AA excess for Ile, Leu and His, reduces growth performance of piglets in low-protein diets, independent of the dietary level of Val.
- Published
- 2019
- Full Text
- View/download PDF
19. Increasing intake of dietary soluble nutrients affects digesta passage rate in the stomach of growing pigs.
- Author
-
Schop M, Jansman AJM, de Vries S, and Gerrits WJJ
- Abstract
The passage rate of solids and liquids through the gastrointestinal tract differs. Increased dietary nutrient solubility causes nutrients to shift from the solid to the liquid digesta fraction and potentially affect digesta passage kinetics. We quantified: (1) the effect of three levels of dietary nutrient solubility (8, 19 and 31 % of soluble protein and sucrose in the diet) at high feed intake level (S) and (2) the effect of low v. high feed intake level (F), on digesta passage kinetics in forty male growing pigs. The mean retention time (MRT) of solids and liquids in the stomach and small intestine was assessed using TiO2 and Cr-EDTA, respectively. In addition, physicochemical properties of digesta were evaluated. Overall, solids were retained longer than liquids in the stomach (2·0 h, P<0·0001) and stomach+small intestine (1·6 h, P<0·001). When S increased, MRT in stomach decreased by 1·3 h for solids (P=0·01) and 0·7 h for liquids (P=0·002) but only at the highest level of S. When F increased using low-soluble nutrients, MRT in stomach increased by 0·8 h for solids (P=0·041) and 0·7 h for liquids (P=0·0001). Dietary treatments did not affect water-binding capacity and viscosity of digesta. In the stomach of growing pigs, dietary nutrient solubility affects digesta MRT in a non-linear manner, while feed intake level increases digesta MRT depending on dietary nutrient solubility. Results can be used to improve predictions on the kinetics of nutrient passage and thereby of nutrient digestion and absorption in the gastrointestinal tract.
- Published
- 2019
- Full Text
- View/download PDF
20. Corrigendum: Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex.
- Author
-
Verschuren LMG, Calus MPL, Jansman AJM, Bergsma R, Knol EF, Gilbert H, and Zemb O
- Published
- 2018
- Full Text
- View/download PDF
21. Molecular networks affected by neonatal microbial colonization in porcine jejunum, luminally perfused with enterotoxigenic Escherichia coli, F4ac fimbria or Lactobacillus amylovorus.
- Author
-
Trevisi P, Priori D, Jansman AJM, Luise D, Koopmans SJ, Hynönen U, Palva A, van der Meulen J, and Bosi P
- Subjects
- Animals, Gene Expression Profiling, Gene Regulatory Networks, Host-Pathogen Interactions genetics, Swine, Swine Diseases genetics, Swine Diseases microbiology, Enterotoxigenic Escherichia coli classification, Escherichia coli Infections genetics, Escherichia coli Infections microbiology, Gastrointestinal Microbiome, Jejunum metabolism, Jejunum microbiology, Lactobacillus acidophilus classification, Lactobacillus acidophilus genetics
- Abstract
The development of an early complex gut microbiota may play an important role in the protection against intestinal dysbiosis later in life. The significance of the developed microbiota for gut barrier functionality upon interaction with pathogenic or beneficial bacteria is largely unknown. The transcriptome of differently perfused jejunal loops of 12 caesarian-derived pigs, neonatally associated with microbiota of different complexity, was studied. Piglets received pasteurized sow colostrum at birth (d0), a starter microbiota (Lactobacillus amylovorus (LAM), Clostridium glycolicum, and Parabacteroides) on d1-d3, and a placebo inoculant (simple association, SA) or an inoculant consisting of sow's diluted feces (complex association, CA) on d3-d4. On d 26-37, jejunal loops were perfused for 8 h with either enterotoxigenic Escherichia coli F4 (ETEC), purified F4 fimbriae, LAM or saline control (CTRL). Gene expression of each intestinal loop was analyzed by Affymetrix Porcine Gene 1.1_ST array strips. Gene Set Enrichment Analysis was performed on expression values. Compared to CTRL, 184 and 74; 2 and 139; 2 and 48 gene sets, were up- and down-regulated by ETEC, F4 and LAM, respectively. ETEC up-regulated networks related to inflammatory and immune responses, RNA processing, and mitosis. There was a limited overlap in up-regulated gene sets between ETEC and F4 fimbriae. LAM down-regulated genes related to inflammatory and immune responses, as well as to cellular compound metabolism. In CA pigs, 57 gene sets were up-regulated by CA, while 73 were down-regulated compared to SA. CA up-regulated gene sets related to lymphocyte modulation and to cellular defense in all loop perfusions. In CA pigs, compared to SA pigs, genes for chemokine and cytokine activity and for response to external stimuli were down-regulated in ETEC-perfused loops and up-regulated in CTRL. The results highlight the importance of the nature of neonatal microbial colonization in the response to microbial stimuli later in life., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
22. Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex.
