6 results on '"Jean-Baptiste Morlot"'
Search Results
2. Boost-HiC: computational enhancement of long-range contacts in chromosomal contact maps.
- Author
-
Leopold Carron, Jean Baptiste Morlot, Vincent Matthys, Annick Lesne, and Julien Mozziconacci
- Published
- 2019
- Full Text
- View/download PDF
3. The 3D Organization of Chromatin Colors in Mammalian Nuclei
- Author
-
Julien Mozziconacci, Annick Lesne, Jean-Baptiste Morlot, and Leopold Carron
- Subjects
Computer science ,3D reconstruction ,Chromosome ,Contact network ,Computational biology ,Epigenetics ,Chromatin ,Bivalent chromatin - Abstract
While many computational methods have been proposed for 3D chromosome reconstruction from chromosomal contact maps, these methods are rarely used for the interpretation of such experimental data, in particular Hi-C data. We posit that this is due to the lack of an easy-to-use implementation of the proposed algorithms, as well as to the important computational cost of most methods. We here give a detailed implementation of the fast ShRec3D algorithm. We provide a tutorial that will enable the reader to reconstruct 3D consensus structures for human chromosomes and to decorate these structures with chromatin epigenetic states. We use this methodology to show that the bivalent chromatin, including Polycomb-rich domains, is spatially segregated and located in between the active and the quiescent chromatin compartments.
- Published
- 2021
- Full Text
- View/download PDF
4. The 3D Organization of Chromatin Colors in Mammalian Nuclei
- Author
-
Leopold, Carron, Jean-Baptiste, Morlot, Annick, Lesne, and Julien, Mozziconacci
- Subjects
Animals ,Chromosomes, Human ,Color ,Humans ,Polycomb-Group Proteins ,Algorithms ,Chromatin ,Chromosomes - Abstract
While many computational methods have been proposed for 3D chromosome reconstruction from chromosomal contact maps, these methods are rarely used for the interpretation of such experimental data, in particular Hi-C data. We posit that this is due to the lack of an easy-to-use implementation of the proposed algorithms, as well as to the important computational cost of most methods. We here give a detailed implementation of the fast ShRec3D algorithm. We provide a tutorial that will enable the reader to reconstruct 3D consensus structures for human chromosomes and to decorate these structures with chromatin epigenetic states. We use this methodology to show that the bivalent chromatin, including Polycomb-rich domains, is spatially segregated and located in between the active and the quiescent chromatin compartments.
- Published
- 2021
5. P-Body Purification Reveals the Condensation of Repressed mRNA Regulons
- Author
-
Zhou Yi, Magali Fradet, Maïté Courel, Edouard Bertrand, Dominique Weil, Marianne Bénard, Michèle Ernoult-Lange, Sylvie Souquere, Racha Chouaib, Annie Munier, Julien Mozziconacci, Maëlle Daunesse, Jean-Baptiste Morlot, Arnaud Hubstenberger, Gérard Pierron, Michel Kress, Laboratoire de Biologie du Développement (LBD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Valrose (IBV), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Rétrovirus endogènes et éléments rétroïdes des eucaryotes supérieurs (UMR 9196), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Service d'Imagerie et de Cytométrie (UMS LUMIC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (ICAN)
- Subjects
0301 basic medicine ,Cytoplasm ,Proteome ,RNA Stability ,[SDV]Life Sciences [q-bio] ,Biology ,Cell Fractionation ,Cytoplasmic Granules ,Regulon ,Phase Transition ,03 medical and health sciences ,Stress granule ,P-bodies ,Humans ,RNA, Messenger ,Molecular Biology ,Psychological repression ,ComputingMilieux_MISCELLANEOUS ,Regulation of gene expression ,Messenger RNA ,RNA ,Molecular Sequence Annotation ,Cell Biology ,Molecular biology ,Cell biology ,Gene Ontology ,HEK293 Cells ,030104 developmental biology ,Gene Expression Regulation ,Ribonucleoproteins ,Protein Biosynthesis ,Function (biology) ,HeLa Cells - Abstract
Summary Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs. mRNAs segregating into P-bodies are translationally repressed, but not decayed, and this repression explains part of the poor genome-wide correlation between RNA and protein abundance. P-bodies condense thousands of mRNAs that strikingly encode regulatory processes. Thus, we uncovered how P-bodies, by condensing and segregating repressed mRNAs, provide a physical substrate for the coordinated regulation of posttranscriptional mRNA regulons.
- Published
- 2017
- Full Text
- View/download PDF
6. Network concepts for analyzing 3D genome structure from chromosomal contact maps
- Author
-
Annick Lesne, Jean-Baptiste Morlot, Julien Mozziconacci, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Institut de Génétique Moléculaire de Montpellier (IGMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
0301 basic medicine ,Theoretical computer science ,Biology ,lcsh:RC321-571 ,03 medical and health sciences ,Graph distance ,0302 clinical medicine ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Multidimensional scaling ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,Representation (mathematics) ,lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry ,lcsh:QH301-705.5 ,Genetics ,3D genome structure ,Contact map ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Quantitative Biology::Genomics ,030104 developmental biology ,Distance matrix ,lcsh:Biology (General) ,Path (graph theory) ,Pairwise comparison ,Network analysis ,Focus (optics) ,030217 neurology & neurosurgery ,Distance - Abstract
Background The recent experimental technique of chromosome conformational capture gives an in-vivo access to pairwise contact frequencies between genomic loci. We present how network analysis can be exploited to extract information from genome-wide contact maps. Methods We recently proposed to use graph distance for deriving a complete distance matrix from sparse contact maps. Completed with multidimensional scaling (MDS), this network-based method provided a fast algorithm, ShRec3D, for reconstructing 3D genome structures. Results We here develop an extension of this algorithm, by devising a tunable variant of the graph distance and introducing an alternative implementation of multidimensional scaling. This extended algorithm is shown to be more flexible so as to accommodate additional experimental constraints, focus on specific spatial scales, and produce tractable representations of human data. Conclusions Network representation of genomic contacts offers a path where physical and systemic approaches are joined to unravel the biological role of the 3D genome structure.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.