1. Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells
- Author
-
Mercouri G. Kanatzidis, Boubacar Traore, Yafei Wang, Hao Zhang, Jean-Christophe Blancon, Joseph Strzalka, Justin M. Hoffman, Aditya D. Mohite, Wenbin Li, Joseph Essman, Claudine Katan, Ioannis Spanopoulos, Jared Crochet, Jacky Even, Austin Fehr, Jin Hou, Muhammad A. Alam, Siraj Sidhik, Reza Asadpour, Esther H. R. Tsai, Rice University [Houston], Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Purdue University [West Lafayette], Northwestern University [Evanston], Los Alamos National Laboratory (LANL), Brookhaven National Laboratory [Upton, NY] (BNL), U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Argonne National Laboratory [Lemont] (ANL), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), NSF 20-587, National Science Foundation, N00014-20-1-2725, United States Department of Defense | United States Navy | ONR | Office of Naval Research Global, DE-SC0012704, U.S. Department of Energy, N00014-20-1-2725, United States Department of Defense | United States Navy | Office of Naval Research, and U.S. Department of Defense
- Subjects
[PHYS]Physics [physics] ,Electron mobility ,Materials science ,Superlattice ,Photovoltaic system ,Biomedical Engineering ,Bioengineering ,02 engineering and technology ,Conductivity ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,X-ray photoelectron spectroscopy ,Chemical physics ,[CHIM]Chemical Sciences ,General Materials Science ,Electrical and Electronic Engineering ,0210 nano-technology ,Dispersion (chemistry) ,Perovskite (structure) ,Voltage - Abstract
Understanding and tailoring the physical behaviour of halide perovskites under practical environments is critical for designing efficient and durable optoelectronic devices. Here, we report that continuous light illumination leads to >1% contraction in the out-of-plane direction in two-dimensional hybrid perovskites, which is reversible and strongly dependent on the specific superlattice packing. X-ray photoelectron spectroscopy measurements show that constant light illumination results in the accumulation of positive charges in the terminal iodine atoms, thereby enhancing the bonding character of inter-slab I–I interactions across the organic barrier and activating out-of-plane contraction. Correlated charge transport, structural and photovoltaic measurements confirm that the onset of the light-induced contraction is synchronized to a threefold increase in carrier mobility and conductivity, which is consistent with an increase in the electronic band dispersion predicted by first-principles calculations. Flux-dependent space-charge-limited current measurement reveals that light-induced interlayer contraction activates interlayer charge transport. The enhanced charge transport boosts the photovoltaic efficiency of two-dimensional perovskite solar cells up to 18.3% by increasing the device’s fill factor and open-circuit voltage. Light-induced contraction in the out-of-plane direction in two-dimensional (2D) hybrid perovskites enables the realization of high-efficiency 2D perovskite solar cells.
- Published
- 2021
- Full Text
- View/download PDF