- Author
-
Verschuren LMG, Calus MPL, Jansman AJM, Bergsma R, Knol EF, Gilbert H, and Zemb O
- Subjects
- Animals, Bacteria genetics, Bacteria isolation & purification, DNA, Ribosomal chemistry, DNA, Ribosomal genetics, Diet veterinary, Female, Hordeum, Male, RNA, Ribosomal, 16S genetics, Sex Factors, Glycine max, Triticum, Zea mays, Animal Feed analysis, Bacteria classification, Dietary Fiber pharmacology, Feces microbiology, Microbiota, Swine microbiology
- Abstract
Dietary fiber content and composition affect microbial composition and activity in the gut, which in turn influence energetic contribution of fermentation products to the metabolic energy supply in pigs. This may affect feed efficiency (FE) in pigs. The present study investigated the relationship between the fecal microbial composition and FE in individual growing-finishing pigs. In addition, the effects of diet composition and sex on the fecal microbiome were studied. Fecal samples were collected of 154 grower-finisher pigs (3-way crossbreeds) the day before slaughter. Pigs were either fed a diet based on corn/soybean meal (CS) or a diet based on wheat/barley/by-products (WB). Fecal microbiome was characterized by 16S ribosomal DNA sequencing, clustered by operational taxonomic unit (OTU), and results were subjected to a discriminant approach combined with principal component analysis to discriminate diets, sexes, and FE extreme groups (10 high and 10 low FE pigs for each diet by sex-combination). Pigs on different diets and males vs. females had a very distinct fecal microbiome, needing only 2 OTU for diet (P = 0.020) and 18 OTU for sex (P = 0.040) to separate the groups. The 2 most important OTU for diet, and the most important OTU for sex, were taxonomically classified as the same bacterium. In pigs fed the CS diet, there was no significant association between FE and fecal microbiota composition based on OTU (P > 0.05), but in pigs fed the WB diet differences in FE were associated with 17 OTU in males (P = 0.018) and to 7 OTU in females (P = 0.010), with 3 OTU in common for both sexes. In conclusion, our results showed a diet and sex-dependent relationship between FE and the fecal microbial composition at slaughter weight in grower-finisher pigs.
- Published
- 2018
- Full Text
- View/download PDF
23. Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine.
- Author
-
Kar SK, Jansman AJM, Benis N, Ramiro-Garcia J, Schokker D, Kruijt L, Stolte EH, Taverne-Thiele JJ, Smits MA, and Wells JM
- Subjects
- Animals, Bacteria classification, Bacteria genetics, Bacteria metabolism, Blood Proteins administration & dosage, Blood Proteins metabolism, Caseins administration & dosage, Caseins metabolism, Cytokines genetics, Cytokines immunology, Dietary Proteins administration & dosage, Dietary Proteins metabolism, Food, Formulated, Gastrointestinal Microbiome immunology, Glutens administration & dosage, Glutens metabolism, Granulocyte Colony-Stimulating Factor genetics, Granulocyte Colony-Stimulating Factor immunology, Ileum metabolism, Male, Mice, Mice, Inbred C57BL, Glycine max chemistry, Glycine max metabolism, TOR Serine-Threonine Kinases metabolism, Whey Proteins administration & dosage, Whey Proteins metabolism, Gastrointestinal Microbiome genetics, Gene Regulatory Networks, Genes, Regulator, Ileum microbiology, TOR Serine-Threonine Kinases genetics, Transcriptome
- Abstract
Dietary protein sources can have profound effects on host-microbe interactions in the gut that are critically important for immune resilience. However more knowledge is needed to assess the impact of different protein sources on gut and animal health. Thirty-six wildtype male C57BL/6J mice of 35 d age (n = 6/group; mean ± SEM body weight 21.9 ± 0.25 g) were randomly assigned to groups fed for four weeks with semi synthetic diets prepared with one of the following protein sources containing (300 g/kg as fed basis): soybean meal (SBM), casein, partially delactosed whey powder, spray dried plasma protein, wheat gluten meal and yellow meal worm. At the end of the experiment, mice were sacrificed to collect ileal tissue to acquire gene expression data, and mammalian (mechanistic) target of rapamycin (mTOR) activity, ileal digesta to study changes in microbiota and serum to measure cytokines and chemokines. By genome-wide transcriptome analysis, we identified fourteen high level regulatory genes that are strongly affected in SBM-fed mice compared to the other experimental groups. They mostly related to the mTOR pathway. In addition, an increased (P < 0.05) concentration of granulocyte colony-stimulating factor was observed in serum of SBM-fed mice compared to other dietary groups. Moreover, by 16S rRNA sequencing, we observed that SBM-fed mice had higher (P < 0.05) abundances of Bacteroidales family S24-7, compared to the other dietary groups. We showed that measurements of genome-wide expression and microbiota composition in the mouse ileum reveal divergent responses to diets containing different protein sources, in particular for a diet based on SBM.
