3 results on '"Jean Marcel Rodrigues Pinho"'
Search Results
2. SOLVENT EXTRACTION OF β-GALACTOSIDASE FROM KLUYVEROMYCES LACTIS YIELDS A STABLE AND HIGHLY ACTIVE ENZYME PREPARATION
- Author
-
Jean Marcel Rodrigues Pinho and Flávia M. L. Passos
- Subjects
Pharmacology ,chemistry.chemical_classification ,Kluyveromyces lactis ,Lactose intolerance ,biology ,Biophysics ,Cell Biology ,medicine.disease ,biology.organism_classification ,Yeast ,Enzyme assay ,chemistry.chemical_compound ,Hydrolysis ,Enzyme ,chemistry ,Glycerol ,medicine ,biology.protein ,Food science ,Lactose ,Food Science - Abstract
The yeast Kluyveromyces lactis was cultured in cheese whey and β-galactosidase was extracted from cells by an organic solvent procedure. Under optimum conditions (pH 8.5, 25C), approximately 90% of the intracellular β-galactosidase activity was released into 0.1 M potassium phosphate solution with 2% chloroform after 9 h. The cell-free extract containing β-galactosidase activity was concentrated and the enzyme partially characterized. This enzyme has exhibited an optimum activity at a pH range of 6.2–6.6 and temperature of 40–45C on O-nitrophenyl-β-D-galctopyranoside. The maximum enzyme activity in milk was found at 45C and the concentrated enzymatic extract was found to have 19 U/mg protein. A feasible preparation for commercial application containing 20% glycerol maintained 89% of activity after 2 months at 4C, demonstrating stability. This preparation analyzed on 5% nondenaturing polyacrylamide gel electrophoresis exhibited two bands suggesting two aggregation forms with β-galactosidase activity. PRACTICAL APPLICATIONS Kluyveromyces lactis yeast cells are a safe source of β−galactosidase for food and pharmaceutical industries. Their application to prior hydrolysis of lactose in milk products has become commonplace in alleviating the symptoms of lactose intolerance. It is also of great interest to prevent lactose crystallization in concentrated or frozen dairy products such as condensedmilk, ice cream and “dulce de leche,” thereby increasing consumers' acceptability. In addition, treatment of cheese whey with β-galactosidase increases its fermentability to convert cheese whey lactose into ethanol helping to reduce the pollution caused by large volumes of this by-product released in the environment. Solvent extraction of β-galactosidase from K. lactis is a low-cost process and yields a stable and highly active enzyme preparation.
- Published
- 2011
3. Subsite mapping of Xanthomonas axonopodis pv citri α-amylase involved in substrate binding
- Author
-
Jean Marcel Rodrigues Pinho, Ana Claudia Rasera da Silva, Jose Abrahao Neto, Julio Cezar Franco de Oliveira, Manuel Troyano Pueyo, and Clelia Ferreira Terra
- Abstract
Mapeamento dos subsítios de α-amilase de Xanthomonas axonopodis pv. Citri envolvidos na interação com o substrato A família das enzimas α-amilases é um modelo experimental interessante para o estudo das interações entre os aminoácidos e seus ligantes, já que estas enzimas apresentam especificidade variável, são frequentemente alvos de estudos por mutagênese e há estruturas cristalinas disponíveis para alguns membros da família. A proposta deste trabalho foi o mapear subsítios da α-amilase de Xanthomonas axonopodis pv. citri (AXA) envolvidos na interação com substratos, através de comparações estruturais, mutagêneses sítio-dirigidas, análises de parâmetros cinéticos sobre amido e do padrão de clivagem sobre p-nitrofenil malto-oligossacarideos (PNPG7, PNPG5, PNPG4). Foi criado um modelo estrutural para AXA a partir da estrutura tridimensional da α-amilase de Alteromonas haloplanctis (Aghajari et al., 1998). O modelo de AXA foi sobreposto na estrutura da α-amilase pancreática de porco (Qian et al., 1994) e 11 resíduos foram selecionados e mutados para alanina. As α-amilases recombinantes mutantes e selvagem foram secretadas pela levedura Pichia pastoris GS115, apresentando uma massa molecular aparente de 45 kDa. Todos os mutantes analisados reduziram em maior ou menor grau a atividade catalítica da enzima sobre amido e p-nitrofenil maltooligossacarideos. Mutações dos resíduos H88, F136, D196, E223, D295 e N299, deletaram a atividade enzimática, indicando que suas cadeias laterais são essenciais para o desempenho catalítico da enzima. As análises cinéticas e estruturais sugerem fortemente que D196, E223 e D295 são os resíduos catalíticos. Substituições das cadeias laterais de C157, H200, G227, T230 e H294 reduziram a eficiência catalítica (kcat/Km) da α-amilase sobre o substrato amido para, respectivamente, 28%, 41%, 84%, 81% e 51%. As mutações em G227 e T230 foram menos importantes para a atividade da enzima e afinidade pelo amido, entretanto, estes resíduos mostraram-se importantes para a estabilização de complexos com substratos curtos (pNPG4). Os resultados indicam que o sítio ativo de AXA é formado por, no mínimo, seis subsítios. As interações dos anéis de glicose com os subsítios +2 e -2 são favorecidas em relação às interações nos subsítios -3 e +3, respectivamente, e a interação do anel de glicose no subsítio -3 é favorecida em relação à interação no subsítio +3. A enzima selvagem diva preferencialmente a terceira ligação glicosídica de p-nitrofenil maltooligossacarideos. Como produtos de hidrólise a enzima libera maltopentaose, maltotetraose, maltotriose, maltose e glicose. The α-amylase family is an interesting group for structure/function relationship investigation, as this family exhibits a variable deavage patterm, several crystal structures are available, and its members were studied by mutagenesis. The aim of this study was the mapping of Xanthomonas axonopodis pv. Citri α-amylase (AXA) subsites involved in substrate binding, using structural comparison, site-directed mutagenesis and lcinetics analyses. A structural model for AXA was created from the three-dimensional structure of the α-amylase from Alteromonas haloplanctis (Aghajari et al., 1998). This model was superimposed on the structure ofthe pig pancreatic α-amylase, PPA (Qian et. al., 1994), and 11 residues were selected and changed to alanine. Wild type and mutant AXA were secreted by Pichia pastoris strain GS115 cells and showed apparent molecular mass of 45 kDa. All mutants have reduced α-amylase activity on starch and 4-nitrophenyl maltooligosaccharides (pNPG7, PNPG5 and PNPG4) at different levels. Mutation of residues H88, F136, D196, E223, D295 and N299 indicate their essential role by complete loss of activity. Kinetic and structural analyses strongly suggested that D196, E223 and D295 are the catalytic residues. The substitution of the side chain of C157, H200, G227, T230 and H294 reduced the catalytic efficiency (kcat/Km) of α-amylase on starch to respectively 28%, 41%, 84%, 81% and 51%. Although G227 and T230 were not much important for activity and binding on starch, these residues were important for stabilization of complexes with short substrates (PNPG4). The results indicate that AXA\'s active site is composed of at least six sugar binding subsites. The binding of the glucoses at subsites +2 and -2 are favored against binding at subsites -3 and +3, respectively. The binding of glucose at subsite -3 is favored against binding at subsite +3. The wild type enzyme primarily hydrolyzes the third glucosidic bond in PNPG7, PNPG5 and PNPG4 and the products of hydrolysis were maltopentaose, maltotetraose, maltotriose, maltose and glucose.
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.