- Published
- 2017
- Full Text
- View/download PDF
24. The effects of starter microbiota and the early life feeding of medium chain triglycerides on the gastric transcriptome profile of 2- or 3-week-old cesarean delivered piglets.
- Author
-
Trevisi P, Priori D, Motta V, Luise D, Jansman AJM, Koopmans SJ, and Bosi P
- Abstract
Background: The stomach is an underestimated key interface between the ingesta and the digestive system, affecting the digestion and playing an important role in several endocrine functions. The quality of starter microbiota and the early life feeding of medium chain triglycerides may affect porcine gastric maturation. Two trials (T1, T2) were carried out on 12 and 24 cesarean-delivered piglets (birth, d0), divided over two microbiota treatments, but slaughtered and sampled at two or three weeks of age, respectively. All piglets were fed orally: sow serum (T1) or pasteurized sow colostrum (T2) on d0; simple starter microbiota ( Lactobacillus amylovorus , Clostridium glycolicum and Parabacteroides spp.) (d1-d3); complex microbiota inoculum (sow diluted feces, CA) or a placebo (simple association, SA) (d3-d4) and milk replacer ad libitum (d0-d4). The The T1 piglets and half of the T2 piglets were then fed a moist diet (CTRL); the remaining half of the T2 piglets were fed the CTRL diet fortified with medium chain triglycerides and 7% coconut oil (MCT). Total mRNA from the oxyntic mucosa was analyzed using Affymetrix©Porcine Gene array strips. Exploratory functional analysis of the resulting values was carried out using Gene Set Enrichment Analysis., Results: Complex microbiota upregulated 11 gene sets in piglets of each age group vs. SA. Of these sets, 6 were upregulated at both ages, including the set of gene markers of oxyntic mucosa. In comparison with the piglets receiving SA, the CA enriched the genes in the sets related to interferon response when the CTRL diet was given while the same sets were impoverished by CA with the MCT diet., Conclusions: Early colonization with a complex starter microbiota promoted the functional maturation of the oxyntic mucosa in an age-dependent manner. The dietary fatty acid source may have affected the recruitment and the maturation of the immune cells, particularly when the piglets were early associated with a simplified starter microbiota.
- Published
- 2017
- Full Text
- View/download PDF
25. Safety evaluation of a novel muramidase for feed application.
- Author
-
Lichtenberg J, Perez Calvo E, Madsen K, Østergaard Lund T, Kramer Birkved F, van Cauwenberghe S, Mourier M, Wulf-Andersen L, Jansman AJM, and Lopez-Ulibarri R
- Subjects
- Acremonium genetics, Animals, Consumer Product Safety, Daphnia drug effects, Eye drug effects, Muramidase biosynthesis, Muramidase genetics, Rats, Safety, Skin drug effects, Toxicity Tests, Acute, Toxicity Tests, Subchronic methods, Animal Feed toxicity, Chickens, Muramidase toxicity, Trichoderma enzymology
- Abstract
Safety evaluation of a muramidase produced by a Trichoderma reesei strain (safe lineage), expressing a muramidase gene isolated from Acremonium alcalophilum is presented. Intended use in feed of this enzyme is as digestive aid in broiler chickens. Muramidase 007, was non-mutagenic and non-clastogenic in vitro, and no adverse effects were observed in 90-day subchronic toxicity studies in rats at doses up to 1132 mg TOS/kg body weight/day. The enzyme did not exhibit, in vitro, skin, nor eye irritation potential. Acute aquatic toxicity evaluated on daphnia and algae showed absence of effect of the enzyme at the standard doses tested. Muramidase 007 was fully tolerated by broiler chickens in a 6-weeks tolerance study showing no adverse effects in any of the dietary treatments (0, 1×, 5× and 10× maximum recommended dose). In conclusion, Muramidase 007 is found to be toxicologically inert, and there are no worker's safety concerns if standard precautions are instituted and a non-dusty formulation is employed. Muramidase 007 is well tolerated by the target species (broiler chickens) and cause no harm to the environment. The beneficial safety evaluation of Muramidase 007 is in line with this type of enzyme that is found ubiquitously in nature., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
26. Amine Metabolism Is Influenced by Dietary Protein Source.
- Author
-
Kar SK, Jansman AJM, Schokker D, Kruijt L, Harms AC, Wells JM, and Smits MA
- Abstract
Growth in world population will inevitably leads to increased demand for protein for humans and animals. Protein from insects and blood plasma are being considered as possible alternatives, but more research on their nutritional quality and health effects is needed. Here, we studied the effect of dietary protein source on metabolism and metabolic amine profiles in serum and urine of mice. Groups of mice were fed semi-purified diets containing 300 g/kg of soybean meal, casein, partially delactosed whey powder, spray-dried plasma protein, wheat gluten meal, and yellow mealworm. Feed and water intake as well as body weight gain were measured for 28 days. After 14 and 28 days, serum and urine samples were collected for measurement of a large panel of amine metabolites. MetaboAnalyst 3.0 was used for analysis of the raw metabolic data. Out of 68 targeted amine metabolites, we could detect 54 in urine and 41 in blood serum. Dietary protein sources were found to have profound effects on host metabolism, particularly in systemic amine profiles, considered here as an endophenotype. We recommend serum over urine to screen for the amine metabolic endophenotype based on partial least squares discriminant analysis. We concluded that metabolites like alpha-aminobutyric acid and 1-methylhistidine are sensitive indicators of too much or too little availability of specific amino acids in the different protein diets. Furthermore, we concluded that amine metabolic profiles can be useful for assessing the nutritional quality of different protein sources.
- Published
- 2017
- Full Text
- View/download PDF
27. A link between damaging behaviour in pigs, sanitary conditions, and dietary protein and amino acid supply.
- Author
-
Meer YV, Gerrits WJJ, Jansman AJM, Kemp B, and Bolhuis JE
- Subjects
- Animals, Male, Swine, Wounds and Injuries, Aggression, Amino Acids administration & dosage, Behavior, Animal, Dietary Proteins administration & dosage, Sanitation
- Abstract
The tendency to reduce crude protein (CP) levels in pig diets to increase protein efficiency may increase the occurrence of damaging behaviours such as ear and tail biting, particularly for pigs kept under suboptimal health conditions. We studied, in a 2×2×2 factorial design, 576 tail-docked growing-finishing entire male pigs in 64 pens, subjected to low (LSC) vs. high sanitary conditions (HSC), and fed a normal CP (NP) vs. a low CP diet (LP, 80% of NP) ad libitum, with a basal amino acid (AA) profile or supplemented AA profile with extra threonine, tryptophan and methionine. The HSC pigs were vaccinated in the first nine weeks of life and received antibiotics at arrival at experimental farm at ten weeks, after which they were kept in a disinfected part of the farm with a strict hygiene protocol. The LSC pigs were kept on the same farm in non-disinfected pens to which manure from another pig farm was introduced fortnightly. At 15, 18, and 24 weeks of age, prevalence of tail and ear damage and of tail and ear wounds was scored. At 20 and 23 weeks of age, frequencies of biting behaviour and aggression were scored for 10×10 min per pen per week. The prevalence of ear damage during the finisher phase (47 vs. 32% of pigs, P < 0.0001) and the frequency of ear biting (1.3 vs. 1.2 times per hour, P = 0.03) were increased in LSC compared with HSC pigs. This effect on ear biting was diet dependent, however, the supplemented AA profile reduced ear biting only in LSC pigs by 18% (SC × AA profile, P < 0.01). The prevalence of tail wounds was lower for pigs in LSC (13 ± 0.02) than for pigs in HSC (0.22 ± 0.03) in the grower phase (P < 0.007). Regardless of AA profile or sanitary status, LP pigs showed more ear biting (+20%, P < 0.05), tail biting (+25%, P < 0.10), belly nosing (+152%, P < 0.01), other oral manipulation directed at pen mates (+13%, P < 0.05), and aggression (+30%, P < 0.01) than NP pigs, with no effect on ear or tail damage. In conclusion, both low sanitary conditions and a reduction of dietary protein increase the occurrence of damaging behaviours in pigs and therefore may negatively impact pig welfare. Attention should be paid to the impact of dietary nutrient composition on pig behaviour and welfare, particularly when pigs are kept under suboptimal (sanitary) conditions.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.